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Abstract—Cooperative multi-agent manipulation systems allow
to extend on the manipulative limitations of individual agents,
increasing the complexity of the manipulation tasks the ensemble
can handle. Controlling such a system requires meticulous plan-
ning of subsequent subtasks, queried to the individual agents, in
order to execute the master task successfully. Real-time planning
is essential to ensure the task can still be achieved when subtasks
execution suffers from uncertainty or when the master task
changes intermittently requiring real-time reconfiguration of the
plan. In this work we develop a supervisory control architecture
tailored to the cooperation of two robotic manipulators equipped
with standard pick-and-place facilities in the plane. We consider
a toy task description where we control the planar position
and orientation of an object. A time-invariant policy function is
trained using deep reinforcement learning, which can determine
a finite sequence pick-and-place maneuvers to manipulate the
object into its desired configuration. A comparison is made
between two strategies, with the distinction made based on
different treatments of the final step. The more information is
given to the policy the easier it trains. In return, it becomes less
adaptable and loses some of its generalizability.

Index Terms—cooperation, robotics, reinforcement learning,
multi-agent manipulation, pick-and-place

I. INTRODUCTION

DESIGNING a single autonomous robot, adaptable to
all circumstances is not attainable or at least not an

economical use of resources. Instead, complex tasks are better
handled by a combination of multiple standard robots that
cooperate [1]. The benefits of cooperation between agents are
described by Tan [2] amongst others. For example, manipu-
lation tasks with a higher complexity can be performed by
using cooperative multi-agent manipulation systems and thus
overcoming the manipulative limitations of individual agents.
This trend of cooperation can be seen in a variety of robotic
applications, such as multi-UAV control systems [3], heteroge-
neous multi-robot systems combining aerial and mobile robots
[4], manipulation tasks [5] or assembly operations [6]. The
cooperation of robots, among themselves and with humans,
significantly increases the spectrum of automated tasks. The
downside is clearly that the complexity of coordinating and
controlling these systems also increases. Meticulous planning

This research received funding from the Flemish Government (AI Research
Program) and the Flanders Make (Multi Systems Learning Control).

Fig. 1: A successful transfer of the block (green) to the goal
configuration (red) is achieved on the experimental set-up.

of subsequent tasks, queried to the individual agents, is re-
quired in order to have a successful execution of the master
task.

We consider control and planning of manipulation tasks in
a hierarchical sense, with a high level planner that is agnostic
to the low level control. Information from each agent is known
by the planner, resulting in a centralized control policy which
enables collaborative agents. This problem is closely related to
task and motion planning (TAMP) [7]. TAMP methods often
break up sequential manipulation problems into a high- and a
low-level planner. The high-level decision maker describe the
pre- and post-conditions of some symbolic abstractions or mo-
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Fig. 2: An example of a possible action sequence resulting in the final configuration of the object (red) starting from a random initial
configuration (green), with the intermediary configurations shown in blue. The low level control is concerned with the motion planning,
performed by the individual robots, visualized with the black arrows. The supervisory control determines which action is taken next, revealing
the hierarchical control architecture.

tion primitives, e.g. the pick-up and drop-off position of a pick-
and-place. The low-level planner is concerned with the motion
planning [8]. In [9] a task and motion planning technique
is proposed for multi-robot systems, introducing a high-level
task planning and a low level motion planning layer. Standard
TAMP methods optimize both the action sequence and the
motion plan, whereas in this work we are only concerned with
optimization of the action sequence. A supervisory control
problem should then only query subtasks leaving execution
to the individual robots. This control decomposition allows
to significantly reduce the associated optimization problem
benefiting real-time computation. In that way the system can
be reactive to changes in the environment, a change of goal
state or simply poorly executed subtasks.

We consider a particular manipulation problem formulation
where two individual manipulators share a subset of their
individual workspaces. We are motivated by the question of
how this shared workspace can be used by the agents to
collaborate in such a sense that they are able to execute
complex tasks, exceeding their individual capabilities. In this
work, a setup consisting of two robotic manipulators tasked
with maneuvering an object into an arbitrary goal configu-
ration (position and orientation) in the global workspace is
introduced. By working together arbitrary goal configurations
can be attained through multiple, collaborative actions in the
shared workspace, illustrated in Fig. 2. To this end, a policy
is determined that outputs the optimal sequence of action
(including which robot to perform the manipulation) to achieve
the goal. In order to cope with dynamic changes in the
environment (change of goal configuration or poor executed
subtasks) in real-time, a time-invariant policy is pursued that
depends only on the instantaneous object configuration and
the desired goal configuration. Such a policy is obtained using
deep reinforcement learning (DRL) [10]. DRL algorithms are
applied in a number of robotic applications, to perform motion
planning for robotic manipulators [11], to perform complex
(dexterous) manipulation [12], [13], to train multiple agents
[14], or to train end-to-end policies from an RGB camera
image to control [15]. In this work, we apply DRL on the
system level to find a policy that determines the next action
to be performed by a certain robot.

The policy is trained in simulation and tested on the real

setup, indicating a Sim2Real transfer. Sim2Real transfer is
used in a number of manipulation problems, e.g. to solve
multi-agent manipulation through locomotion [16] or to learn
obstacle avoidance in uncertain environments for robotic ma-
nipulators [17]. Combining physical simulation with deep
learning techniques shows to be advantageous, since the large
quantity of data needed for deep learning can be produced
efficiently in simulation. Furthermore, it is safer, takes less
time, and it is inexpensive [18], [19]. The validity of our
solution is proven on an experimental set-up (see Fig. 1).

The novelty of this paper is the combination of a supervisory
control system with learning methods, resulting in a real-time
policy able to adapt to changes in a dynamic environment. The
method is proven to work on an experimental setup.

II. PROBLEM STATEMENT

In this section, the considered small-scale setup is described
together with the associated manipulation problem. As shown
in Figures 1, 2 and 6, the set-up consists of a work cell
equipped with two symmetrical robotic manipulators and a
vision system that can identify and locate objects in the
workspace. Both robotic manipulators, henceforth referred to
as the left (L) and right (R) manipulator, have five degrees
of freedom (DOFs). Each individual manipulator is equipped
with a lower-level open-loop controller and is capable of ex-
ecuting pick-and-place maneuvers in the base XY -plane. We
will refer to this plane as the manipulation plane. Two DOFs
are used to control the pitch and roll of the end-effector. The
remaining three DOFs are used to control the end-effector’s
position in the manipulation plane, that is its XY -coordinates
with a fixed height. As a result it is impossible to control
the end-effector’s yaw, resulting in an underactuated manipu-
lation problem. Because, the yaw of any manipulated object
cannot be controlled, its final orientation will depend on the
respective pick-up and drop-off positions and the morphology
of the manipulators. We refer to the individual manipulation
spaces as ML ⊂ R2 or MR ⊂ R2 respectively, which are
defined as the controllable set of end-effector configurations
in the manipulation plane expressed as Cartesian coordinates
with respect to a global frame of reference. Equivalently the
manipulation spaces are determined as the intersection of
the individual manipulator workspaces and the manipulation
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Fig. 3: Illustration of the discretized manipulation spaces (MR and
ML) with mutual manipulation space as the intersection in yellow
(M′

m) for the small-scale setup shown in Fig. 6.

plane. The feasible workspaces are attained as the collection
of points that are collision-free, including self collision and
collision with the ground. The global, M, and mutual, Mm,
manipulation spaces are defined respectively as the union and
intersection of the individual ones (Fig. 3).

M = ML ∪MR

Mm = ML ∩MR

We consider a pick-and-place task where objects are placed
within the global manipulation space M and need to be
repositioned to a new and given goal position, (xg, yg) ∈ M.
In our present context a goal orientation, θg , of the objects
is also specified. Adding the orientation to the manipulation
space results in the observation space S, since the orientation
is only observable and uncontrollable. The manipulators ought
to respect the desired orientation to complete the manipulation
task successfully. The morphology and low-level steering of
the individual manipulators is such that they cannot execute the
pick-and-place task separately but must decide on an optimal
cooperation strategy to achieve the desired object configuration

sg = (xg, yg, θg) ∈ S = M× R

The objective of this work is to find a supervisory control
system that is capable of querying pick-and-place maneuvers
to the individual manipulators for manipulating objects from
an arbitrary starting position and orientation to a given desired
configuration. A straightforward solution to overcome the
limitations of the individual manipulation space ML and MR
and gain access to the global manipulation space M is to agree
upon a fixed intermediate point in the mutual manipulation
space Mm and pass the object from manipulator to manipula-
tor through that point. However, since the orientation cannot be
controlled directly, a sequence of different hand-over positions
must be determined such that the sum of subsequent relative
re-orientations accumulates into the desired orientation. An
example is illustrated in Fig. 2.

III. METHODOLOGY

To solve this problem of realizing an underactuated pick-
and-place under dynamic changes in the environment, we will

resort to a learning strategy that learns to cooperate. Before
doing so, we establish a mathematical problem formulation.

A. Problem formulation
The state of the system is determined by st which contains

the Cartesian coordinates of the manipulated object and its
orientation. The goal configuration of the object is denoted as
sg and contains the same information as the state.

st = (xt, yt, θt) ∈ S
sg = (xg, yg, θg) ∈ S

Formally our supervisory control needs to determine which
agent to query and whether the current action is final; if not
the next drop-off location has to be determined. Since the goal
state’s sg location can be anywhere in the global manipulation
space, including the mutual manipulation space Mm, it is not
straightforward which manipulator to query. Therefore, these
decisions are left to the supervisory control system. They are
represented by the boolean ft ∈ {0, 1} indicating whether the
present action is final, and the discrete variable bt ∈ {L,R},
indicating whether to query the left or right manipulator. The
next drop-off position on the other hand is represented by the
actions (xt+1, yt+1) ∈ M in Cartesian coordinates. Note that
the drop-off position is only relevant when ft = 0, otherwise
the drop-off location is equivalent to the goal position by
definition so that in practice (xt+1, yt+1) ∈ Mm when ft = 0.
Resulting in the following action space A

at = (ft, bt, xt+1, yt+1) ∈ A = {0, 1} × {L,R} ×M
The dynamics of the problem are governed by a nonlinear

function that depends on the forward kinematics of the robotic
manipulators, the manipulator that is queried and whether the
query is final or not. If the query is final, by definition the
next position is equal to the goal position. Formally

st+1 = f(st,at, sg)

=

{
(xt+1, yt+1, θ(st,at)), ft = 0

(xg, yg, θ(st,at)), ft = 1

Our objective is thus to design a time-invariant policy
function π : S2 7→ A so that for any initial state in the
global manipulation space, a finite sequence pick-and-place
maneuvers is determined that manipulate the object into the
desired configuration. To design such a policy we consider a
first-exit optimal control problem formulation

π∗ = argmin
π

Es0∼U(S)

[∑t′

t=0
r(st, sg, π(st, sg))

]
Here U(S) denotes the uniform distribution on S . The function
r : S2 × A 7→ R is defined as the cost rate and can be used
to express abstract features of the policy such as maximum
accuracy or minimal execution time. The policy can terminate
the sequence at any time t′ by taking ft = 1. Consequently,
the length of each sequence will differ. Taking ft = 1 initiates
the final step, which can be determined by the policy itself or
externally. The policy depends on the goal state, making it
context dependent. Therefore, the same policy can be used
even if the context changes, e.g. after a manipulation task is
successfully completed or mid-execution.
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B. Solution strategy

Here we detail the proposed solution strategy.
1) Discretization of Mm: In order to downscale the so-

lution space the mutual workspace is discretized. Using the
inverse kinematics of the robotic manipulators we verify the
feasibility of an arbitrary discrete set of points D ∈ R3. This
is done for both manipulators, resulting in two discretized ma-
nipulation spaces M′

R ⊂ MR and M′
L ⊂ ML. Again the dis-

cretized mutual manipulation space can be obtained from the
intersection of both discretized manipulation spaces, M′

m =
M′

L ∩ M′
R. The resulting discretized mutual manipulation

space M′
m ⊂ Mm has a finite cardinality M = card(M′

m).
A two-dimensional visualization of this mutual workspace is
shown in Fig. 3. As a result A′ = {0, 1} × {L,R} ×M′

m.
2) Policy definition: Since the problem is deterministic and

the action space is now discrete, a possible strategy could be
to tackle the problem using a shortest path algorithm such as
Dijkstra or A∗. As a result of the dimensionality of the state-
space and the connectedness of the individual states this would
generate a densely connected graph. The supervisory policy
ought to search this graph in real-time, since we desire it to be
context dependent, making this method infeasible. Therefore,
instead we opt to find a parametrized policy π(·, ·) ≈ π(·, ·;ϕ)
assigning a subtask each discrete time step to one of the
manipulators, after which they perform their own low-level
motion planning. Next we propose two alternative strategies
to determine such a policy. A distinction can be made based on
different treatments of the final step. The final step indicates
the termination of a sequence and ideally would result in the
correct orientation at the goal location. This decision could be
made by the policy or externally, e.g. based on the kinematics
of the system, resulting in two policy architectures.

a) Final robot fixed (architecture a): The final action is
defined by the boolean ft. It affects the problem in a highly
nonlinear fashion, rendering a hard to find optimal solution.
This boolean can be eliminated by limiting the goal state to
the manipulation space of one of two robotic manipulators, i.e.
(xg, yg) ∈ Mbfinal − Mm where bfinal ∈ {L,R} indicates the
robot that has to perform the final action. When a goal state sg
is queried it is then easily verified whether bfinal = L or bfinal =
R which is then used to determine which policy to activate.
We must thus use and train two policies depending on which
manipulator needs to execute the final action. Furthermore,
this design choice limits the applicability of the policy, since
the goal position is limited to a certain robot’s manipulation
space.1 Now as soon the final robot has been identified, we
can check for each state st ∈ Mm whether it corresponds
to the goal configuration sg when we would use the final
manipulator to maneuver it to the goal position (xg, yg). This
is implemented by representing the goal configuration as a
desired relative orientation between the object and the unique
final robot θrel

final which is possible since we use different
policies depending on the robot that will be queried last. The
relative orientation between the object and the final robot can
be calculated by taking the difference between the object’s

1Mm could be included by arbitrarily assigning a manipulator as final
robot.

orientation θt and the yaw of the robot’s end-effector, which
is the result of the manipulator’s morphology and the pick-up
and drop-off position. Note that g depends on the manipulator.

θrel
t = gbfinal

(st) = θt − θbfinal(xt, yt)

During a pick-and-place the relative orientation does not
change, since a rigid grasp is assumed. Hence, if θrel

t equals
θrel
g = g(sg) the object will have the correct orientation when

placed at the goal position. The action space reduces to

at = (bt, xt+1, yt+1) ∈ A′′ = {L,R} ×M′
m

Now the policy needs to find a sequence of actions result-
ing in a state in the mutual manipulation space, Mm, that
indirectly corresponds to a certain goal state sg ∈ M−Mm.
Whether the step is final is not dictated by the policy, but is
determined by an auxiliary routine that is based on θrel

t . Finally,
the previous robot that performed an action is provided to the
system as well. This way the policy can reason based on the
previous robot to switch between robots, this to change the
relative orientation. Resulting in the following augmented state

ŝt = (xt, yt, θt, θ
rel
g , bt) ∈ M× R2 × {L,R}

The reward received after acting on the system is sparse. A
zero is received when the state, at time t and residing in the
mutual workspace, results in the desired relative orientation
with the given final robot. Any other step receives minus one.

r =

{
0, θrel

t = θrel
g

−1, θrel
t ̸= θrel

g

b) Learned final step (architecture b): A second ap-
proach is a policy that dictates when the final step is taken,
resulting in a full action as defined in III-A. The final step is
now part of the sequence, in contrast to the previous strategy.
The policy will have to dictate from which state st ∈ S the
object needs to be placed at the goal position and with what
manipulator. Additionally, it will have to determine a sequence
of actions to end up in that state. The goal state is provided in
its entirety to the policy and the robot that placed the block at
its position as well. The following augmented state is provided
to the policy

ŝt = (xt, yt, θt, xg, yg, θg, bt) ∈ S2 × {L,R}

Introducing this final step in the action space introduces a
number of possible terminations of an episode. Similar to the
previous strategy taking an action that does not result in the
object ending up in the final configuration is punished, since
the episode length needs to be minimized. If the policy tries to
drop off or pick up an object at a position the manipulator bt
cannot reach, because this position is outside its manipulation
space, a large cost is returned. Finally, a sequence can end in
two ways, either the object is placed at its goal position with
the goal orientation or with a different orientation. The former
is rewarded with a large reward, while the latter receives a cost
equal to the difference in orientation scaled by a constant.
The experimental problem of the pick-and-place task by two
robotic manipulators is solved by implementing a heuristic
reward. Instead of minimizing a cost rate, as described in III-A,
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a reward function r is maximized. After some reward shaping,
the following reward function is received

r =


10, (xt, yt) ≡ (xg, yg) and |θ − θg| ≤ ϵ

−C · |θt − θg|, (xt, yt) ≡ (xg, yg) and |θ − θg| > ϵ

−1, (xt, yt) ∈ Mm

−25, (xt, yt) ∨ (xt−1, yt−1) /∈ Mbt

Here Mbt is the manipulation space of the robot that performs
the action, indicated with the boolean bt ∈ {L,R}. The
final case occurs when the robot tries to pick up or drop
off the object from or to a position outside its manipulation
space. This can happen in the first step, if the object is
outside the reach of the robot indicated by bt, or in the final
step, if the goal position is outside the robot’s reach. The
more complicated reward function indicates the difference in
complexity between both strategies.

3) Reinforcement Learning: To determine the
parametrized policy, deep Reinforcement Learning is
used. The use of discrete actions steers us in the direction
of Q-learning, where for each action the value function,
estimating future rewards, is returned. Mnih et al. [20]
proposes the use of a neural network to estimate the value-
function. A neural network, called a deep Q-network (DQN),
is trained to approximate the optimal action-value function
Q(s, a; θ) ≈ Q∗(s, a) with weights ϕ and

Q∗(s, a) = max
π

E[Rt|st = s, at = a, π]

The future discounted return at time t is

Rt =
∑T

t′=t
γt′−trt′

where γ is the discount factor and determines the horizon.
This neural network is trained off-policy using a stochastic

gradient descent. The required parametric policy is defined
implicitly using the greedy strategy π(s) = maxa Q(s, a;ϕ).
During training the actions are selected using an ϵ-greedy
strategy. A random action is selected with probability ϵ, while
a greedy strategy is used with probability 1− ϵ. The value of
ϵ decreases exponentially during training. Q-learning updates
are applied to batches of experience (s, a, r, s′) ∼ U(D),
where U(D) denotes a uniform distribution over the set of
experiences D. The loss function used by the Q-learning
update at iteration i is

Li(ϕi) =

E(s,a,r,s′)∼U(D)[(r + γmax
a′

Q(s′, a′;ϕ−
i )−Q(s, a;ϕi))

2]

with ϕi being the parameters of the Q-network at iteration i
and ϕ−

i the network parameters used to compute the target at
iteration i. The target is only updated every C steps.

The above can help to find the parametrized policies when
considering a) a fixed final robot or b) a learned final step. The
two different policy architectures, result in a different neural
network approximators.

In the former the possible drop-off positions (xt+1, yt+1)
can contain all points in the discretized mutual workspace
M′

m, i.e. all yellow positions in Fig. 3. The boolean bt is
implemented by doubling the mutual workspace. A function

Fig. 4: A visualization of the deep Q-network with the final robot
fixed (Architecture a).

Fig. 5: A visualization of the deep Q-network trained with a learned
final step (Architecture b).

f : M′2
m 7→ {0, 1}×M′

m translates each position to a position
performed by a certain robot, by looking at its index. The first
half is performed by the first robot, while the second half by
the second robot. The network is visualized in Fig. 4.

For architecture b a final action needs to be introduced. Two
additional actions are added, containing the final step done by
one of the two robots. When this action is chosen the object is
placed at the goal position (xg, yg) ∈ M and the orientation
θ is compared to the goal orientation θg . This action is final
and terminates the episode. These two actions are visualized in
Fig. 5. The reason a parallel network is used to represent the
Q-value for the two final actions, is discussed in more detail
in IV-B2. Here two methods are introduced to find the policy,
corresponding to architecture b.

4) Sim2Real: A large amount of episodes needs to be
played to train the network. This is not practicable on a
real setup, since this would take weeks to train. Luckily the
deterministic property of the setup and its open loop control
make it possible to translate the problem to simulation.

Even more, the policy can be trained without taking the
motion planning into account. It is assumed the relative
orientation between the object and the robot doesn’t change
during the motion planning, since the object is picked up with
a rigid grasp. Only the robot poses at the drop-off and pick-up
locations need to be calculated.

The trained policy in simulation will be executed on the real
setup. This translation of simulated environment to real envi-
ronment depends heavily on the models and the repeatability
of the two robotic manipulators.

IV. EXPERIMENTS

In this section the training results in simulation are discussed
first. Secondly the translation to the real setup is considered.
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Fig. 6: The complete setup, with the manipulators at the center.

A. Set-up

Two low-cost robotic manipulators are used, two Lynxmo-
tion AL5A robotic arms with five DOFs. The two manipulators
can perform pick-and-place maneuvers on a LEGO DUPLO
block by grasping the toothpick attached at the center. They
are steered in an open-loop fashion from the pick-up position
to the drop-off position, using an approximately linear path in
the feasible joint space, though keeping the square levelled.
A camera, an Intel RealSense Depth Camera D435, is used
to perceive information from the system, i.e. to position and
orientation of the block and the goal.

A picture of the setup is shown in Fig. 6. Two lights, which
can be seen at the top of the frame next to the camera, are
mounted in order to provide consistent lighting conditions for
the vision. The vision is based on color and edge detection.

B. Implementation

All code is written in Julia [21]. The DQN network is
trained using the Julia package ReinforcementLearning.jl [22].

1) Discretization: A three-dimensional grid of points
spaced apart 10 mm in each direction is taken as the set of
discrete points D. The feasibility of all points in this set are
checked for each robotic manipulator resulting in two point
clouds, corresponding to the discrete manipulation spaces.
The discretized mutual manipulation space is taken as the
intersection of these two point clouds. A two-dimensional
section of the calculated discretized manipulation spaces are
shown in Fig. 3.

2) Networks and training: A selection of the used hyper-
parameters are shown in Table I. The sigmoid function is used
as activation function. Three methods are compared. The first
method corresponds to the policy architecture a, with a fixed
final robot. The last two methods use policy architecture b,
and consist of a method without pretraining and one with
pretraining.

The latter uses the network proposed in Fig. 5. This is done
so that the network controlling the two final actions can be
pretrained. Pretraining is done to improve the learning rate and
find a viable solution, which will be shown in the next section.
The network is first trained on a one-step environment. The
goal state corresponds to the start state, such that if the object
is placed directly at the goal position with the correct robot,
the object will have the goal orientation. This pretraining is

TABLE I: Used hyperparameters for the different trained policies.

Name Optimizer Learning
rate

DNN size Steps

Architecture a Adam
[23]

0.001 5|64|354 150, 000

Architecture b No
pretraining

Adam 0.001 7|512|512|356 500, 000

Pretraining:
partial
network

Adam 0.001 7|256|256|2 250, 000

Pretraining:
full network

Adam 0.001 7|256|256|254
7|256|256|2

150, 000

Final training
with pretrain-
ing

Adam 0.001 7|256|256|354
7|256|256|2

1, 750, 000

done in two steps, first with the parallel network only, with
two outputs, and finally with the complete network.

C. Results

All architectures are trained in simulation and subsequently
transferred to the real set-up. No further training on the set-up
has been performed.

1) Importance of pretraining: First we elaborate on the
effect of the previously discussed pretraining. The pretraining
is to force the network to use the final actions more often, since
these encompass the final goal. Since an ϵ-greedy strategy
is used to train the network, actions at the start have a
higher chance to be chosen at random. Therefore, the two
final actions, which are only a small fraction of all possible
actions, are only chosen rarely if no pretraining is done.
With pretraining the network learns which states correspond
to certain final states, resulting in a high reward for the two
final actions for these states.

The maximum episode length during training is limited to
25 steps. The episode can end in less steps, if the final action is
chosen earlier. The effect of this pretraining is clearly visible
in Figs. 7a and 7b, since the method using no pretraining
does not find a viable solution. The figures show the mean
and variance per 500 episodes. The network trained with
pretraining converges to an average episode length of 5 steps,
while the network trained without pretraining settles around
the maximum episode length. The reward on the other hand is
still rising for the method with pretraining, while it converges
to a low value for the method using no pretraining.

In the subsequent section only the method with pretraining
is used to compare the policy architectures, and thus simply
referred to as architecture b from now on.

2) Comparison of architecture a and b: The two architec-
tures are compared on the basis of two performance indicators:
the success rate and the number of steps in an episode. The
former is defined as the percentage of episodes for which the
goal configuration is reached. The policies are tested on 1000
random start and goal states, the results are shown in Table II.

TABLE II: Performance parameters for both networks.

Success rate [%] Average number of steps

Architecture a 98.8 2.78
Architecture b 71.4 4.54
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(a) Episode lengths during training (b) Rewards (c) Episode lengths after training

Fig. 7: (a)-(b): The reward and episode length during training compared for the methods with and without pretraining. (c): The amount of
steps in an episode for 1000 experiments with the trained policies, comparing the performance for both architectures in simulation.

A box plot showing the number of steps in more detail is
shown in fig. 7c. The first architecture outperforms the second,
with fewer steps and a higher success rate. However, it is less
applicable since the goal state is limited to the manipulation
space of the final robot, which is fixed.

The final architecture can be looked at in more depth, which
is done in 8a. The episode can end four ways: at the goal
position with the desired orientation (cr), at the goal position
with the wrong orientation (crwa), goal position not reachable
by the final robot (wr) or the episode could end without trying
to place it at the goal position (nf). It can be seen that in
the majority of the cases the robot places the object at the
goal position with the correct robot. When placed at the goal
position, the correct orientation is achieved most of the time,
indicating the policy has found a viable action sequence before
calling the (correct) final action.

3) Experimental validation: Both policies trained in simu-
lation are tested on a real setup. No further training is done on
the setup. An example of a sequence performed on the setup
is shown in figure 1. The position and the orientation of the
block are updated in real time, after each discrete time step.
The performance parameters for both robots are found in table
III. The error on the orientation is roughly the same for both
policy architectures, with an average of 4.56 and 5.15 degrees
and a standard deviation of 4.78 and 5.12 degrees respectively
for architecture a and b.

TABLE III: Performance parameters for both networks tested for
100 random episodes on the real setup.

Success rate [%] Average number of steps

Architecture a 90 3.67
Architecture b 72 4.83

Similar to the results in simulation the first policy needs
fewer steps than the second strategy to end up with the
correct orientation, although the difference becomes smaller.
Comparing 8c and 7c shows that the first is less performant
on the real setup, while the second shows similar results in
simulation as on the real setup. Presumably, the latter translates
better to the real world because it does not use the robotic
manipulator’s model to take a decision on the final step.
Therefore, it is less sensitive to errors in placing the block.

Figure 8b shows the distribution of the episode lengths for
architecture b. Since in this no wrong robot is called upon to

perform the final step, only three possible cases are indicated.
The results are similar in both figures, although the second
figure shows less of a normal distribution which could be
attributed to the lower number of experiments.

Translating the policy to the real setup seems to work, since
similar results are achieved. This could be attributed to the fact
that we work on a high level, making the exact model of the
system less important. Using the hierarchical control structure
is beneficial to react to uncertainties in the environment, as a
result of the stochasticity of the real world. Additionally, since
a certain error ϵ is allowed both in simulation and in the real
world, the model does not need to be exact. Using the policy
in a closed loop aids the translation as well, since the previous
errors in the model are of no importance. The policy finds a
new action based on the new state, which is updated each step.

V. CONCLUSION

A first step is made to have a multi-robot system that
is capable of detecting opportunities to collaborate in an
autonomous fashion. Although a successful cooperative multi-
agent manipulation system is achieved, it is not yet fully
autonomous. The trained hierarchical control system works
in real-time and is able to adapt to a dynamic environment.
The goal state could be changed mid-execution or the block
could be moved in between steps. This is achieved by training
a time-invariant parametrized policy in simulation, using rein-
forcement learning techniques. This principle can be extended
to include more robots or to have a larger variety of possible
actions. No information of the goal configuration is used in
the second policy architecture, it is only checked if the goal
configuration is achieved. Therefore, a different type of goal
configuration could be considered in future work.

Training in simulation proves to be beneficial by allowing
more iterations in less time. With some additional hyper-
parameter tuning the performance and learning rate of the
second architecture could be improved. Others algorithms
could be looked at as well, e.g. the sample efficiency could be
improved by using HER [24]. The benefit of training in simu-
lation becomes clear when comparing numbers. Validating 100
episodes on the real setup, with a maximum of 20 steps per
episode, took 3.5 hours with an average of around 7.5 steps.
Performing the 1, 750, 000 steps needed to train the second
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(a) Simulation. (b) Real setup. (c) Episode lengths.

Fig. 8: (a)-(b): In depth look for architecture b, both in simulation as on the real setup. (c): Comparison both architectures on the real setup.

method would take 8167 hours or a little more than 340 days
non-stop; this is without taking into account the pretraining.

Translating the policy trained in simulation to the real
world works, but has its limitations. When translated to the
real setup, providing more information to the system works
less well. Since the discrepancy between the simulation and
the real robotic manipulators are embedded in the system.
This possible overfit on deterministic data in simulation can
be further explained by the use of partially discrete action
and state space. Although the policy expects a certain exact
position, the actual position might differ. This actual position
is not seen before by the policy, since a discrete set of
actions is taken in simulation. Translating the policy to the
real setup could be improved by describing the action and
state space by continuous variables. Additionally, by using
the continuous representation the system could become more
adaptable, by e.g. being able to overcome certain constraints in
the workspace. The method could be adapted to include time
varying constraints as well. An additional method to bridge
the Sim2Real gap could be to introduce stochasticity in the
simulation. This way the real world example will just be an
extra variation on the deterministic case.
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