
1

MetricMiner: Supporting Researchers
in Mining Software Repositories

Francisco Zigmund Sokol, Mauricio Finavaro Aniche, Marco Aurélio Gerosa
Department of Computer Science

University of Sao Paulo (USP) - Brazil
E-mail: francisco.sokol@usp.br, {aniche, gerosa}@ime.usp.br

Abstract—Researchers use mining software repository (MSR)
techniques for studying software engineering empirically, by
means of analysis of artifacts, such as source code, version control
systems metadata, etc. However, to conduct a study using these
techniques, researchers usually spend time collecting data and
developing a complex infrastructure, which demands disk space
and processing time. In this paper, we present MetricMiner, a
web application aimed to support researchers in some steps of
mining software repositories, such as metrics calculation, data
extraction, and statistical inference. The tool also contains data
ready to be analyzed, saving time and computational resources.

Index Terms—mining software repositories; supporting tool;
code metrics

I. INTRODUCTION

Techniques of mining software repositories enables re-
searchers to study software engineering practices empirically.
Practitioners by means of these techniques uncover useful
information for the software development team, such as fre-
quently changed or error-prone classes, or the identification
of core developers in order to transfer knowledge. With this
information exposed, teams can take actions to improve their
code and processes.

To develop a study in the area, researchers need to gather
large amounts of data sometimes from many different projects
and store them in their own workstations or servers. Then,
manually run code metrics, and perform statistical calcula-
tions. This process requires the installation of several tools
and libraries, making the process complex and slow. Besides
the complexity, this kind of research consumes many computa-
tional resources. To start with, the repositories download uses
a reasonable amount of bandwidth. After being processed and
persisted in a database, the data occupies a huge disk volume.
To calculate metrics on a lot of artifacts a large amount of
processing time is required. Finally, after all these steps, it is
possible to extract information, and evaluate them by means
of statistical analysis. It means that researchers spend a lot of
time working on the tools, rather than in analyzing the data
and interpreting the results.

Based on all these difficulties, we decided to develop
MetricMiner, a web application that performs all these steps
without requiring great effort from the researcher. With it, re-
searchers can write new metrics, and extract information from
a reasonable quantity of different projects. In this paper, we
present the tool, its functionalities, and architecture decisions.

We also present a replication study that was developed using
the tool.

II. METRICMINER: A WEB APPLICATION TO SUPPORT
RESEARCH IN MSR

Understanding the process of software evolution is a hard
task. Large systems tend to have a long development history,
with many different developers working on different parts of
the system. It is common that no developers know all source
code of the project. Because of that, the idea of a manual
analysis of all software is impracticable.

Mining Software Repositories (MSR) analyses the software
evolution in an automated way, through the application of data
mining techniques into the development history data. Studies
in this field reveal useful information to the development of a
particular project or even find patterns in software evolution
that can be generalized to other software systems.

The term "software repository" comprises all artifacts cre-
ated during the development of a software system. From
source code files that are stored in a source control manager,
such as Git or SVN, to messages that developers exchange
in mailing lists. Such repositories contain useful information,
which can be explored to comprehend the software evolution
and contribute to its development.

MetricMiner is a web application that aims to support
researchers when working with mining software repositories.
As mentioned before, when a researcher needs to do a study
like that, s/he needs to install many different tools, libraries,
etc., and spend many computational resources. As a web
application, MetricMiner makes use of the power of cloud
computing to scale. This way, researchers do not have to
worry about resources. Currently, MetricMiner is running
over a cloud infrastructure and it is currently available at
http://metricminer.org.br/.

MetricMiner was based on rEvolution1, a command-line
tool that extracts data from a local repository and persists
them in a database. rEvolution was limited to collect data from
just one project, requiring researchers to execute it manually
for each repository. In addition, the configuration of the tool
was complex. It was necessary to configure database, source
control tools, and all external applications that the tool uses
in a single XML file.

1http://github.com/mauricioaniche/rEvolution.



2

Quantity
Total of projects 317
Total of committers 5,274
Total of commits 887,493
Total of artifacts 1,453,123
Minutes of work spent with tasks 39,203

TABLE I
CURRENT NUMBERS OF PROJECTS IN METRICMINER

The tool automatically clones source code repositories,
processes all repository metadata, stores it in a database,
allows researchers to create queries and to manipulate data,
and even to run statistical tests on the data set.

In the subsections below, we better explain the functionali-
ties as well as the architectural decisions. All the source code
and development history is hosted on Github, under an open
source license2.

A. Current Features
When researchers decide to do a study in MSR, they first

choose projects. When using MetricMiner, the researcher only
needs to insert the name of the project and the URL to its
repository into the web application. Currently, MetricMiner
supports Git and SVN repositories. As soon as the researcher
inserts the project, the tool automatically starts to clone the
repository, and to run all the existent metrics for each version
of the project. In addition, researchers can access repositories
that were previously inserted by other researchers. As it is all
done in the cloud, MetricMiner currently contains a reasonable
number of projects that were already processed. For example,
all Apache open source projects are already there. In Table
I, we show the current numbers of projects and commits in
MetricMiner.

As all steps in the process usually take time, all tasks are
executed asynchronously. MetricMiner has an internal queue,
in which tasks are executed. Researchers can monitor the web
application to find out when their tasks finished.

At the end of the cloning process, all relevant information,
such as source code, list of committers, date/time informa-
tion, code metrics, are persisted in the database. MetricMiner
already contains several metric implementations: cyclomatic
complexity [6], lack of cohesion of methods (LCOM) [3],
efferent coupling [5], amount of lines of code[1], and amount
of method invocations[4].

Researchers are able to query all the data that is in the
tool by just typing a SQL query. MetricMiner execute the
query asynchronously, store the result, and send the researcher
an email notification. Then, the researcher can download the
results in a standard CSV format3, and refer to the results in
their papers by an unique URL that MetricMiner provides.

As new projects can be added at any time, queries can be
re-executed at any moment. However, no data is lost; older
results are saved and their unique URL persists, even after the
query is executed again. In Figure 1, we show the screen in
which developers can create SQL queries.

2http://github.com/metricminer-msr/metricminer. Last access on June, the
9th, 2013.

3To preserve the identity of the developers, the tool replaces the developers’
name and emails by a hash string.

Fig. 1. A query in MetricMiner

Besides downloading it as a CSV, researchers can also use
the result of a query as an input to a statistical test. To do so,
they choose two datasets and the statistical test (for example, T
Student, Wilcoxon, and so on). MetricMiner then dynamically
writes and executes an R script 4, and stores the result in an
unique URL.

Researchers can also navigate into each project, as they have
their own page. In Figure 2, we show the homepage for the
Ant project, which contains more than 12,000 commits. The
tool presents basic information, such as the total number of
commits, committers, first and last commit’s date/time. The
tool also shows a few charts, showing the number of commits
in the last twelve months, and the number of files changed in
each commit for the last six months. Researchers can also add
tags to the project to group similar projects in a future data
extraction.

Fig. 2. Ant homepage, available on http://metricminer.org.br/project/12

B. Architecture and Design Decisions

In Figure 3, we show the basic flow in MetricMiner.
MetricMiner was developed in Java, and can be deployed in
any Java web container. Currently, the application is running
in Apache Tomcat. The tool also uses MySQL to store the
data.

4The R Project for Statistical Computing. http://www.r-project.org/.

http://github.com/metricminer-msr/metricminer
http://metricminer.org.br/project/12


3

Fig. 3. Basic flow of working in MetricMiner

The domain model contains all information from the source
control repository. It stores commits, authors, dates, and source
codes. Each commit is related to a set of modifications. These
modifications can be classified as a "change,” "new file,” or
"deleted.” For each file, MetricMiner stores the current source
code and the difference (diff ) to the last commit. The tool
does not store binary artifacts, such as images, zip files, etc.
By storing all the information, we enable researchers to create
new metrics, and run over old repositories, without the need
of restarting the whole process.

Internally, the tool uses a queue to organize the tasks it needs
to execute. Tasks represent the steps that MetricMiner takes to
extract information from a project: repository cloning, extract
repository metadata, run code metrics, and run a statistical test.
The task system is extensible. In Figure 4, we show an UML
diagram that represents the tasks. If one needs to create a new
task, s/he basically needs to create a concrete implementation
of the interface.

Fig. 4. UML that represents a Task in MetricMiner

Analogously, new code metrics can be inserted into Met-
ricMiner. Researchers only need to implement a set of inter-
faces, and the metric will be ready to be executed in all source
code. The interface is simple. There are three methods that
need to be implemented: one that calculates the metric based
on the source code, one that returns one (or many) results

based on the calculation, and one that returns if that metric
should be executed for that file (Java metrics should run only
in *.java files, for example).

Not all code metrics require compiled code: they use
statically analysis. The process of compiling a project can be
costly and tricky, as each project contains its own way to be
built. The existent metrics of MetricMiner use the javaparser5

library. With it, the abstract syntactic tree is built and each
metric is implemented as a visitor of this tree.

Many examples of it can be seen in the MetricMiner source
code. This link6 points to the implementation of the McCabe
metric, using the mentioned visitor.

It is important to highlight the fact that, as soon as a new
metric is implemented, MetricMiner automatically detects it,
and schedules the execution of it to all repositories that exist
in the tool.

The tool also abstracts the persistence problem: researchers
are able to create the domain object the way they want, and
MetricMiner, by using Hibernate, persists it, without the need
of writing any SQL Insert statement. It means that researchers
should only worry about creating an object-oriented model of
their metrics. In Figure 5, we show the UML diagram that
represents the internals of two code metrics in MetricMiner.

Fig. 5. UML that represents a Metric in MetricMiner

Performance is also something important for researchers.
During the development, we tried different strategies to make
the execution of all tasks faster. At the end, the current
implementation makes use of first and second level caching,
stateless Hibernate sessions, and data pagination. In numbers,
we improved the average time of task execution from 5.3
minutes to 3 minutes.

C. Evaluation of the Tool

We evaluated the capability of the tool by mining all source
code repositories available in the Apache Software Foundation.
All repositories were accessed via Git. The complete list of
projects can be found at http://git.apache.org/. There were 307
different projects in the website. At the end of the process,
MetricMiner was able to process and store more than 800k
commits from more than 2k different committers. There were
more than 1.5 million different artifacts and 5 million different
versions of source code. All these data are stored in a database

5https://code.google.com/p/javaparser/. Last access on June, the 5th, 2013.
6https://github.com/metricminer-msr/metricminer/blob/master/src/main/

java/org/metricminer/tasks/metric/cc/CCVisitor.java.

http://git.apache.org/


4

Decreased
CC

Did not
change CC

Incremented
CC

Documented
refactorings 14 / 1,504 7 / 1,603 12 / 3,230

No
refactoring
documented

27 / 30,145 580 / 99,580 136 / 121,239

TABLE II
FINDINGS IN SOETENS AND DEMEYER STUDY / OUR REPLICATION

with more than 180 gigabytes and available to researchers
by means of the web application. All the process, from the
beginning of the first project up to the metrics of the last one,
took 90 hours.

In addition, to exemplify the value of the tool to researchers
in the field, we reproduced a published study. The work by
Soetens and Demeyer [8] was replicated and extended using
MetricMiner. In this paper, the authors studied the effects of
refactoring over the complexity of the system. They analyzed
776 versions that were extracted from PMD7. To do the
analysis, the authors made use of two Eclipse plugins: the
SVNKit, to extract data from the SVN repository, and the
Eclipse Metrics, to calculate the cyclomatic complexity of the
code. With these two plugins, they developed their own plugin
to do all the work of loading the version of code, calculate the
metrics, and save them into an XML file. After that, the XML
files were processed and the associated metrics were related
to a commit message.

To reproduce this work, we have done a SQL query to the
MetricMiner database. The SQL query is represented in the
box below. This query extracts the cyclomatic complexity of
all classes that were updated in all projects. Together with
the cyclomatic complexity, we also extracted the name of the
project, the date of the modification, and the commit message.
The resulting dataset can be found online 8. With the dataset
in hands, we developed a small Java program that sums up
the effect of the refactoring on the cyclomatic complexity. The
source code of this program can be found online 9. In Table II,
we show the results found in their study versus our replication.
One can notice that the amount of data analyzed was much
higher than in the original paper.

The extension of the original paper was facilitated by
having all the data already available and common metrics, like
cyclomatic complexity, already calculated for all source code
artifacts. In addition, it is important to notice that we executed
our study in more than 300 projects, while the original authors
did it in only one project. The use of MetricMiner enabled us
to run the study over many projects at once.

III. RELATED WORK

A similar tool to MetricMiner is Sonar10, a web application
that analyzes the source code and extracts a huge variety of
code metrics and structural dependencies among classes. The
focus of this tool is to support the development team to keep

7http://pmd.sourceforge.net/
8http://metricminer.org.br/query/1
9https://github.com/csokol/refactoring-cc
10http://www.sonarsource.org/

track of the code quality. Sonar does not store metadata from
the code control system and does not provide a way to extract
its data. However, the number of different data visualizations
is noticeable. Because of that, Sonar is frequently used in
industry, but not for academic purposes.

Eclipse Metrics11 is an Eclipse plugin that calculates code
metrics. Developers can keep track of their code evolution
while they are programming. However, the plugin does not
execute metrics on the whole repository, but only in the current
codebase. The tool requires compiled code, which may be a
problem depending on the repository being analyzed.

Kalibro12 and Analizo13 are tools that calculate different
code metrics. While Analizo calculates metrics in many
different languages, Kalibro focuses on giving support to
developers, giving them reference values to the metrics and
pointing out potential problems. The tool is very flexible:
developers can configure the reference values, and compose
new metrics using JavaScript. However, Kalibro does not
analyze the whole repository history. The user needs to select
versions and recalculate the metrics manually.

Mezuro14 is a web application built over Kalibro and
Analizo. Through its web interface, the user adds software
projects and the metrics are calculated over the code (using
the Analizo tool). Reference values are presented to the users,
suggesting good and bad points in the source code.

EvolTrack is a software evolution visualization tool. Devel-
oped as an Eclipse plugin, EvolTrack processes the history in
a source code control, and enables users to see the evolution of
the classes over time. The tool shows the class diagram of the
project and allows the user to go forward or backwards, seeing
the classes that were added or removed. Currently, the tool
supports only SVN repositories. EvolTrack also has plugins for
different data visualizations, such as EvolTrack-SocialNetwork
[9], which shows the relationship among the developers during
the evolution of the software.

ArchView [7] is a visualization tool to analyze the soft-
ware evolution. The tool extracts information from the source
control (CVS) and from the bug tracking (BugZilla). After
processing the information, ArchView enables users to visu-
alize different metrics from an artifact in any version of the
software, using Kiviat diagrams.

CodeCity [10] makes use of the metaphor "software as a
city,” and generates a city based on the source code. Each
class is a building. Classes are grouped in neighborhoods. The
height and weight of the building depends on the number of
methods and attributes of the class.

Boa [2] is a domain-specific programming language for
analyzing ultra-large-scale software repositories. Boa makes
use of distributed computing techniques to execute queries
against software repositories in an efficient way. As soon as
the researcher learns the DSL, they can extract interesting
information in a simple way. By February of 2013, Boa had
almost 700,000 projects in its repository.

11http://metrics.sourceforge.net/
12http://www.kalibro.org/
13http://www.analizo.org/
14http://mezuro.org/

http://pmd.sourceforge.net/
http://metricminer.org.br/query/1
https://github.com/csokol/refactoring-cc
http://www.kalibro.org/
http://www.analizo.org/
http://mezuro.org/


5

M
et

ri
cM

in
er

So
na

r

E
cl

ip
se

M
et

ri
cs

K
al

ib
ro

/A
na

liz
o

M
ez

ur
o

E
vo

ltr
ac

k

A
rc

hV
ie

w

C
od

eC
ity

B
oa

Web application X X - - X - - - X
Interface to query data X - - - - - - - X
Code metrics X X X X X - X - -
Code metrics in non-compiled source-code X - - X X - - - X
Graphic interface to visualize data - - - - - X X X -
Statistical tests X - - - - - - - -
Git repositories X - - - X - - - -
SVN repositories X - - - X X - - -
CVS repositories - - - - X - X - -

TABLE III
COMPARISON BETWEEN METRICMINER AND OTHER TOOLS

In Table III, we compare the related tools. The main
difference of MetricMiner is that it stores the calculated value
of the metrics so that the queries may be executed very fast
and researchers may adopt an exploratory approach in the
large amount of data, rapidly prototyping their study, without
needing to install anything in their workstations.

IV. CONCLUSION AND FUTURE WORK

In this paper, we described MetricMiner, the web application
that facilitates the work of researchers involved in mining
software repositories. The tool aids researchers in all steps
during a MSR study, such as cloning the repository, extracting
data, creating specific datasets, and running statistical tests.
Using the tool, we were able to extract a huge quantity of
data from many repositories. We were also able to replicate a
study of the literature and extend it to more than 300 projects.
The tool’s extension points support the creation of specific
metrics or tasks, enabling researchers to deal with the data in
a personalized fashion.

More improvements will be done in MetricMiner in the
future. Parallelization of the tasks execution, for instance, may
improve more the performance of the application. In terms of
metrics, it is possible to implement more metrics. Collecting
data from other repositories, such as bug tracking and mailing
lists would provide researchers the possibility of triangulating
their findings. We also plan to gather more studies from the
MSR literature and replicate them in MetricMiner as a way of
evaluating and extending the tool support. These replication
may be useful to identify data analysis patterns which may be
made available in MetricMiner.

ACKNOWLEDGMENT

We thank Locaweb for sponsoring the project, providing us
their cloud infrastructure. Marco Gerosa receives individual
grant from CNPq.

REFERENCES

[1] C. Chidamber, S.; Kemerer. A metrics suite for object oriented design.
pages 476–493. IEEE TSE, Vol. 20 (6), 1994.

[2] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen.
Boa: A language and infrastructure for analyzing ultra-large-scale soft-
ware repositories. International Conference on Software Engineering
(ICSE2013), 2013.

[3] B. Henderson-Sellers. Object-oriented metrics: measures of complexity.
Prentice-Hall, 1996.

[4] W. Li; S. Henry. Object-oriented metrics that predict maintainability. J.
Systems and Software, vol. 23, no. 2, 1994.

[5] J. Lorenz, M.; Kidd. Object-oriented metrics: A Practical Guide.
Prentice-Hall, 1994.

[6] T. McCabe. A complexity measure. pages 308–320. IEEE TSE, SE-2,
Vol. 4, 1976.

[7] Martin Pinzger. ArchView - Analyzing Evolutionary Aspects of Complex
Software Systems. PhD thesis, 2005.

[8] Quinten David Soetens and Serge Demeyer. Studying the effect of
refactorings: a complexity metrics perspective. In QUATIC 2010: The
7th International Conference on Quality in Information and Commu-
nications Technology. IEEE Computer Society Press, IEEE Computer
Society Press, 2010.

[9] C. M. Vahia, A. M. Magdaleno, and C. M. L Werner. Evoltrack-
socialnetwork: Uma ferramenta de apoio à visualização de redes sociais.
In Congresso Brasileiro de Software (CBSoft) – Sessão de Ferramentas,
2011.

[10] Richard Wettel and Michele Lanza. Visualizing software systems as
cities. In Jonathan I. Maletic, Alexandru Telea, and Andrian Marcus,
editors, VISSOFT, pages 92–99. IEEE Computer Society, 2007.


	Introduction
	MetricMiner: A Web Application to Support Research in MSR
	Current Features
	Architecture and Design Decisions
	Evaluation of the Tool

	Related Work
	Conclusion and Future Work
	References

