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Abstract

With the deployment of radar in versatile scenarios and a wide va-
riety of potential targets, demand for automatic classification of various
targets is increasing. The wide variety of radar signatures from physi-
cally smaller targets due to lower velocity / radar cross-section thresholds
and the increased deployment of radar-based sensors do crowd the radar
screen with misinterpreted targets. Micro-Doppler signatures have been
widely employed by researchers for the recognition of those targets that
exhibit micro-motions. This review article presents the evolution and re-
cent advances in radar micro-Doppler based signature analysis and feature
extraction. A review of the micro-Doppler-based target classification tech-
niques along with their applications in defense and commercial sectors, has
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also been presented. This article provides the first review paper in the
open literature that systematically covers the major steps along with the
adopted practices in micro-Doppler based target recognition. Moreover,
the limitations and future trends in the field are also discussed.

Keywords — Micro-Doppler, radar, deep learning, feature extraction, ma-
chine learning, pattern recognition, classification algorithms

1 Introduction

The use of first operational radar for remote sensing of targets dates back to the
second world war in which ‘Chain Home’ radar network was used by the Royal
Air Force to provide early warning about detection of enemy aircraft [1]. The
need for automatic target recognition was felt at the earlier stages of radar devel-
opment and since then it has remained an active area of research. It was as early
as 1937 when the target recognition experiments were carried out by adding
resonant dipoles to friendly aircraft for their discrimination from enemy air-
craft [2]. Secondary Surveillance Radars (SSR) were then introduced to achieve
target classification using Identification of Friend and Foe (IFF) transponders.
However, this technique was dependent on the target transmitting the required
information. In 1980, Merrill Skolnik presented certain approaches in his famous
book [3], which can be employed for target recognition. One of the approaches
was the Jet Engine Modulation (JEM), which deals with engine induced fre-
quency modulation on the echo signal of radar.

In many scenarios, the sub-components of a target exhibit micro-motions
such as rotation, vibration, tumbling, and coning, in addition to the target’s
“bulk motion”. Examples of such micro-motions include rotating blades of a
helicopter or multirotor, rotating blades of propeller of a fixed wing aircraft,
swinging arms and legs of a pedestrian, and rotation of wind turbines. The
micro-motions induce Doppler modulations on the received signal known as
micro-Doppler effect [4]. Micro-Doppler effect was first introduced in coherent
laser detection and ranging systems [5]. Due to these modulations, sidebands
are generated about the target’s Doppler frequency shift. The micro-Doppler
signature is the characteristic to a particular target’s micro-motion and hence
it can be exploited for classification of different targets [4]. Figure 1 shows the
simulated micro-Doppler signature of a running human with a radial speed of 2
m/s [6].

In war time scenarios, rapid and robust target classification is vital as it
can help in generating appropriate response according to the type of threat
being identified. With the deployment of radars in cluttered urban scenarios
and prompt availability of many commercial off-the-shelf (COTS) drones, there
is a growing need for detection and classification of smaller targets like humans,
drones, bicycles, birds, etc. That is why the velocity and Radar Cross Section
(RCS) thresholds need to be lowered for detection of smaller targets. This
invites a large number of target signatures, which if not discerned, may lead
to loss of situational awareness. Thus, target classification has become critical
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Figure 1: Micro-Doppler signature of a running human [6]. Used under CC
license.

for filtering out irrelevant targets [7]. Detection and classification of drones is
also crucial in current times for avoiding their misuse for activities like espionage
and terrorism. Micro-Doppler signatures have emerged as a useful tool for radar
target recognition in such scenarios.

A comparison of our article with existing review articles on the topic [8-12]
is presented in Table 1.



Table 1: COMPARISON WITH EXISTING REVIEW ARTICLES

Review Article | Year Scope of Work Remarks
Review of mD effect, maths of mD effect, mD signature | No coverage of feature extraction, classification techniques,
8] 2003 analysis and potential applications datasets and limitations for mD based target recognition
Review of mD signature analysis, feature extraction, No coverage of classification techniques, datasets and
[9] 2008 applications and future directions limitations for mD based target recognition
Review of advances in extraction and applications of No coverage of feature extraction, classification techniques,
[10] 2014 radar micro-Doppler signatures datasets and limitations for mD based target recognition
Review of mD effect, mD signature analysis, applications | No coverage of feature extraction, classification techniques
[11] 2015 and future research and datasets for mD based target recognition
No coverage of mD signature analysis, feature extraction,
Review of radar signals in terms of Doppler tolerance, classification techniques,applications and datasets for
[12] 2018 time-sidelobe level and immunity against jamming mD based target recognition




The remaining paper is arranged as follows: micro-Doppler signature anal-
ysis is covered in Section II. Section III covers the micro-Doppler-based feature
extraction techniques. Section IV summarizes the micro-Doppler-based clas-
sification approaches and dataset generation is covered in Section V. Section
VI presents important applications of micro-Doppler-based target recognition.
Section VII discusses limitations and possible future directions in the field. The
paper is concluded in Section VII.

2 MICRO-DOPPLER SIGNATURE ANALYSIS

Fourier transform does not provide time dependent frequency information. Hence,
it is not suitable for the analysis of micro-Doppler signals since the spectral con-
tent of these signatures vary with time [4]. Time-frequency analysis techniques
do provide spectral and temporal information of the micro-Doppler signal si-
multaneously, in which the following methods are employed [4]:

2.1 Imnstantaneous Frequency Analysis
For a non-stationary signal, instantaneous frequency is defined as:

1d

1) = 5 Z(0), 1)
where @(t) is the phase function of the analytic signal z(t) = a(t) exp[®@(t)]. The
limitation of this method is that it only provides a single frequency at any time
instant. Therefore, it cannot be used for analysis of multi-component signals,
like the micro-Doppler signature of a target, containing multiple frequencies at
a given time instant. For applying this method on multi-component signals,
they need to be decomposed into constituent mono-component signals, using
techniques such as Empirical Mode Decomposition (EMD) [13], which can then
be analyzed using instantaneous frequency analysis.

2.2 Joint Time-Frequency Analysis

Joint time-frequency analysis is used for analyzing the time dependent spectral
content of micro-Doppler signals. It can be applied to mono-component as
well as multi-component signals. Its techniques are classified into linear time-
frequency transforms and bilinear time-frequency transforms.

2.2.1 Linear time-frequency transforms

Short Time Fourier Transform (STFT) is the commonly used linear time-frequency
transform for micro-Doppler signature analysis. STFT is expressed mathemat-
ically as follows:

X(r,w) = /00 z(t)w(t — 7) exp (—jwt) dt, (2)

— 00



where z(t) is the signal to be transformed and w(7) is the window function.
Major pitfall of STFT is that there is a trade-off between time resolution and
frequency resolution [14].

2.2.2 Bilinear time-frequency transforms

In order to improve the resolution of linear time-frequency transforms and
to better analyze the micro-Doppler modulations, bilinear or quadratic time-
frequency transforms have been applied. They provide good time-frequency
resolution but increase the computational cost and also suffer from the phe-
nomenon of “cross-term interference” [4]. The cross-term gives wrong spectrum
distribution and blur the characteristics of the time-frequency signals, thus af-
fecting the physical explanation of bilinear time-frequency transform [15]. Some
of the commonly used bilinear time-frequency transforms are listed in Table 2,
alongwith their respective kernel functions for reducing the cross-term inter-
ference [14]. Any of the bilinear time-frequency transforms can be used for
analyzing micro-Doppler signals as long as it satisfies the requirements of high
time-frequency resolution and minimum cross-term interference [14]. Other im-
portant representations widely used for micro-Doppler signature analysis are
Cadence Velocity Diagram (CVD) [16] and Cepstrogram [17], both of which are
computed from the spectrogram. The relationship between STFT, spectrogram,
CVD and cepstrogram is depicted in Fig. 2.
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Figure 2: Relationship between STFT, spectrogram, CVD and cepstrogram [18].
©2019 EuMA.

Generally the radar data is first represented in the form of range-Doppler
to extract the range and velocity of the targets of interest. Clutter cancellation
and detection is performed subsequently. Once the range bins of the targets of
interest are identified, then the micro-Doppler signature analysis is done using
appropriate time-frequency transforms as discussed earlier. The information
from range-Doppler representation can also be used in combination with micro-
Doppler features for target recognition such as in [19], where selected kinematic
features extracted from 4-D data matrix (range, azimuth, elevation and Doppler)
of a 3-D staring radar are used alongwith micro-Doppler information to train a
decision tree. For radars having sufficiently high range resolution (HRR), the
displacements caused by the target’s micro-motion may become observable from



the ‘macro-range’ response. These responses are termed as micro-range signa-
tures [20]. The combination of micro-range and micro-Doppler signatures can be
helpful in analysis and recognition of complex motions like human motion where
it can be used to isolate the micro-motions from individual body parts leading
to improved target detection, classification and discrimination. An algorithm
for automated micro-range-micro-Doppler target signature decomposition has
been presented in [20].



Table 2: BILINEAR TIME-FREQUENCY TRANSFORMS [14]

Time-Frequency

Transform Mathematical Form Kernel Function

Spectrogram ISTFT(t,w)|? -

Cohen Class J [ [®0,7)s(u+ 7/2)s*(u— 7/2)el% = I = i0uqudrdg o0, 1)

Wigner-Ville Js(t+T)s*(t+ %) exp (—jwr)dr o0,7)=1
Pseudo Wigner

(PWD) Jh(r)s(t+3)s* (t+%)exp(—jwr)dr ®(0,7) = h() = exp {jat?/2}

Smooth Pseudo

Wigner-Ville [ s(t —u) PWD(t,w, a)du ®(0,7) = h(r) = exp {jar?/2}

y ex - 27'2 o

Choi-Williams [ Kew(u—1t,7)s(u+73%)s* (u+3)e " dudr (0,7) = Kew(0,7) = ep{0%"/o}

4n3/2 /712 /o

4 g(r); [t/7] < 1/2
Cone Kernel [[[ Ker(t—u,m)s (u+3)s* (u+ %) e dudr ®(0,7) = Kek(t,7) =

0 |t/r|>1/2




3 FEATURE EXTRACTION FROM MICRO-
DOPPLER SIGNATURES

To perform target recognition based on the micro-Doppler effect, certain dis-
criminating features are usually extracted. The accuracy of the classifier is
dependent on the robustness of the selected features and its relevance to the
dataset. Micro-Doppler returns from a target depend on its RCS, radar operat-
ing frequency, and aspect angle. Therefore, extracted features should be robust
enough against variations caused by these factors. Feature extraction for micro-
Doppler-based classification can be divided into two categories depending upon
the type of classifier employed.

e First is to directly use the micro-Doppler signature images as features for
classification. These images can be in the form of spectrograms [21-23],
CVD [24], cepstrograms or a combination of these micro-Doppler signature
images [24]. This is particularly used when Deep Convolutional Neural
networks (DCNNs) are employed as the classifier [21-25].

e Second approach is to extract statistically uncorrelated or independent fea-
tures from micro-Doppler signature using methods like Singular Value De-
composition (SVD) [26,27], Principal Component Analysis (PCA) [28] and
Independent Component Analysis (ICA) [29]. Empirical Mode Decompo-
sition (EMD) has also been successfully employed for extracting micro-
motion features generated by rotating or vibrating structures [30-32]. An
algorithm proposed in [7], extracts four micro-Doppler features from spec-
trograms and cepstrograms, to discriminate between UAVs and birds. Ca-
dence Velocity Diagram Frequency Profile (CVDFP) and Mean CVD are
used as features for micro-Doppler classification in [28,33] respectively.

The above mentioned methods decompose micro-Doppler signature into com-
ponents that are uncorrelated or independent, but they are not necessarily linked
to motion of individual body parts. In the case of complex motion like human
walking or running, the first step is to decompose the micro-Doppler signature
into components related to the individual body parts or structures [4]. Such
a methodology is proposed in [34,35]. However, it covered signature decom-
position for human walking and running only. In the same context, Viterbi
algorithm is also applied for decomposition of micro-Doppler signatures and
estimation of hidden state in joint time-frequency domain [36].

Table 3 lists down the features employed ("Features’ column) in a variety of
works on mD radar target recognition. The above listed feature categories are
also evident from the information presented in Table 3. Feature extraction is
done automatically in the case of deep learning classifiers such as CNNs. How-
ever, manual feature extraction has to be done for conventional classifiers such
as SVM and Naive Bayes. Manual feature extraction offers more control over
the classification process and can prove beneficial in certain scenarios where we
want to give more weight to particular features. On the other hand, automatic
feature extraction by deep learning classifiers may extract certain important



features that may otherwise be missed during the manual feature extraction.
Important features used for classification of birds and drones are mD periodic-
ity, spectrum width and symmetry [37]. mD periodicity represents the rotation
rate, which will be higher in case of drones as compared to birds. The wing
beat frequency of birds is between 2 and 20 beats per seconds [37]. mD spec-
trum width represents the maximum velocity of micro-motions relative to main
velocity, which is higher in case of drones. Spectrogram symmetry can also be
used for differentiating between birds and drones (with even number of blades)
as birds have an asymmetric spectrogrm [37]. Other discriminating features are
RCS and target velocity but their dependence on aspect angle and radar fre-
quency makes them less robust [37]. Important features used for classification
of humans and human gait are torso Doppler frequency and bandwidth, total
Doppler bandwidth, offset of the total Doppler, Doppler bandwidth without
mD effect, period of limb motion, average radial velocity and normalised stan-
dard deviation of Doppler signal strength [38,39]. These features are extracted
from the mD signature by computing the mean, minimum and maximum of
lower and upper envelopes of spectrogram, mean Doppler, torso bandwidth, to-
tal bandwidth and outer bandwidth [38,40]. Feature extraction is peculiar to
problem and depends on factors such as the environment, type of radar and
characteristics of target. For reliable target recognition, the selected features
(i) should provide information about target parameters such as rotation rate,
blade flash frequency and number of rotor blades (ii) should be discriminative
between concerned target classes e.g., the bulk velocity can be a discriminative
feature for classifying between drone and non-drone but it can’t be for mini-UAV
and birds as both have velocities in the same range [37]. The discrimination
between the classes can also be quantitavely verified by separability measures
like Jefferies-Matusita distance, Transformed Divergence, etc. (iii) should be
robust with respect to target type, radar settings, background environment and
measurement parameters such as operating frequency, aspect angle and polar-
ization [37].

4 MICRO-DOPPLER-BASED TARGET CLAS
SIFICATION ALGORITHMS

For classification of different radar targets based on their micro-Doppler features,
different types of classification algorithms have been used in the open-literature.
These approaches can be broadly classified into model-based and data-driven
methods [41,42].

4.1 Model-based Classification Approach

Model-based methods rely on the parametric models of the dynamic and kine-
matic properties of targets for classification. Examples of such models are the
Thalmann model for human walking [43], and Vignaud model for human run-
ning [44]. These methods estimate the probability of radar data to fit a prede-
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fined model by simulating the data with different input parameters of the model,
and find out the parameters that minimize the difference between the simulated
and real data. In [45], a model-based classification of human motion is pro-
posed by applying particle filtering to micro-Doppler spectrum of targets. Par-
ticle filters are a set of Monte Carlo algorithms, that use a set of particles with
associated weights to represent the required posterior density and to compute
estimates. Model-based classification methods can provide useful information
regarding the current dynamic state of target by providing estimates of target’s
motion parameters. However, these methods require high processing power due
to model calculations for different parameters, generalized models, and tackling
the problem of non-convergence for large number of parameters [42].

4.2 Data-driven Classification Approach

Data-driven classification methods can be further categorized into template
matching, conventional Machine Learning (ML) techniques and Deep Learn-
ing (DL) techniques.

4.2.1 Template Matching

Template matching methods perform classification by matching the input data
to a signature database or reference library. The library contains the refer-
ence signatures of all possible target classes. A class is assigned based on the
confidence level of its matching with a certain reference signature. In [46,47],
micro-Doppler classification has been achieved using Dynamic Time Warping
(DTW), which is a template-based classification technique. DTW is a tech-
nique used in speech recognition and it can measure the similarity between two
time series with varying speeds. In performance comparison with k-Nearest
Neighbors (k-NN), another template-based technique, has also been provided
in [47]. k-NN classifier is also used in [29, 48] for radar micro-Doppler-based
target classification. These methods are simpler to implement as compared to
model-based and supervised learning techniques. However, for large databases,
these methods can be time-consuming as the input data has to be compared
with all possible entries in the reference library. Moreover, larger libraries also
require more memory as these are needed during classification, in contrast to
supervised learning, where training data is used offline.

4.2.2 Conventional ML Classification Algorithms

Conventional ML classifiers that have been employed for micro-Doppler-based
classification include linear and non-linear Support Vector Machines (SVM) [28,
32,33,48,49], naive Bayes [49,50], Maximum A Posteriori (MAP) [7], subspace
reliability analysis [51], discriminant analysis [52], and decision trees [19, 53].
These classifiers have achieved good results with classification accuracies of 90%
and above on their acquired datasets under different experimental scenarios.
The advantages of these conventional ML techniques over deep learning are the
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requirement of less amount of training data, especially if the dimension of the
feature space can be reduced using signal processing techniques such as SVD
or PCA [41]. The overall computational complexity of these classifiers is less
than deep learning based classifiers, thus they are much faster and less complex.
A comparison of both types of classifiers in terms of computational complexity
is provided in [54]. The total time for the SVM classifier is reported to be 99
seconds, whereas it is 157 seconds and 241 seconds for a CNN and convolutional
autoencoder, respectively.

4.2.3 Deep Learning Classification Algorithms

Deep learning (DL) based classification approaches have certain inherent ad-
vantages over conventional ML approaches. They are less dependent on domain
knowledge as they can automatically extract the features as well as classification
boundaries from the micro-Doppler signatures [22,24]. Due to the elimination
of feature extraction step, they can save the processing time required by fea-
ture extraction algorithms [21] as well as avoid human errors in making the
right choices. Deep learning classifiers are also reported to learn the clutter and
noise patterns during training e.g., during the convolution filtering process in
CNNs. Clutter has a significant impact on the performance of other classifiers,
in which such deep learning architectures may be useful by the automatic ca-
pability of clutter cancellation [40,54]. Moreover, deep learning architectures
can extract certain important features, which may otherwise be missed by the
manual feature extraction process in case of ML based approaches [22].

Deep Convolutional Neural Networks (DCNNs) have been applied for radar
micro-Doppler-based classification [21-25]. However, DCNNs have certain draw-
backs: they require input data in the form of images and require diverse train-
ing sets for better classification. As the input to DCNNs is in the form of
micro-Doppler signature images, accuracy can reduce if there are variations in
micro-Doppler signature due to irregularities in the micro-motion dynamics of a
target [22]. Moreover, the training and validation process needs to be rigorous
and diverse for better classification and to avoid overfitting [21].

In addition to DCNNs, Recurrent Neural Networks (RNNs) have also been
exploited for target classification based on micro-Doppler effect [55-59]. Out of
different RNN types, Long Short-Term Memory (LSTM) networks are popular,
as they can overcome the issue of vanishing / exploding gradient problem [60]
and are able to learn both long and short data sequences compared to other
RNN architectures [61]. Use of RNNs bring the advantages of classifying mea-
surements with variable observation time and can also deal with measurements
that include transitions between classes over time.

A deep Convolutional Autoencoder (CAE), that essentially combines the
benefits of Autoencoder and CNN, is proposed in [54] to classify 12 types of aided
and non-aided human activities with an accuracy of 94.2%. Researchers have
also employed hybrid classifiers for micro-Doppler-based target classification,
that combine both the conventional ML and DL classifiers to take advantages
of both techniques [62].
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5 DATASET GENERATION FOR DATA-DRIVEN
ALGORITHMS

Any coherent Doppler radar such as pulse-Doppler, Continuous Wave (CW),
or Frequency-Modulated Continuous Wave (FMCW) can be employed for cap-
turing micro-Doppler returns from the targets. CW radar offers advantages
of high sampling rates and longer integration times whereas pulse-Doppler /
FMCW radar can calculate target range; thus improving the Signal to Noise
Ratio (SNR) of micro-Doppler returns. However, pulse-Doppler and FMCW
radars have relatively low Pulse Repetition Frequency (PRF) / Scan Repetition
Frequency (SRF), which can result in major Doppler fold-over [63].

Collecting real data for the radar micro-Doppler-based target recognition
is laborious and expensive. However, diversity in the limited training dataset
can be enhanced by generating additional data with Generative Adversarial Net-
works (GANSs) and model-based simulations [64]. Additionally, transfer learning
and unsupervised pre-training methods can also be used in case of low training
sample support, thus preventing the models from over-fitting [64,65]. GANs
have been used in the literature for generating additional training samples from
the actual data because they have the ability to synthesize data whose distri-
bution is very close to the real-world datasets [69,72,73]. However, the number
of GANs being used increase with the increase in target classes, and training
of large number of GANs is challenging [69]. Transfer learning has been em-
ployed for micro-Doppler-based classification using DCNNs [21,24,65]. In [65],
unsupervised pre-training is implemented through the use of convolutional au-
toencoder and a comparison with the transfer learning approach is presented.
Table 3 presents a summary of various types of datasets, classification method-
ologies and features adopted in the literature for micro-Doppler-based target
recognition.

An important practical issue arises when all the radar data is not available
beforehand for training the model, rather data is arriving sequentially as learn-
ing continues. In such scenarios, if the model is retrained from scratch every
time on the arrival of new data, it can result in huge computational cost. On the
other hand, if the model is simply updated with new data, it can result in catas-
trophic forgetting of past learned tasks [74]. A comparative study of continual
learning methods for micro-Doppler-based human activity classification has been
presented for the first time in [75]. The authors have considered two continual
learning scenarios of domain incremental learning (DIL) and class incremental
learning (CIL), for comparing the performance of regularization- [76-78] and
exemplar-memory-based continual learning methods [79-81].
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Table 3: COMPARISON OF DATASETS, CLASSIFICATION APPROACHES
AND FEATURES USED FOR MICRO-DOPPLER BASED TARGET
RECOGNITION

Classification Target Samples per | Envir 1 |Cl ion
References|Year| Radar Approach Classes Features Target Class Scenario Accuracy (%)
Birds, Stationary Rotor,
Linear SVM/ Mini Quadcopter, Transformed
Nonlinear SVM/ Mini Helicopter, Eigenvectors 94.91 / 95.39
[49] 2013| CW Naive Bayes Mini Fixed-Wing Plane and Eigenvalues 7500 Outdoor / 93.6
Human Walking (different
Pulse speeds), Horse with Rider | SFPP, CVDFP®, 28, 112 (For
66]  |2013| [67) Nonlinear SVM (different speeds), Both | SFP-CVDFP-PCA | last class only) Outdoor > 90
Mean RCS;
Large Man-made, Bio Life,| Target Velocity, | fand-drawn
Small Multicopter, Small | mD Periodicit; likelihood
[7] |2005| CW | Min Error Rate | Heli, Small Fixed-Wing | Spectrum W curves used Outdoor Not Provided
Sha
Naive Bayes / foaturo
[68] 2015| CW Shape Spectrum Humans 240 Indoor > 90
Mean,min and max
of lower /upper spec
-trogram envelope,
Mean doppler, Torso,
[40] 2015 | Pulse Neighbor Human Activity total and outer BW 1680 Indoor > 88
Automatic feature
Human, Dog, Horse, | extraction by CNN
[22] 2016| CW DCNN Car / Human Activity | from spectrograms 40 / 144 Outdoor 97.6 / 90.3
Mean mD
spectrogram, Mean
Drones, CVD, 1st left Outdoor
[33] 2017 CW SVM Birds (Simulated) singular vector 80 (for Drones only) 96 - 100
Automatic Teature
extraction by CNN |50,000 (Chamber)| Anechoic Chamber/
[24] 2017 [FMCW|  GoogLeNet CNN Drones from merged images | 10,000 (Outdoor) Outdoor 94.7 / 100
Aufomatic Teature
extraction by RNN
[55] 2017 CW LSTM Upto 3 Human Gaits from spectrograms 3235 - 9889 Outdoor 89.1
Birds, Stationary Rotor, | 08 statistical and
Mini Quadcopter, geometrical features
Mini Helicopter, extracted
[32] 2018 | CW Nonlinear SVM Mini Fixed-Wing Plane from IMFs? 1129 - 3617 Outdoor > 90
Automatic feature
CNN / Residual extraction by 98-100 (Two
Network / CNN- | Single and Two Person, CNN / RNN 60 and 44, Class), 79-93
[61] 2018 |[FMCW LSTM Bicycle, Car from spectrograms 22, 60 Outdoor (Three Class)
Automatic feature
Convolutional 12 Human extraction by CAE
[54] 2018 | CW | Autoencoder (CAE) Activities from spectrograms 50 - 149 Indoor 94.2
Automatic feature
extraction by CNN
from improved
[25] 2020 |[FMCW Light CNN Drones , Noise spectrograms 700 Outdoor 97.14
Automatic feature | 144 (Actual) +
and GANs / extraction by CNN 1440 (Using
[69] 2020 | CW ot and VGG-16 Human Activity from spectrograms GANs) Outdoor
Range extension/
variance, Velocity, | 2500 (Vehicle)
[62] 2020 |[FMCW| Hybrid SVM-CNN Human, Vehicle ext/var 500 (Human) Outdoor 96
Mini Helicopter, Dictionary features
Quadcopter and extracted using
Dictionary Hexacopter (Single K-SVD algorithm
[70] 2020 | CW Learning and Multiple Targets) on CVDs 200 Indoor 93.38
Automatic feature
GoogLeNet CNN / Drone, Birds, extraction by CNN
[21,71] | 2020 [FMCW|  Series Network Clutter, Noise from spectrograms 600 Outdoor 99 / 944
RCS, Velocity,
Two Stage Drone, Height, Kinematic | 4622 (Drone) 85.02 (TPR®)
[19] 2020 | Pulse n Tree Non-Drone and mD information|9244 (Non-Drone) Outdoor 0.37 (FPRY)
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6 APPLICATIONS AND PRACTICAL IMPLE-
MENTATIONS

Micro-Doppler-based target recognition has found applications in a variety of
defense as well as commercial fields. Some important areas of application are
depicted in Fig. 3.

Ground
Moving
Targets

Recognition

Air Targets Clutter

Recognition Rejection
Applications
of Micro-

Doppler
_ based Target
" Recognition
Space \ /

Targets A 7 4 HOmE
Lgsl Automation
Recognition

Vital Sign
Detection

Figure 3: Applications of micro-Doppler-based target recognition.

6.1 Ground Moving Targets Recognition

Classifying ground moving objects such as humans, roadway vehicles, and an-
imals are important for applications like perimeter security, intelligent trans-
portation system, surveillance, human gait analysis, etc. Micro-Doppler effect
has been successfully employed for recognition of ground moving targets. In [22],
four types of ground moving targets were classified based on micro-Doppler spec-
trogram images using DCNN. In addition to target recognition, seven types of
human activities were classified such as walking, running, crawling, and box-
ing. The authors achieved classification accuracies of 97.6% and 90.9% for
target recognition and human activity classification respectively on their ac-
quired datasets. Figure 4 shows the extracted spectrogram images of four types
of ground targets from [22] whereas spectrograms of four human activities are
shown in Fig. 5 [22].

Six different types of pedestrian movements have been classified in [82] us-
ing a Support Vector Machine (SVM) classifier; the dimensions of which were
reduced using Principal Component Analysis (PCA) applied on “aligned” spec-
trograms. Classification of ground vehicles, as wheeled or tracked vehicles, has
been done in [27]. The classification was performed using an SVM classifier
based on micro-Doppler features and SVD. Micro-Doppler-based target recog-
nition has also found applications in the field of automotive industry and road
safety. An approach for joint estimation of tracks and micro-Doppler signatures
in a real-time multi-target scenario has been presented in [83]. The authors
have proposed to use the algorithm for driver assistance to avoid crashes with
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Figure 4: Sample spectrograms from [22]. (a) Human. (b) Dog. (c¢) Horse. (d)
Car. (©)2016 IEEE.

Frequency (Hz)
Frequency (Hz)

Frequency (Hz)
Frequency (Hz)

2 3
Time (sec) Time (sec)

(c) (d)

Figure 5: Sample spectrograms of four human activities from [22]. (a) Running.
(b) Crawling. (c) Boxing still. (d) Boxing forward. (©)2016 IEEE.
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other vehicles and obstacles, for intelligent traffic light systems to monitor traffic
participants at pedestrian crossings, and for intelligent street light systems.
Micro-Doppler-based target recognition have also been used for perimeter se-
curity and surveillance of critical infrastructures such as military bases, airports,
dams and grid stations [83,84]. It has the potential to replace infrared-based
motion sensors, which have a high false alarm rate because the infrared sensors
can create alarms even for moving foliage and roaming animals. For perimeter
security, the humans, vehicles, and animals are automatically differentiated [22].

6.2 Air Target Recognition

Primary purpose of radars, which also triggered their invention, is the detection
of air targets such as aircraft, helicopters, and drones. Recognition of air targets
can give an edge to military forces over their adversary. Incorrect classification
of air targets can result in friendly fires and can even change the outcome of a
conflict.

Micro-Doppler effect can be used for recognition of air targets as these tar-
gets possess micro-motion dynamics such as rotation of propellers of fixed wing
aircraft, rotation of fan and turbine in case of jet engines, rotation of helicopter
blades, and rotation of rotors in case of drones [4]. Plenty of research has been
done for recognition of drones based on micro-Doppler effect [7,19,23,25,30-32].
Micro-Doppler-based target recognition is also employed for classification of
loaded and unloaded drones [50], to differentiate birds from drones [21,49], and
for classification of propeller based aircraft [85]. Micro-Doppler signatures from
helicopter rotor blades have been studied in [86-88]. The research in this field
has also resulted in useful commercial products for drone surveillance and secu-
rity, and for unmanned air system traffic management [89]. One such product,
named ” Gamekeeper 16U” [89], used for detection, tracking, and classification
of Unmanned Air Systems (UAS) is shown in Fig. 7a. It is currently deployed
at various airports as part of their counter-UAS strategies for ensuring security
and aviation safety [89]. A two stage decision tree approach has been proposed
in [19] to classify drones from other confuser targets using the Gamekeeper
16U radar. Sample spectrogram of DJI Inspire I quadcopter obtained with the
Gamekeeper 16U radar is shown in Fig. 6.

DJI Inspire 1

micro-
Doppler

requency (Hz) / velocity (ms)

body
Doppler

0 20 40 60 80 100 120 140 160
Time (s)

Figure 6: Example spectrogram from DJI Inspire 1 with the Gamekeeper staring
radar. [19]. (©2020 IEEE.
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Figure 7: Aveillant’s Gamekeeper 16U and Theia 16A commercial radars using
micro-Doppler phenomenon [89)].

6.3 Clutter Rejection from Wind Turbines

Countries around the world are installing large number of wind farms to generate
clean and green electricity. However, these wind farms are a major source of
clutter for nearby radars due to their large RCS and time varying Doppler
return. A typical wind turbine could have a RCS of the order of 60 dBsm at X-
band [90]. The impact of such wind farm clutter on the performance of aviation
radars was studied in [91]. Negative effect of wind turbine clutter on weather
radars has also been reported in [92,93]. Due to their time varying Doppler
return, wind turbine clutter cannot be mitigated using classic ground clutter
cancellation techniques [94].

Micro-Doppler signature of wind turbines have been studied in [95, 96].
Micro-Doppler signature identification in the presence of wind turbine clutter
for airborne pulse-Doppler radar is presented in [97]. Mitigation of the radar
imprints from wind turbines using a combination of CNN and Multilayer Per-
ceptron (MLP) is presented in [98]. The classification of wind turbines was done
based on target’s attributes and high resolution Doppler spectrum. A commer-
cial radar, named "THEIA 16A”, designed by Aveillant (Thales company) for
wind farm clutter mitigation is shown in Fig. 7b. It uses the micro-Doppler
effect to classify between aircraft and wind turbines, and can present an unclut-
tered picture of airspace to air traffic controllers by minimizing the number of
false tracks.

6.4 Space Targets Recognition

Distinctive micro-Doppler signatures result from various types of micro-motions
exhibited by space targets. These micro-motions include precession, nutation,
spinning, and wobbling. Micro-motion parameters such as spin rate, precession
rate, inertia ratio, and nutation angle can be extracted from the micro-Doppler
signatures of these space targets, which can be used for their classification.
Distinction of a ballistic missile warhead from other confusing space targets is
paramount because of higher cost of interceptors and minimum reaction time
[99]. Tactical Ballistic Missile (TBM) has to be intercepted during its mid-course
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phase. However, in this phase, separation of multiple boosters from the missile
takes place, which results in interfering targets for classification. Warhead of
a ballistic missile undergoes precession and nutation motions whereas wobbling
motion is exhibited by a decoy. This difference is depicted in their respective
micro-Doppler signatures and can be employed to discriminate between ballistic
missiles and decoys. In [99], authors have presented an approach based on micro-
Doppler effect for classification of space targets into warhead and confusing
target classes. The two target classes are shown in Fig. 8. Micro-Doppler
signature extraction from ballistic targets is considered in [100]. Micro-Doppler
signature resulting from precession motion of warhead is shown in Fig. 9. Other
works on micro-Doppler-based recognition of ballistic targets include [101-107].

\
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Figure 8: Two target classes along with their subclasses. (a) Warheads. (b)
Confusing objects. [99]. Used under CC license.

Frequency (Hz)

Time (second)

Figure 9: Precession induced micro-Doppler signature [100]. (€)2010 IEEE.
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6.5 Home Automation

Concept of smart homes is gaining popularity with the evolution of Internet of
Things (IoT). One aspect of home automation is security such as access control
and alarm systems, where the micro-Doppler-based target recognition offers a
promising solution. Gesture recognition and control can also be achieved using
micro-Doppler features. Radars do not require any tag attached to human hand,
can penetrate through materials, and are more robust to variations in light,
distance, etc. [4]. Hand gesture recognition based on micro-Doppler signatures
has been covered in [108-112].

Another aspect of home automation is the indoor monitoring of inhabitants,
especially those who have a medical condition to cater for any health emergency
situation. As per the statistics of U.S. Center for Disease Control and Prevention
(CDC), the death rate in older adults increased by 30% from 2007 to 2016
[113]. Radar-based human gait monitoring offers certain advantages like it is
contactless and it doesn’t violate the privacy of an individual. Micro-Doppler
effect has been exploited for monitoring of abnormal human activities inside
homes, offices, etc. [4]. Human motion consists of periodic movements such as
walking, running, and non-periodic movements such as falling, kneeling. These
aperiodic movements can be an indication of a health related emergency such
as heart attack, unconsciousness or a severe fall. Analysis of micro-Doppler
signatures of various human body parts can give an indication of such situations
and can be used for indoor monitoring of habitats [39,114,115]. Spectrograms
of various human motions used for fall detection in [116] are shown in Fig. 10.
Micro-Doppler signatures have been used in [117] for in-home aided and unaided
gait recognition with multiple radar and sonar systems.
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Figure 10: Spectrograms of four human motions [116]. (a) Fall. (b) Sit. (c)
Bend. (d) Walk. (©2018 IEEE.

Subspace classification of five types of human gaits using radar micro-Doppler
signatures have been presented in [118]. These gaits include normal walking,
limping with one leg, limping with both legs, cane-assisted synchronized walk
and cane-assisted unsynchronized walk. Few sample spectrograms of these gaits
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from [118] are shown in Fig. 11.
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Figure 11: Spectrograms and cadence
human gaits from [118]. (©)2018 IEEE.

6.6 Vital Sign Detection
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Vital signs, such as heart rate and respiratory rate, are important indications
of human health. These signs are also being used in search and rescue oper-
ations for detection of survivors trapped in rubble. Micro-motions resulting
from heartbeat and breathing have distinctive micro-Doppler signatures, which
can be used for vital sign detection of humans [119-123]. Figure 12 shows the
micro-Doppler signature for respiration of a walking human obtained using an

ultra wideband radar [124].

Frequency [Hz]
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Time [s]
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Figure 12: (a) Spectrogram of human walking towards and away from radar.
(b) Extracted micro-Doppler trajectory of respiration [124]. (©)2016 IEEE.

7 LIMITATIONS AND FUTURE TRENDS

There are research avenues related to micro-Doppler-based target recognition
that needs further exploration. In addition to this, certain limitations also exist.
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One of the important limitations for micro-Doppler-based radar target recog-
nition is that there is no widely-accepted open-source benchmark dataset that
can be used to check the evolution of micro-Doppler based target recognition
methodologies. As discussed in Section 5, researchers have developed and used
their own datasets for testing the classification performance of their proposed
algorithms. However, each dataset is different in terms of type of radar used,
number and type of targets considered, diversity (in terms of changing frequency,
aspect angle, polarization etc.), number of training samples, and environmental
scenario. Recently, one such public dataset named "UWB-Gestures’ has been
presented in [125] for hand gesture recognition. It is the first public dataset
of twelve dynamic hand gestures acquired with three ultra-wideband impulse
radars.

As discussed in Section 5, dataset creation for micro-Doppler-based target
recognition is a cumbersome task. Radar-based data gathering requires ex-
pensive equipment and extensive labour. In order to overcome the scarcity of
training data, several solutions have been proposed in the literature [41]. These
include generating synthetic micro-Doppler data from model based simulations,
using GANs, unsupervised pre-training and transfer learning. However, none of
these is the generalized solution valid for all sorts of target scenarios [41].

Micro-Doppler signature is a multi-component signal formed by the super-
position of constituent mono-component signals. The decomposition of a micro-
Doppler signature into components associated with individual structural parts
of a target is still a challenge. Methods such as EMD can decompose a multi-
component micro-Doppler signal into constituent mono-components. However,
these decomposed signals have no association with any structural part of the
target. An effective decomposition algorithm that can perform physical com-
ponent based decomposition of micro-Doppler signature will lead to improve-
ment in target classification, recognition, and identification. It may also help
in identifying and predicting the behaviour, emotions, and intentions of human
targets [4].

Polarimetric micro-Doppler analysis can also aid in separation of different
components of human motion. The double bounce of radar signal from dihedral
joints like elbow and knees, can be separated from planar body surfaces by
measuring the phase difference between HH and VV [126,127]. Use of dual
polarization radar can be used to improve the classification accuracy for body
gesture recognition, by combining the micro-Doppler signatures obtained using
HH and HV [128]. Different types of polarimetric parameters have been used in
[129] for classification of UAVs and birds using a S-band quadrature polarization
radar.

Use of multistatic radars for capturing micro-Doppler returns is another re-
search avenue that needs further exploration. A multistatic radar has spatially
diverse transmitter / receiver nodes having a shared coverage area [130]. Use
of multistatic radars offer certain advantages over monostatic radars, which in-
clude improvement in target detection, enhanced information about the target
due to multiple aspect viewing, reduced vulnerability of the receiver to jamming,
wider coverage, and use of clutter tuning for increased sensitivity [41,131,132].
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Multistatic micro-Doppler signature is dependent on system topology, and the
motion and location of the target [1]. By using the micro-Doppler informa-
tion received from multiple channels, radar-based target classification can be
improved as indicated in [50,52,133,134].

The micro-Doppler signatures may be communicated to an operator or clas-
sification algorithm for a human-like experience. This can be in the form of
aural signals or any other visual representation. Aural signal classification has
been employed in sonar signal classification [135]. Advantage of aural classifi-
cation is the robustness of human auditory classification process to noise. An
audio depiction of micro-Doppler signal may help a human listener to differenti-
ate between different human movements or between different target types [20].
Aural classification can be applied to micro-Doppler signatures by conversion
of baseband micro-Doppler signal into an audio signal for training listeners [4].
Work on meaningful visual depictions of micro-Doppler data is also important
for conveying useful information to the operator. Visual depiction can take the
form of range-Doppler movies, as the processing speed has now improved to
near real-time [136-138].

Another important research trend is augmenting micro-Doppler information
with other forms of information from radar data, such as range, velocity, height,
and direction of arrival information. With the development on millimeter wave
radars with several GHz of bandwidth, returns from multiple targets and various
parts of an object can be resolved in range. Use of micro-range micro-Doppler
features can improve the classification performance and can also help in map-
ping motion components to individual body parts [41]. In [19], height, RCS,
and velocity information is used in conjunction with micro-Doppler to achieve
robust drone classification. In [139], micro-range micro-Doppler has been used
to differentiate a single person from a group of people walking towards radar.
Micro-Doppler and range-Doppler analysis has been used in [140] for detection
of potential active shooter.

Wrong predictions in a real-time radar classification system can result in
catastrophic outcomes. For example, confusing a bird with a drone can mis-
takenly trigger the air defense system in case of a military scenario. Hence,
with regards to the classification approaches discussed in Section 4, there is
a need to take into account the factors of data bias and uncertainty, as these
approaches are data-driven. Is our training dataset labelled properly? Is our
training dataset diverse enough to be free from data bias? How confident our
classifier is about its predictions? Can we trust the predictions of our classifier
on unseen data? Current work on micro-Doppler-based classification have not
addressed these important questions.

8 CONCLUSION

With ever increasing applications of radar for remote sensing applications, there
is a need for classification and recognition of different types of radar targets.
Micro-Doppler signatures have emerged as the popular choice for classification

23



of a wide range of air, ground, and space targets. Joint time-frequency tech-
niques are used for micro-Doppler signature analysis since the spectral content
of these signals vary with time. Linear time-frequency transforms have a trade-
off between time and frequency resolution while bilinear transforms suffer from
the phenomenon of cross-term interference. DCNNs directly use micro-Doppler
signature images as inputs for classification while conventional ML based classi-
fiers require manual feature extraction step using different methods like EMD,
SVD, PCA or ICA. Deep learning classifiers offer inherent advantages over con-
ventional ML classifiers, but they require large and diverse training datasets
for better classification performance. Micro-Doppler effect has found numerous
applications in various fields like military, automotive industry, health sector,
home automation and security, search and rescue, vital sign monitoring, and
clutter rejection from wind turbines. There is a need of further work in this
area, specifically in creation of standardized datasets by adopting the best prac-
tices, effective micro-Doppler signal decomposition, polarimetric and multistatic
micro-Doppler analysis, optimization of feature extraction methods, addressing
issues of uncertainty, and continual learning for practical systems.
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