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Abstract How to reduce dose radiation while preserving
the image quality as when using standard dose is one of the
most important topics in the Computed Tomography (CT)
imaging domain due to quality of low dose CT (LDCT) im-
ages is often strongly affected by noise and artifacts. Re-
cently there has been considerable interest in using deep
learning as a post-processing step to improve the quality
of reconstructed LDCT images. This paper, first, gives an
overview of learning-based LDCT image denoising methods
from patch-based early learning methods to state-of-the-art
CNN-based ones, and then a novel CNN-based method is
presented. In the proposed method, preprocessing and post-
processing techniques are integrated into a dilated convo-
lutional neural network to extend receptive fields. Hence,
large distance pixels in input images will participate in en-
riching feature maps of the learned model and thus effec-
tively denoises. Experimental results showed that the pro-
posed method is light while its denoising effectiveness is
competitive with well-known CNN-based models.

1 Introduction

The presence of noise adversely affects the image quality as
well as the performance of subsequent image analysis and
processing tasks. Thus, denoising always plays an important
role in modern image processing systems. Although image
denoising has been studied for a long time with numerous
efficient methods, it still remains an active area of research
as it is the testbed for a variety of high level image process-
ing tasks. In this paper, we are interested in one of the most
difficult denoising problems, namely denoising for low-dose
Computed Tomography (LDCT) images. X-Ray CT, intro-
duced in the early 1970s [1], is an ionizing radiation-based
medical imaging technique. CT has been one of the most
widely used imaging modalities in medicine. However, its
major drawback is that the use of ionizing radiation can be
harmful to the health of the patient. Therefore, it is neces-
sary to reduce radiation dose. Unfortunately, it was showed

that the reduction of radiation dose leads to increased noise
level and artifacts in reconstructed images. These factors af-
fect the quality of CT images and thereby the diagnostic ac-
curacy and the outcome of a CT examination. Thus, the re-
construction of high-quality CT images under low/ultra-low
radiation dose conditions is a great challenge.

Numerous studies have been carried out for denoising
and artifact removal for low-dose CT. The existing methods
can be classified into two groups: (i) the group of methods
which filter noise and reduce artifacts within the image re-
construction from raw projection data, and (ii) the group of
methods which perform removing noise and artifacts in re-
constructed low-dose CT images. For the first group, meth-
ods mostly use filters to suppress noise and artifacts in the
raw data (sinogram). The filtered sinogram data are then
used to reconstruct the image using an iterative (IR) or fil-
tered back-projection (FBP) method [2, 4, 5]. In the filters,
the noise prior (e.g., Poisson noise) plays an important role
in designing denoising algorithms. In fact, exactly estimat-
ing the noise distribution and level is not easy. It is shown
that sinogram filtration and IR techniques can reconstruct
low-dose CT images with quality equivalent to current clin-
ical standards [6]. It is noticed that the reconstruction tech-
niques are embedded in the hardware of CT scan systems
and thus the sinogram data are not available to users. For
the second group (group of post-processing methods which
do not rely on raw data), numerous digital image denois-
ing methods were modified to be able to apply to low-dose
CT images such as the nonlocal means filter-based meth-
ods [7–9], the methods using sparse representation [10–12],
the filters in the Wavelet domain [13, 14], the BM3D fil-
ter [15]. For these classical methods, noise is directly sup-
pressed from the noisy image. Similar to sinogram filtration,
they require the knowledge about the types of source noise
and general properties of noise in CT images. Most existing
methods assume that the distribution of the noise in CT im-
ages can be approximated by the Gaussian distribution [16].
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Trinh et al. in [17] proposed to use the assumption of local
Gaussian distribution in dealing with the variation of noise
levels among image regions. However, the fact that the noise
in low-dose CT is very complex makes it difficult to be ex-
actly estimated, affecting the LDCT image denoising perfor-
mance of the classical methods.

Recently, deep Convolutional Neural Networks (CNN)
have been used to denoise LDCT images with impressive
results. It is shown that the CNN-based methods, for in-
stances, RED-CNN [18], WGAN-VGG [19], SAGAN [20],
SMGAN [21], FD-VGG [22], significantly outperform clas-
sical denoising methods. In this post-processing approach,
a large dataset of low-dose and normal-dose image pairs
(images of such a pair are taken at the same position of a
patient) is required. Normal-dose CT (NDCT) images are
much less noisy and have higher quality, as compared to
LDCT images. The aim of CNN-based methods is to train a
deep network to learn the mapping from the LDCT image to
the NDCT image of a pair. However, the idea of using high
quality CT images for denoising LDCT images was early
proposed [23–25]. An overview of learing-based LDCT im-
age denoising methods, thus, is necessary.

In this paper, we first overview existing learning-based
methods for LDCT image denoising from naive methods to
state-of-the-art ones. Typical learning-based methods will
be subjectively and objectively compared through experi-
ments performed on LDCT images. Then, we will present
a novel CNN-based method that uses an extended recep-
tive field CNN architecture. In this method, noisy images are
re-arranged in an orderly manner into sequences of subim-
ages (pre-processing). A deep dilated residual CNN network
receives these subimage sequences and learns the mapping
from LDCT to NDCT images in a given training dataset. At
the end of the network, a reconstruction stage is used to re-
construct the desired output image (post-processing). By us-
ing the dilated convolution and the pre-processing step, the
receptive fields in the network are extended so as to be able
to take into account more useful information for denoising.

The rest of the paper is organized as follows. In Sec-
tion 2, an overview of existing example-based learning meth-
ods for LDCT image denoising will be given, with details
about the main contents of the typical methods. The pro-
posed novel contribution is presented in Section 3. Objec-
tive and subjective comparisons are reported in Section 4.
Finally, conclusion is given in the last section.
2 Overview of Learning-based Methods for LDCT
Image Denoising

Generally, the goal of image denoising is to restore a clean
image from its noisy observations. Unlike the classical meth-
ods, which try to directly denoise by solving a inverse prob-
lem models (e.g., sparse representation, statistical filters, to-
tal variation), learning-based methods learn the mapping that
represents the relationship between noisy and clean image

pairs from given external datasets and use the trained map-
ping to denoise the new noisy images. In this section, the
main contributions in this approach of denoising and their
applications to LDCT images (from the naive methods to the
current state-of-the-art methods) will be mentioned. Before
going into the details of the existing learning-based meth-
ods, let us start with the external patch-based denoising meth-
ods which are considered as a bridge between classical meth-
ods and learning-based methods.

2.1 External Patch-based Denoising Methods

Recent CNN-based methods [18, 19, 22] are known as the
state-of-the-arts for LDCT image denoising. However, the
idea of using NDCT images to denoise LDCT images was
early proposed in the patch-based denoising methods [17,
23, 25, 26]. Although computation time is a drawback of
these patch-based methods, their denoising effectiveness has
been confirmed. This approach of external patch-based de-
noising can be considered as a bridge from classical denois-
ing methods to learning-based methods. So, this subsection
briefly reviews some important contents of this approach.

The idea of an external patch-based denoising algorithm
can be formulated as follows. A large noisy image is con-
sidered as an arranged set of overlapped small patches, and
denoising is performed on patches. Given a patch of size√

n×
√

n from a noisy image, presented by a vector q∈Rn,
the algorithm finds a set of similar (i.e., reference) patches
p1, p2, . . . ,pk ∈ Rn from external clean images and deter-
mines a mapping F to obtain an estimate p̂ of the unknown
clean patch p as

p̂ = F (p1,p2, . . . ,pk). (1)

Numerous patch-based image denoising methods using
external clean images have been proposed [17, 25, 26]. In an
NLM algorithm proposed in [26], the denoising function F
of (1) is defined based on the weighted average model of the
nonlocal mean method [27]. However, the weights are com-
puted using reference patches extracted from NDCT images.
Trinh et al. in [17, 25] proposed to define F as a sparse lin-
ear combination of reference patches, to be determined by
solving non negative sparse coding problem. These methods
demonstrated that, by using external patches, noise in LDCT
images can be effectively suppressed while preserving sub-
tle details, as compared to classical methods. Nguyen et al.
in [28] used image decomposition and sparse representation
techniques to define F in such a way that it maximizes the
preservation of high frequency components in LDCT im-
ages. Moreover, denoising with the help of external datasets
of clean image patches for other image types has already
studied in such as [29–31]. As an example, Lou et al. in [31]
showed that, by using targeted external databases, one can
obtain an effective denoising method, significantly outper-
formed well-known classical methods such as NLM [27],
KSVD [10], and BM3D [15].
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Fig. 1 One of the first CNN architectures for image denoising [32].

The advantage of this approach that it only needs to use
clean patches in example datasets, it do not require the corre-
spondences noise-free and noisy patch pairs as in the learning-
based methods. Even though external patch-based denoising
methods showed their effectiveness, this approach still re-
quires an assumption of prior knowledge about the noise
distribution. Global or local Gaussian noise is often used
in most existing methods while noise in LDCT images is,
in fact, very complex. Moreover, from model (1) one can
see that the performance of external patch-based methods
highly depends on the quality of found reference patches
(candidate patches of the desired patch) and the mathemat-
ical model used to determine the denoising function F . It
is noticed that for every noisy patch the determination of
reference patches and function F is time-consuming. Thus,
computational time is also a drawback of this approach.

2.2 Early Learning-based Denoising Methods

The goal of the learning-based denoising approach is to an-
swer the question: Can we automatically learn a denoising
procedure from given training examples that consist of pairs
of noisy and noise-free and noiseless images? Specifically,
a training dataset D is defined as

D = {(n1,p1),(n2,p2), . . . ,(nN ,pN)}, (2)

where ni (i = 1,2, . . . ,N) are the noisy images, pi and their
corresponding noise-free images. In LDCT image denois-
ing, the training set is often established by the pair of low-
dose (noisy) and normal-dose (noiseless) images, taken at
the same position on the same patient. Learning-based meth-
ods try to train a model that represents the mapping from the
space of noisy images to the space of clean images and use
this trained model to remove noise from noisy images.

One of the first learning-based denoising methods was
given in [32] by Jain and Seung. They designed simple con-
volutional neural networks of 4 layers, 24 neurons on each
layer, and without activation functions (e.g., ReLU, Leaky
ReLU) to build a denoising model for natural images (Fig. 1).
Due to hardware limitation for training deep learning net-
works at the time and the simplicity of the network model,
its denoising performance cannot be compared to the clev-
erly engineered algorithms (e.g., KSVD [10], BM3D [15]).
Several other naive learning-based methods were proposed,
for instances the nonlinear regression models in [23, 33].

Burger et al. in [34] proposed to use a deep learning
model namely Multi-Layer Perceptron (MLP) and obtained
the best performing method at that time. The authors also
demonstrated that this learning-based approach can effec-
tively denoise with and without known noise conditions.

Applications of example-based learning approaches to
LDCT image denoising were early proposed in, for exam-
ples, [23] using kernel ridge regression, or in [35] using the
Markov Random Field. Although simple learning models
were used, the authors demonstrated promising results of the
learning approach for LDCT image denoising.

In most of early learning-based methods, denoising a
noisy image was performed on overlapping patches and final
denoising results were aggregated from denoised patches.
This way makes them difficult to control subtle textures at
pixels in overlapped regions. However, the success of patch-
based learning methods, e.g., the MLP method [34], opens
a door for numerous CNN-based state-of-the-art denoising
methods which are introduced in the next subsection.

2.3 CNN-based LDCT Denoising Methods

The outstanding success of numerous CNN-based denoising
methods for natural images [36–39] and promising results
of early learning-based methods for the problem of LDCT
image denoising lead to many state-of-the-art CNN-based
LDCT image denoising methods have been proposed in [18–
21]. Most CNN-based methods were developed and experi-
mented on open datasets such as the AAPM Low Dose CT
Grand Challenge dataset [40] or, recently, the LoDoPaB-CT
dataset [41]. In the following, we mention several recent typ-
ical CNN-based methods for LDCT image denoising.

RED-CNN [18], which originates from [42], is one of
the first CNN-based methods for LDCT image denoising.
The method uses the U-net architecture [43] in which pool-
ing layers are replaced by convolutions and unpooling ones
are replaced by deconvolutions. The convolutional layers
(encoder) extract coarse features of the LDCT image, thus
removing noise, while the deconvolutional layers (decoder)
tend to recover subtle details which may be lost when the
LDCT image is passed through the convolutional layers. The
symmetric skip connections help the network converge faster
and keep more subtle details [18]. RED-CNN can greatly
reduce noise and artifacts. However, since RED-CNN only
uses the mean-squared-error (MSE) loss function, the de-
noised images are often oversmoothed. The architecture of
RED-CNN is shown in Fig. 2.

FD-VGG [22] is a solution that applies the FFD-net, de-
signed in [37] for natural image denoising, to LDCT im-
age denoising. The structure of the network is illustrated in
Fig. 3. The authors proposed to use a loss function defined as
the combination of MSE loss and “perceptual” loss in order
to improve the global quality of denoised images. The per-
ceptual loss was used in SACNN [44] with a self-attention
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Fig. 2 Architecture of RED-CNN in [18].

Fig. 3 Architecture of FD-VGG [22] inspired by the FFDNet
method [37] for LDCT image denoising.

Fig. 4 GAN-based architecture of the WGAN-VGG method [19].

CNN. Shan et al. in [45] proposed a Convolutional Encoder-
Decoder network with 2D and 3D configurations.

Other methods are based on Generative Adversarial Net-
works (GAN), being a deep-learning-based generative model
introduced in 2014 by Goodfellow et al. [46]. The use of
GAN for image denoising has been proposed in literature.
In LDCT image denoising, state-of-the-art methods, e.g.,
WGAN [47], WGAN-VGG [19], SAGAN [20], SMGAN [21],
demonstrated their high performance for estimating NDCT
images from LDCT images. The architecture of GANs in-
cludes a generator and a discriminator. The generator is used
to generate NDCT images from LDCT images and the dis-
criminator is used to discriminate the generated (fake) NDCT
images from real NDCT images. Du et al. in [48] applied
GAN framework with a visual attention mechanism to bet-
ter preserve details in denoised images.

As an example, Fig. 4 shows the architecture of WGAN-
VGG [19], which includes three sub-networks: the genera-
tor, the discriminator and the VGG pre-trained network. The
pre-trained VGG network is used to extract feature maps of
real and fake images. These feature maps are then used to
calculate the VGG-based perceptual loss that compares two
images in feature space.

Fig. 5 The architecture of the proposed dilated CNN-based denoising
model. The pre-processing layer L0 and the post-processing L8 are
designed similarly as those in the FFDNet method [37]. Dilated
convolution operators are used for all layers from L1 to L7.

Fig. 6 Illustration of 3 × 3 2-Dconv operator at layer L2 in the
proposed architecture. 2-Dconv operator impacts on regions of 5× 5
of feature maps at layer L1 (pixels highlighted by white border), and
thus on regions of size 7×7 and 14×14 in the four subimages and the
input image, respectively.

Generally, the CNN-based methods significantly outper-
form traditional methods in both objective and subjective
comparisons. How to effectively remove noise and artifacts
while preserving subtle details is the biggest challenge in the
problem of LDCT image reconstruction. For this purpose,
the existing CNN-based methods focus on both the architec-
ture of the network and the definition of the loss function.

3 The Proposed Denoising Method

The similarity of non-local pixels (usually computed based
on patch comparison) plays a key role in the success of well-
known image denoising methods, namely NLM [27] and
BM3D [15]. In CNN, similar pixels often have the approxi-
mate values in the feature maps. Therefore, our idea is to ex-
tend receptive fields in deep CNN models. This helps similar
non-local pixels in images better contribute to denoising.

3.1 Network Architecture

For the purpose of extending receptive fields, in the pro-
posed network, the pre-processing and post-processing tech-
niques proposed in [37] are embedded into a dilated residual
convolutional neural network (DRN) using a combination of
dilated convolutions (denoted by DConv) [49] and skip con-
nections with the residual learning structure. The DRN ar-
chitecture is inspired by SAR-DRN, proposed in [50]. The
architecture of the proposed network is illustrated in Fig. 5.
The proposed network consists of 9 layers, specifically: 1
pre-processing layer, followed by 7 non-linear mapping lay-
ers and then 1 post-processing one. The pre-processing layer,
L0, performs down-sampling of the noisy input image into
arranged sub-images. At this layer, an n×m image is de-
composed into four sub-images with size of d n

2e× d
m
2 e, as

demonstrated in Fig. 6. These four sub-images are fed into
the DRN consisting of seven 3×3 dilated convolution layers
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(L1, L2,..., L7) and two skip connections. In this work, the
dilation factors of the 3×3 dilated convolutions from layer
L1 to layer L7 are respectively set to 1, 2, 3, 4, 3, 2, and
1, similar to [50]. The two skip connections are employed
to connect layer L1 to layer L3 and layer L4 to layer L7.
Unlike the original SAR-DRN network introduced in [50],
in layers from L2 to L6 we use Dilated Convolution, Batch
Normalization and ReLU. DRN (after layer L7) generates 4
sub-images. These images then are up-sampled by the up-
sample layer (L8) to obtain an estimation of noise and arti-
facts in the input image (the same size as the input image).
Finally, this estimate is combined with the input noisy image
as inputs to residual learning, to obtain the denoised image.

The use of pre- and post-processing techniques and di-
lated convolution can strongly enlarge the receptive field
while maintaining the kernel size. By using the dilated con-
volution with down-sampling, at layer L1 the 1-Dconv oper-
ator with 3×3 filter can active a region of size 6×6 on the
input image, two times larger compared to traditional con-
volution without down-sampling step. Fig. 6 describes the
effect of the 2-Dconv operator at layer L2 on the input im-
age when using the dilated convolution with 3×3 kernel and
factor 1. Visually, we can see that the 2-Dconv operator af-
fects a region of size 14×14 on the input images. Therefore,
large distance pixels can contribute for calculation of feature
maps, that means the expansion of receptive fields leads to
increase information for feature maps in the network. These
advantages helps achieve effective denoising.

3.2 Loss Function

The loss function measures the difference between the pre-
dicted output (denoised LDCT images) and the ground-truth
(NDCT images). While the architecture determines the com-
plexity of the model, the loss function controls how to learn
the denoising model from the training dataset. There exist
many loss functions for image restoration in the literature.
In this work, we use both the MSE loss and the VGG-based
perceptual loss in the overall loss function. Per-pixel MSE
loss often leads to fast convergence. However, the use of the
MSE loss leads to over-smoothed edges and details in de-
noised imagges. Thus, the perceptual loss is applied to deal
with these issues. Suppose the training set contains N image
pairs {xi,yi}N

i=1, and ŷi is the output of the CNN denoising
model F with input xi, i = {1, ..,N}. The MSE loss is

LMSE(Θ) =
1

2N

N

∑
i=1
‖ŷ−yi‖2 =

1
2N

N

∑
i=1
‖F (xi,Θ)−yi‖2, (3)

where Θ is a set of network parameters. The perceptual loss
is determined in the feature space as follows:

LPerceptual(Θ) =
1

2N

[
1

whd
‖Φ(F (x;Θ))−Φ(y)‖2

F

]
, (4)

where Φ is a feature extractor, w, h, and d are the width, the
height and the depth of the feature space, respectively. In

this paper, we deploy the pre-trained VGG-19 network [51]
for feature extraction.

To take advantage of the MSE loss and the perceptual
loss, we used the linear combination of them as a loss func-
tion for the proposed model:

L (Θ) = LMSE +λLPerceptual, (5)

where λ is a non-negative weight, used for balancing the
role of each loss function.

4 Experiments and Performance Evaluation

In this section, we present objective and subjective compar-
isons between the proposed method (named as DRN-LDCT)
and the well-known BM3D method [52] as well as state-of-
the-art CNN-based methods namely WGAN-VGG, RED-
CNN, FD-VGG. Experiments were performed with the same
dataset. To quantitatively evaluate the performance of the
methods, we use three quality indices, namely PSNR (Peak
Signal to Noise Ratio), SSIM (Structural Similarity), and
FSIM (Feature Similarity). PSNR measures the intensity dif-
ference between denoised image and ground truth image
(noise-free image). It cannot describe the subjective qual-
ity of the image, which are often very important in medi-
cal images. SSIM and FSIM better express the structure and
feature similarity between the recovered image and the ref-
erence one, as compared to PSNR, and thus they better pre-
serve important information of denoising methods.

4.1 Dataset

The “2016 Low Dose CT Grand Challenge" database sup-
ported by the National Institute of Health, the American As-
sociation of Physicist in Medicine, and Mayo Clinic [40],
was used in this work for training the CNN models. This
database contains 1mm and 3mm thickness CT slices of full-
dose and simulated quarter acquired from 10 anonymous pa-
tients. In this works we only use 3mm CT images. We ran-
domly selected 900 quarter-full dose image pairs from six
patents to establish the training dataset. It consists of more
than 600.000 patches pairs of size 64×64 randomly cropped
at the same positions in low-dose and full-dose image pairs.
For validation and testing, we randomly selected 300 image
pairs from four remain patients. The full-dose CT images
are considered as the ground-truths for computing the qual-
ity indices.

4.2 Parameter Setting

For the existing CNN-based models for LDCT image de-
noising (WGAN-VGG, RED-CNN, FD-VGG), parameters
were set as guided by authors in the corresponding papers.
For the proposed method, parameter λ in (5) was typically
set to 0.1, the learning rate was set to 10−2 and decreased
by half after every ten epochs. The number of epochs was
set to 50. The Adam optimizerwith default hyper-parameter
values was used for training model parameters.
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Table 1 Averaged PSNR, SSIM, and FSIM of different LDCT denoising methods, on testing dataset of 150 LDCT images.

Metric BM3D WGAN-VGG RED-CNN FD-VGG DRN-LDCT (proposed)

PSNR 27.4802 28.1294 29.3713 29.5893 29.4554

SSIM 0.7963 0.8071 0.8198 0.8230 0.8226

FSIM 0.9397 0.9467 0.9480 0.9517 0.9511

Table 2 Network capacity and testing time.

Metrics RED-CNN WGAN-VGG FD-VGG DRN-LDCT (proposed)

Capacity (MB) 1.9 0.23 2 0.75

Testing time on GPU (s) 0.0014 0.001 0.0045 0.0047

Testing time on CPU (s) 4.4 0.13 0.15 0.09

B
M

3D

W
G

A
N

-V
G

G

R
E
D

C
N

N

FD
-V

G
G

D
R

N
-L

D
C

T

26

28

30

32

34

36

P
S

N
R

(a) PSNR

B
M

3D

W
G

A
N

-V
G

G

R
E
D

C
N

N

FD
-V

G
G

D
R

N
-L

D
C

T

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

S
S

IM

(b) SSIM

B
M

3D

W
G

A
N

-V
G

G

R
E
D

C
N

N

FD
-V

G
G

D
R

N
-L

D
C

T

0.92

0.93

0.94

0.95

0.96

0.97

0.98

F
S

IM

(c) FSIM

Fig. 7 Performance of BM3D, WGAN-VGG, RED-CNN, FD-VGG and DRN-LDCT.

4.3 Objective and Subjective Comparison

150 LDCT images from the testing dataset were used to
evaluate the performance of the methods. Quality indices
are computed based on comparing denoised LDCT images
and their associating full-dose images. Experimental results
are shown in Table 1 and Fig. 7. Specifically, Table 1 shows
the average values of PSNR, SSIM, and FSIM computed
on the testing dataset. Figs. 7(a)-7(c) represent basic sta-
tistical measurements of PSNR, SSIM and FSIM values of
the methods over 150 samples of the testing dataset, respec-
tively. As can be seen, the quality indices of the proposed
method (DRN-LDCT) were comparable to those of RED-
CNN and FD-VGG, while significantly higher than those
of BM3D and WGAN-VGG. To further illustrate the effec-
tiveness of the proposed method, Fig. 8 shows denoising re-
sults of different methods performed on an LDCT image
of the abdominal region. This image contains two liver le-
sions which are highlighted by two small rectangles. Visu-
ally, as compared to BM3D and WGAN-VGG, noise was
better suppressed by RED-CNN and FD-VGG. Small dark
signals in highlighted regions were well preserved by DRN-
LDCT and by the other CNN-based methods.

Another example is shown in Fig. 9. In this figure, the
noisy image for testing is an abdominal LDCT image of
another patient. The testing image has two liver lesions as
marked by two small rectangles [40] (see Fig. 9(a)). By sub-
jective comparison of the denoised images by the methods

and the NDCT images, we can see that globally the denois-
ing effectiveness of DRN-LDCT was equivalent to that of
RED-CNN and FD-VGG, while being slightly better than
BM3D and WGAN-VGGs. In the regions of interest, the
proposed method seemed to outperform the other methods
in preserving the structures in the larger lesion. Moreover,
the small dark point in the small highlighted region in the
image denoised by the proposed method was also clearer.

4.4 Network Capacity and Computational Time

Table 2 shows the capacity and the average computational
time of the different CNN-based methods under compari-
son. The computational time was recorded from experiments
performed with testing images of size 512×512, on a CPU
Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz ×8 as well
as on the GeForce RTX 3090 GPU card. As can be seen in
Table 2, the capacity of DRN-LDCT was 0.75 MB, which is
significantly smaller than that of RED-CNN (1.9 MB) and
FD-VGG (2.0 MB), while the denoising effect was nearly
equivalent. The computational time on CPU of DRN-LDCT
was the lowest.

5 Conclusions

This paper has presented a brief overview of learning-based
methods for denoising of LDCT images, from simple patch-
based learning methods to modern CNN-based methods. In
addition, we have proposed a very competitive denoising
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(a) LDCT image (b) NDCT image (c) BM3D (d) WGAN-VGG (e) RED-CNN (f) FD-VGG (g) DRN-LDCT

Fig. 8 Denoising results of an abdominal LDCT image. (a) noisy LDCT image in which the rectangles illustrate two desired regions of inter-
est, (b) NDCT image corresponding to the LDCT image, (c)-(g) images denoised by BM3D, WGAN-VGG, RED-CNN, FD-VGG and DRN-LDCT.

(a) LDCT image (b) NDCT image (c) BM3D (d) WGAN-VGG (e) RED-CNN (f) FD-VGG (g) DRN-LDCT

Fig. 9 Denoising results on another LDCT image of the abdomen.

method for LDCT images, namely DRN-LDCT, which is
based on the idea of extending the receptive field in an end-
to-end CNN architecture. The proposed denoiser is lighter
as compared to some state-of-the-art methods such as RED-
CNN and FD-VGG, while the quality was equivalent. The
experimental results have demonstrated the effectiveness of
our method over several leading state-of-the-art LDCT de-
noising methods. Future work may look into finding more
appropriate loss functions and try to insert the attention mech-
anism in the network architecture in order to focus more use-
ful features in medical images.
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