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Improved Prediction Dynamics for Robust MPC

H.-N. Nguyen†

Abstract

The objectives of this paper are twofold. The first is to present a particular choice of the parameters

of dynamic feedback laws for polytopic uncertain and/or time-varying systems with state and input

constraints. We show that it has the same desired property as that of algorithms in [1], [2], i.e., the

domain of attraction of the controlled system under a linear/saturated dynamic feedback law is identical

to the domain of attraction under any static linear/saturated state feedback law. The second objective is

to propose new procedures for robust constrained prediction dynamics based MPC that do not require

the assumption of quadratic stability. With respect to other well known techniques, the main advantages

of this new approach is the reduced conservativeness.

I. INTRODUCTION

A. Introduction and Problem Formulation

Consider the following uncertain and/or time-varying linear discrete-time system

x(k + 1) = A(λ(k))x(k) +B(λ(k))u(k) (1)

where x(k) ∈ Rn is the measured state, u(k) ∈ Rm is the control input. The matrices A(λ(k)) ∈

Rn×n, B(λ(k)) ∈ Rn×m satisfy
A(λ(k)) =

s∑
i=1

λi(k)Ai, B(λ(k)) =
s∑

i=1

λi(k)Bi,

s∑
i=1

λi(k) = 1, λi(k) ≥ 0
(2)

where Ai ∈ Rn×n, Bi ∈ Rn×m are known matrices. λ(k) = [λ1(k) λ2(k) . . . λs(k)]
T is a vector

of parametric uncertainties such that

λ(k) ∈ Λ :

{
s∑

i=1

λi = 1, λi ≥ 0,∀i = 1, s

}
(3)
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It is underlined that λi are unknown and time-varying.

The state x(k) and input u(k) are subject to symmetric linear constraints −1 ≤ uj ≤ 1, ∀j = 1,m

−1 ≤ flx ≤ 1,∀l = 1, nc

(4)

where fl is the lth row of F ∈ Rnc×n.

The objective is to design a control law u(k) = U(x(k)) such that the controlled system

x(k + 1) = A(λ(k))x(k) +B(λ(k))U(x(k))

fulfills the input and state constraints (4) despite the uncertainties. Furthermore, U(x(k)) should

solve the following min-max problem

min
{u(k),u(k+1),...,}

max
λ(k)∈Λ

{J(k)} (5)

J(k) =
∞∑
t=0

(
x(k + t)TQx(k + t) + u(k + t)TRu(k + t)

)
(6)

where x(k+ t), u(k+ t), t = 0, 1, . . ., are the predicted states and the predicted inputs from time

k. Q ⪰ 0, R ≻ 0 are weighting matrices.

In the absence of the constraints (4), it is well known that (5) is a linear quadratic (LQ)

regulator problem. The solution is the linear state feedback controller

u(k) = Kx(k) (7)

where the gain K ∈ Rm×n can be found by solving a semi-definite program (SDP).

In the presence of (4), the problem (5) is intractable due to the need of guaranteeing (2) for

the infinite number of constraints. A way to overcome this problem is to employ the following

dynamic control law [1], [3], [4]
u(k) = Kx(k) +Nv(k)

v(k + 1) =
s∑

i=1

λi(k)Miv(k)
(8)

where v(k) ∈ Rnv is the controller state, N and Mi are unknown matrices that will be treated

as decision variables. The uncertain parameters λi are the same as in (3). As will be seen later,

knowledge of the λi is not required for the implementation of the control law (8).

The method in [1], [3], [4] consists of offline and online stages. In the offline stage, the

parameters N,Mi, ∀i = 1, s are optimized in order to maximize the domain of attraction of the

closed-loop system (1) under the control law (8). Once N,Mi, ∀i = 1, s were determined, the



next step is to estimate an upper bound of the cost function J(k). In the online stage, v(k) is

optimized by minimizing the obtained upper bound of J(k) at each sampling time. Then the

control law u(k) = Kx(k)+Nv(k) is applied to (1). In [1], to design N,Mi, and to calculate the

upper bound of J(k), common quadratic Lyapunov functions are used. Hence, the result might

be conservative in the sense that only a small amount of uncertainty is allowed. This is due

to the fact that the same Lyapunov matrix must verify for all vertices of the uncertain domain

(2). In addition, to optimize N,Mi, ∀i = 1, s, a lifting process in conjunction with a nonlinear

parameter transformation technique are employed. Hence, the resulting optimization problem is

in high dimension.

Recently in [2], it is noticed that despite an efficient online computation, the full control range

of the prediction dynamics based MPC method with linear feedback (8) is rarely exploited. Hence

the time to regulate the plant to the origin is often much longer than necessary. To overcome this

problem, a new prediction dynamics based MPC method with saturated feedback was proposed

[2]. It was shown that by allowing the parameters of the dynamic control law to depend not only

on the system uncertainty, but also on the saturated inputs, the control range is fully exploited.

Hence, the performance can be significantly improved. However the method in [2] is still based

on common quadratic functions in order to optimize the parameters of the saturated dynamic

feedback law, to describe the domain of attraction, and to calculate the upper bound of the cost

function.

The main contribution of this paper consists of improving the control techniques presented in

[1], [2], by proposing new procedures for robust constrained prediction dynamics based MPC.

The new methods do not require the quadratic stalizability of the given uncertain system. Com-

pared with the MPC techniques in [1], [2], the main differences are: i) to describe the domain of

attraction we do not use a single ellipsoid but the intersection of ellipsoids, each one corresponds

to a different vertex of the uncertainty polytope and/or of the input saturations, ii) to calculate the

upper bound of the cost function, instead of a time-invariant, a time-varying Lyapunov function

is employed. The online computational burden of the new procedures is generally higher than

that of [1], [2], but is still in the milisecond range. Another main contribution of the present paper

is that we propose a particular choice of the parameters of the linear/saturated dynamic control

laws without solving any optimization problem. This choice has the same desired property as

that of algorithms in [1], [2], i.e., the domain of attraction of the controlled system under a

linear/saturated dynamic feedback law is identical to the domain of attraction under any static



linear/saturated state feedback law.

It is stressed that there are other robust min-max MPC techniques for solving the problem (1),

(4), (5), e.g., [5], [6], [7]. At each sampling time, the control signal is obtained by minimizing

the worst case of (5), which is in turn computed by maximizing over the possible cases of

uncertainty. Solving these problems can be computationally costly as they are NP-hard.

This paper is organized as follows. Section II is dedicated to the prediction dynamics based

MPC method with linear feedback. In Section III, results on the design of the new prediction

dynamics control law with saturated feedback are presented. Two simulated examples with

comparison to earlier solutions are evaluated in Section IV before drawing the conclusions

in Section V.

B. Preliminaries

Notation: A positive definite (semidefinite) matrix P is denoted by P ≻ 0 (P ⪰ 0). For a

given P ∈ Rn×n, P ≻ 0, E(P ) represents the following ellipsoid

E(P ) =
{
x ∈ Rn : xTP−1x ≤ 1

}
Let hl be the lth row of the matrix H ∈ Rnh×n, L(H) is used to denote the following symmetric

polyhedron

L(H) = {x ∈ Rn : −1 ≤ hlx ≤ 1,∀l = 1, nh}

For symmetric matrices, the symbol (∗) denotes each of its symmetric block. 0, I are, respectively,

the zero matrix and the identity matrix of appropriate dimension.

Consider the following ellipsoid Ex1x2 ⊆ Rn1+n2

[
xT
1 xT

2

]  P11 P12

P T
12 P22

−1  x1

x2

 ≤ 1 (9)

Definition 1: (Projection) Given the ellipsoid Ex1x2 , the orthogonal projection Ex1 of Ex1x2 onto

the x1−space Rn1 is defined as

Ex1 = {x1 ∈ Rn1 : ∃x2 ∈ Rn2 such that
[
xT
1 xT

2

]
∈ Ex1x2}

It is well known that Ex1 = E(P11), i.e.,

Ex1 = {x1 ∈ Rn1 : xT
1 P

−1
11 x1 ≤ 1} (10)



The cut of the ellipsoid Ex1x2 ⊆ Rn1+n2 through x2 = 0 is given as

[
xT
1 0

]  P11 P12

P T
12 P22

−1  x1

0

 ≤ 1 (11)

It can be shown that (11) is the ellipsoid E(P11 − P12P
−1
22 P T

12), i.e.,

xT
1 (P11 − P12P

−1
22 P T

12)
−1x1 ≤ 1 (12)

Definition 2: (Invariance) A set Ω is said to be robustly invariant for system (1) if ∀x(k) ∈ Ω,

∃u(k) = U(x(k)) such that x(k + 1) ∈ Ω. In addition, if Ω ∈ L(F ) and −1 ≤ U(x(k)) ≤ 1,

then Ω is robustly invariant and constraint-admissible.

Lemma 1: [8] For given P ∈ Rn×n, P ≻ 0, f0 ∈ R1×n, E(P ) ⊆ L(f0) if and only if

f0PfT
0 ≤ 1.

Lemma 2: [9] Given matrices P,G of appropriate dimension, P ≻ 0. Then,

GTP−1G ⪰ GT +G− P (13)

II. PREDICTION DYNAMICS WITH LINEAR FEEDBACK

A. Parameters Optimization

Combining (1), (8), one obtains

z(k + 1) = A(k)z(k) (14)

where

z(k) =

 x(k)

v(k)

 , A(k) =
s∑

i=1

λi(k)Ai,

Ai =

 Ai +BiK BiN

0nv×n Mi

 , ∀i = 1, s

Define  K = [K N ]

F = [F 0nc×n]
(15)



It is well known [1], [10] that invariance and constraint admissibility of an ellipsoid E(P ) =

{z ∈ Rn+nv : zTP−1z ≤ 1} for the closed-loop system (14), and for the constraints (4) are

equivalent to  P AiP

PAT
i P

 ⪰ 0,∀i = 1, s (16)

1−KjPKT
j ≥ 0,∀j = 1,m (17)

1− FlPFT
l ≥ 0,∀l = 1, nc (18)

where Kj,Fl are, respectively, the jth and lth row of K, and F.

In the control strategy [1], N,Mi, i = 1, s are optimized in order to maximize the domain

of attraction. This is done by maximizing the volume of the projection Ex of E(P ) onto the

x−subspace. The optimization problem is non-convex because (16), (17) are bilinear matrix

inequalities (BMI) in P,N,Mi. As shown in [1], the problem can be convexified through the

use of a nonlinear parameter transformation. In addition, two other main results are obtained in

[1].

(i) In terms of the size of the domain of attraction, there is no advantage to be gained by

using nv > n.

(ii) With nv = n, the maximum volume of Ex under the control law (8) can be as large as

the volume of the largest invariant and constraint-admissible ellipsoid obtained under any

robustly stabilizing static state feedback law, L ∈ Rm×n

u(k) = Lx(k) (19)

The first aim of this paper is to present a particular choice of N,Mi such that the two results

(i), (ii) in [1] hold for the given matrix gain L. This is done without solving any optimization

problem. For this purpose, define ΩL as a robustly invariant and constraint-admissible set for

system (1) and for constraints (4) under the controller (19). Note that ΩL can be any kind of

set, and is not needed to be an ellipsoid. Consider the following choice for N,Mi,∀i = 1, s

N = L−K,Mi = Ai +BiL (20)

Define Ωz as an invariant and constraint-admissible set for (14), (4), (20). Define also Ωx as the

projection of Ωz onto the x−subspace.

Theorem 1: For N,Mi given in (20), Ωz can be optimized in such a way that ΩL ⊆ Ωx.



Proof: Since ΩL is a robustly invariant and constraint-admissible set for (1), (4) under (19),

it follows that ∀x(k) ∈ ΩL

x(k + 1) =
s∑

i=1

λi(k)(Ai +BiL)x(k) ∈ ΩL (21)

and  −1 ≤ Ljx(k) ≤ 1,∀j = 1,m,

−1 ≤ flx(k) ≤ 1,∀l = 1, nc

(22)

where Lj is the jth row of L. Using (20), rewrite the closed-loop system (14) as x(k + 1)

v(k + 1)

 =
s∑

i=1

λi(k)

 Ai +BiK Bi(L−K)

0n×n Ai +BiL

 x(k)

v(k)

 (23)

Using (8), (20), the constraints (4) become −1 ≤ Kjx(k) + (Kj − Lj)v(k) ≤ 1, ∀j = 1,m,

−1 ≤ flx(k) ≤ 1,∀l = 1, nc

(24)

where Kj is the jth row of K. ∀z(k) such that x(k) = v(k), one has

x(k + 1) =
s∑

i=1

λi(k) ((Ai +BiK)x(k) +Bi(L−K)x(k))

=
s∑

i=1

λi(k)(Ai +BiL)x(k)

=
s∑

i=1

λi(k)(Ai +BiL)v(k) = v(k + 1)

(25)

Hence (23) consists of two identically decoupled systems. The constraints (24) become (22) for

x(k). It follows that ΩL ⊆ Ωx. □

Note that with the choice (20), the information of the system dynamics (1) are heavily

exploited. In the rest of the paper, (20) will be used for the linear dynamic control law (8).

B. Maximal Stabilizable Set

In this section, we show how to calculate a robustly invariant and constraint-admissible set of

the closed-loop system (14) with the constraints (4).

Two classes of invariant sets are generally considered for system (14). The first one is

ellipsoidal invariant sets, which correspond to quadratic Lyapunov functions, and are the most

commonly used. Their popularity is due to computational efficiency via the use of linear matrix

inequality (LMI) formulation, and the complexity is fixed with respect to the dimension of the

state space. However, it is well known [11] that there exist asymptotically stable uncertain systems



which do not admit quadratic Lyapunov functions. The second class is polyhedral invariant sets.

In general, polyhedral invariant sets are preferred to the ellipsoidal ones, as they form a universal

class of Lyapunov functions [11]. However, constructing a polyhedral invariant set is generally

harder than the computation of an ellipsoidal one, especially for uncertain systems and/or for

the large state dimension [11], [10].

In recent years, other types of non-quadratic Lyapunov functions are considered for discrete-

time systems with constraints, e. g., [12], [13]. The Lyapunov functions in these works pertain to

or are composed from several quadratic functions. However they lead to optimization problems

with BMI constraints, which are non-convex.

In this paper, we follow the idea in [13], i.e., we use the intersection of ellipsoids to characterize

the domain of attraction. The main contribution with respect to [13] is that the conditions are

expressed as LMI constraints, which are convex.

Theorem 2: If there exist matrices Pi ∈ R2n×2n, Pi ≻ 0, ∀i = 1, s such that the following

conditions hold  Pi1 AiPi

PiAT
i Pi

 ⪰ 0,∀i, ∀i1 = 1, s (26)

1−KjPi2K
T
j ≥ 0,∃i2 ∈ 1, s,∀j = 1,m (27)

1− FlPi3F
T
l ≥ 0,∃i3 ∈ 1, s,∀l = 1, nc (28)

then the intersection of ellipsoids
s⋂

i=1

E(Pi) is robustly invariant and constraint-admissible for

(14), (4).

Proof: For robust invariance, one needs to show that z(k+ 1) ∈
s⋂

i=1

E(Pi),∀z(k) ∈
s⋂

i=1

E(Pi).

Pre- and post-multiplication of (26) by P−1
i1

0n×n

0n×n P−1
i


one obtains  P−1

i1
P−1
i1

Ai

AT
i P

−1
i1

P−1
i

 ⪰ 0,∀i,∀i1 = 1, s

For each i1, multiply the corresponding i = 1, s by λi(k), and sum to get P−1
i1

P−1
i1

(
s∑

i=1

λi(k)Ai

)
(

s∑
i=1

λi(k)Ai

)T

P−1
i1

(
s∑

i=1

λi(k)P
−1
i

)
 ⪰ 0,∀i1 = 1, s



Using Schur complement, one obtains(
s∑

i=1

λi(k)P
−1
i

)
−

(
s∑

i=1

λi(k)Ai

)T

P−1
i1

(
s∑

i=1

λi(k)Ai

)
⪰ 0

thus, ∀i1 = 1, s

z(k)T

(
s∑

i=1

λi(k)P
−1
i

)
z(k)− z(k)T

(
s∑

i=1

λi(k)Ai

)T

P−1
i1

(
s∑

i=1

λi(k)Ai

)
z(k) ≥ 0

Note that z(k + 1) =

(
s∑

i=1

λi(k)Ai

)
z(k). Hence, ∀i1 = 1, s

z(k)T

(
s∑

i=1

λi(k)P
−1
i

)
z(k)− z(k + 1)TP−1

i1
z(k + 1) ≥ 0 (29)

One has z(k) ∈ E(Pi),∀i = 1, s, ∀z(k) ∈
s⋂

i=1

E(Pi), or equivalently

z(k)TP−1
i z(k) ≤ 1,∀i = 1, s

thus
z(k)T

(
s∑

i=1

λi(k)P
−1
i

)
z(k) =

s∑
i=1

λi(k)z(k)
TP−1

i z(k)

≤
s∑

i=1

λ1(k) = 1

Combining with (29), one gets

z(k + 1)TP−1
i1

z(k + 1) ≤ 1,∀i1 = 1, s

Hence z(k + 1) ∈ E(Pi1), ∀i1 = 1, s, or equivalently, z(k + 1) ∈
s⋂

i1=1

E(Pi1).

It remains to prove the constraint admissibility (4). Since
s⋂

i=1

E(Pi) is robustly invariant, it

suffices to guarantee 
s⋂

i=1

E(Pi) ⊆ L(Kj),∀j = 1,m,

s⋂
i=1

E(Pi) ⊆ L(Fl),∀l = 1, nc

For each j ∈ 1,m, if there exists i2 such that E(Pi2) ⊆ L(Kj), then
s⋂

i=1

E(Pi) ⊆ E(Pi2) ⊆ L(Kj)

Using Lemma 1, condition E(Pi2) ⊆ L(Kj) is equivalent to

1−KjPi2K
T
j ≥ 0



This condition is (27). Similarly for the state constraints, for each l ∈ 1, nc if there exists i3

such that E(Pi3) ⊆ L(Fl), then
s⋂

i=1

E(Pi) ⊆ E(Pi3) ⊆ L(Fl)

Using Lemma 1, one can rewrite E(Pi3) ⊆ L(Fl) as

1− FlPi3F
T
l ≥ 0

One obtains (28). □

Remark 1: In Theorem 2, if we set Pi = P, ∀i = 1, s, then conditions (26), (27), (28) boil

down to (16), (17), (18). This implies that Theorem 2 is less conservative than the one that

employs a single ellipsoid.

Remark 2: Conditions (27) and (28) should be read as follows: for each j ∈ 1,m and each

l ∈ 1, nc, there exists i2 ∈ 1, s and i3 ∈ 1, s such that 1−KjPi2K
T
j ≥ 0 and 1− FlPi3F

T
l ≥ 0.

For example, consider the case s = m = 2. Then, the input constraints are satisfied if and only

if one of the following four conditions holds

(a)

 1−K1P1K
T
1 ≥ 0,

1−K2P1K
T
2 ≥ 0

(b)

 1−K1P1K
T
1 ≥ 0,

1−K2P2K
T
2 ≥ 0

(c)

 1−K1P2K
T
1 ≥ 0,

1−K2P1K
T
2 ≥ 0

(d)

 1−K1P2K
T
1 ≥ 0,

1−K2P2K
T
2 ≥ 0

Decompose matrices Pi, i = 1, s as

Pi =

 Pi,11 Pi,12

Pi,21 Pi,22

 (30)

where Pi,11, Pi,12, Pi,21, Pi22 ∈ Rn×n, Pi,11 = P T
i,11, Pi,22 = P T

i,22, Pi,12 = P T
i,21.

The projection of
s⋂

i=1

E(Pi) onto the x−subspace is the domain of attraction for the control

law (8), (20). Using (10), this set is proportional to
s⋂

i=1

E(Pi,11) and should be maximized. On

the other hand, using (12), the intersection of
s⋂

i=1

E(Pi) and the plane v = 0n×1 is given as
s⋂

i=1

E(Pi,11−Pi,12P
−1
i,22Pi,21). In this set, the control law (8), (20) becomes u(k) = Kx(k), which

is the optimal unconstrained LQ controller.
s⋂

i=1

E(Pi,11−Pi,12P
−1
i,22Pi,21) should also be maximized.

In the literature, e.g., [1], the largeness of the set is generally measured by its volume. Here

following the idea in [8], we take the shape of a set into consideration.



Let Xr ⊂ Rn be a prescribed compact convex set. Define, for a set Xc ⊂ Rn

σXr(Xc) = min
σ

{σ > 0 :
1

σ
Xr ⊆ Xc}

If σ ≤ 1 then Xr ⊆ Xc. The reference set Xr can be chosen according to the available information

on the initial conditions. In general, ellipsoids and polytopes are considered for Xr.

Define Xri, Yri as reference sets for E(Pi), and for E(Pi,11 − Pi,12P
−1
i,22Pi,21), i = 1, s,

respectively. Note that Xri, Yri might be different for different i = 1, s.

The problem of maximizing the size of
s⋂

i=1

E(Pi,11) and
s⋂

i=1

E(Pi,11−Pi,12P
−1
i,22Pi,21) with respect

to shape reference sets can be formulated as

min
σi,µi,Pi

{
s∑

i=1

σi + γ
s∑

i=1

µi

}

s.t.


(a) 1

σi
Xri ⊆ E(Pi,11),∀i = 1, s

(b) 1
µi
Yri ⊆ E(Pi,11 − Pi,12P

−1
i,22Pi,21),∀i = 1, s

(c) Conditions (26), (27), (28)

(31)

where γ ≥ 0 is a weighting factor.

For simplicity, we only consider the case where Xri, Yri are ellipsoids. With a slight abuse

of notation, Xri, Yri are used to denote the set as well as the matrices of E(Xri), E(Yri), i.e., Xri = {x ∈ Rn : xTX−1
ri x ≤ 1},

Yri = {x ∈ Rn : xTY −1
ri x ≤ 1}

Condition (a) is equivalent to
1

σi

X−1
ri ⪰ P−1

i,11

thus

Pi,11 − σiXri ⪰ 0 (32)

Condition (b) can be written as

µiYri ⪯ Pi,11 − Pi,12P
−1
i,22Pi,21

Using Schur complement, one gets Pi,11 − µiYri Pi,12

Pi,21 Pi,22

 ⪰ 0,∀i = 1, s (33)

Using (32), (33), the optimization problem (31) can be rewritten as

min
σi,µi,Pi

{
s∑

i=1

σi + γ
s∑

i=1

µi

}
s.t. (26), (27), (28), (32), (33)

(34)



(34) is a convex SDP problem. It can be solved efficiently using free available LMI parser such

as CVX [14], or Yalmip [15].

C. Min-max Cost and Overall MPC algorithm

In this section, a way to compute an upper bound of the cost J(k) is presented. Then the new

control scheme is introduced. Consider the following time-varying function

V (k, z(k)) = z(k)T

(
s∑

i=1

λi(k)Ξi

)
z(k) (35)

where Ξi ∈ R2n×2n,Ξi ⪰ 0, i = 1, s are chosen to satisfy, ∀t = 0, 1 . . . ,

x(k + t)TQx(k + t) + u(k + t)TRu(k + t) ≤

≤ V (k + t, z(k + t))− V (k + t+ 1, z(k + t+ 1))
(36)

We will provide a way to compute Ξi, i = 1, s. For the moment, let us assume that Ξi are

known. Since K,L are robustly stabilizing control laws and A(k) is an upper triangular matrix,

it follows that system (14) is robustly asymptotically stable for states near the origin. Hence

lim
t→∞

z(k + t) = 0, or lim
t→∞

V (k + t, z(k + t)) = 0. Summing (36) from t = 0 to t = ∞, one gets

∞∑
t=0

(
x(k + t)TQx(k + t) + u(k + t)TRu(k + t)

)
≤ V (k, z(k))

or equivalently J(k) ≤ V (k, z(k)). Hence V (k, z(k)) provides an upper bound of J(k).

The following theorem concerns the existence of Ξi in (36)

Theorem 3: There exist Ξi,∀i = 1, s satisfying (36) if and only if the following conditions

hold  Ξi −Q−R AT
i Ξi1

Ξi1Ai Ξi1

 ⪰ 0,∀i, ∀i1 = 1, s (37)

where

Q =

 Q 0n×n

0n×n 0n×n

 , R = KTRK (38)

Proof: Since t is arbitrary, it suffices to verify (36) for t = 0. Using (36) and the facts that

x(k) = [In 0n] z(k) and u(k) = Kz(k), one obtains(
s∑

i=1

λi(k)Ξi

)
−

(
s∑

i=1

λi(k)Ai

)T ( s∑
i1=1

λi1(k + 1)Ξi1

)(
s∑

i=1

λi(k)Ai

)
⪰ Q+R (39)



Condition (39) holds if and only if, ∀i1 = 1, s(
s∑

i=1

λi(k)Ξi

)
−

(
s∑

i=1

λi(k)Ai

)T

Ξi1

(
s∑

i=1

λi(k)Ai

)
⪰ Q+R

Using Schur complement, one obtains, ∀i1 = 1, s
(

s∑
i=1

λi(k)Ξi −Q−R

) (
s∑

i=1

λi(k)Ai

)T

Ξi1

Ξi1

(
s∑

i=1

λi(k)Ai

)
Ξi1

 ⪰ 0

or equivalently, ∀i,∀i1 = 1, s  Ξi −Q−R AT
i Ξi1

Ξi1Ai Ξi1

 ⪰ 0

The proof is complete. □

Since Ai are upper triangular matrices, there exist Ξi ∈ R2n×2n satisfying (37), if and only if

there exist Ξi in the following diagonal form

Ξi =

 Γi 0n×n

0n×n Φi

 , i = 1, s (40)

where Γi ∈ Rn×n,Φi ∈ Rn×n,Γi ⪰ 0,Φi ⪰ 0, ∀i = 1, s.

Ξi are used to provide the upper bound of the cost function J(k). The optimal Ξi can be

found by solving the following SDP problem min
Γi,Φi

{
s∑

i=1

(trace(Γi) + trace(Φi))

}
s.t. (37)

(41)

Denote Γ∗
i ,Φ

∗
i as an optimal solution of (41), and

Ξ∗
i =

 Γ∗
i 0n×n

0n×n Φ∗
i

 , i = 1, s

At time k, consider the following optimization problem

min
v(k)

max
i=1,s

{
1
2
x(k)TΓ∗

ix(k) +
1
2
v(k)TΦ∗

i v(k)
}

s.t. [x(k)T v(k)T ]T ∈
s⋂

i=1

E(Pi)
(42)

Let v∗(k) be the solution of (42). The control signal at time k is

u(k) = Kx(k) + (L−K)v∗(k) (43)



Theorem 4: Assuming feasibility at the initial state, the optimization based controller (43)

guarantees recursive feasibility and robust asymptotic stability.

Proof: For a given feasible state x(k), the set
s⋂

i=1

E(Pi) is not empty for v(k). Hence the

optimization problem (42) is feasible at time k.
s⋂

i=1

E(Pi) is robustly invariant and constraint-

admissible (14), (4) under the control law (43). Hence z(k + 1) =

 x(k + 1)

v(k + 1)

 ∈
s⋂

i=1

E(Pi).

As consequence, recursive feasibility is guaranteed.

For the robust asymptotic stability proof, consider the following Lyapunov function candidate

V (k, z∗(k)) = z∗(k)T

(
s∑

i=1

λi(k)Ξ
∗
i

)
z∗(k) (44)

where z∗(k) =
[
x(k)T v∗(k)T

]
. One obtains z(k + 1) by applying (43) to (1). Using (36),

one gets, ∀λi1(k + 1) ∈ Λ

z(k + 1)T
(

s∑
i1=1

λi1(k + 1)Ξ∗
i1

)
z(k + 1)− z∗(k)T

(
s∑

i=1

λi(k)Ξ
∗
i

)
z∗(k)

≤ −x(k)TQx(k)− u(k)TRu(k)

Thus
max
i1=1,s

{
z(k + 1)TΞ∗

i1
z(k + 1)

}
− z∗(k)T

(
s∑

i=1

λi(k)Ξ
∗
i

)
z∗(k)

≤ −x(k)TQx(k)− u(k)TRu(k)

(45)

Solving the problem (42) at time k + 1 yields z∗(k + 1) such that

max
i1=1,s

{
z∗(k + 1)TΞ∗

i1
z∗(k + 1)

}
≤ max

i1=1,s

{
z(k + 1)TΞ∗

i1
z(k + 1)

}
(46)

Combining (45), (46), and note that

z∗(k + 1)T

(
s∑

i1=1

λi1(k + 1)Ξ∗
i1

)
z∗(k + 1) ≤ max

i1=1,s

{
z∗(k + 1)TΞ∗

i1
z∗(k + 1)

}
one obtains

z∗(k + 1)T
(

s∑
i1=1

λi1(k + 1)Ξ∗
i1

)
z∗(k + 1)− z∗(k)T

(
s∑

i=1

λi(k)Ξ
∗
i

)
z∗(k)

≤ −x(k)TQx(k)− u(k)TRu(k)

Hence V (k, z(k)) is a Lyapunov function of the closed-system under the control law (43). In

other words, robust asymptotic stability is assured [16]. □

Remark 3: Using the simulation results it is observed that the online computational complexity

is reduced if the same Φ∗
i can be used for a set of vertices. Note that no constraints are imposed



on Γ∗
i . Γ

∗
i can be different for different vertices. In the extreme case, i.e., Φ∗

i = Φ∗,∀i = 1, s,

one has, for the cost function (42)

min
v(k)

max
i=1,s

{
1
2
x(k)TΓ∗

ix(k) +
1
2
v(k)TΦ∗v(k)

}
= min

v(k)
{1
2
v(k)TΦ∗v(k)}+max

i=1,s

{
1
2
x(k)TΓ∗

ix(k)
}

The term max
i=1,s

{
1
2
x(k)TΓ∗

ix(k)
}

can be removed, since it does not influence the optimal argument.

(42) becomes
min
v(k)

{
1
2
v(k)TΦ∗v(k)

}
s.t. [x(k)T v(k)T ]T ∈

s⋂
i=1

E(Pi)
(47)

D. Online Optimization Problem

By using the equivalent epigraph representation [17] of (42), it can be shown that (42) can be

converted into a convex quadratically constrained quadratic program (QCQP). Hence the solution

can be obtained by using, e.g., the interior point method [18]. In general, QCQP can be solved

much more efficient than SDP [17].

In the following another way to solve (42) is provided. Note that problem (42) has a very nice

geometrical interpretation. The solution to (42) defines the shortest distance of the intersection

of s ellipsoids from the origin with respect to a min-max norm. To see this, for a given x(k)

define Ωv as the feasible set, to which v must belong. Ωv is the following set

Ωv =

{
v(k) ∈ Rn : [x(k)T v(k)T ]T ∈

s⋂
i=1

E(Pi)

}
i.e., Ωv is the intersection of s ellipsoids. If the origin is contained in Ωv, then v∗(k) = 0 is the

solution of (42). In this case, (43) becomes u(k) = Kx(k), i.e., the robust optimal LQ control

law. Otherwise, if the origin is not contained in Ωv, then v∗(k) must lie on the boundary of Ωv

that is closest to the origin.

Problem (42) can be decomposed into s parallel optimization sub-problems, i = 1, s

min
v(k)

{1
2
v(k)TΦ∗

i v(k)},

s.t. [x(k)T v(k)T ]T ∈
s⋂

i=1

E(Pi)
(48)

Let v∗i (k) be the solution of (48), i = 1, s. Define, i1 = 1, s

gi1i =
1

2
x(k)TΓ∗

i1
x(k) +

1

2
v∗i (k)

TΦ∗
i v

∗
i (k) (49)



Define also an index i∗ such that

max
i1=1,s

{gi1i∗} ≤ gi∗i∗

Clearly, v∗i∗(k) is the solution of (42). Now a way to solve (48) is presented. Rewrite (48) as

min
f(k)

{
1
2
f(k)Tf(k)

}
,

s.t.



[
x(k)T f(k)T

]
Q1

 x(k)

f(k)

 ≤ 1,

...[
x(k)T f(k)T

]
Qs

 x(k)

f(k)

 ≤ 1

(50)

where f(k) = Φciv(k), ΦT
ciΦci = Φ∗

i , i = 1, s, and,

Qi =

 In×n

(Φ−1
ci )

T

P−1
i

[
In×n Φ−1

ci

]
The cost function of (50) is strongly convex, and the feasible set is the intersection of s closed

convex sets. This is a classical optimization problem that is tackled by many authors, e.g., [19],

[20]. In the present paper, the algorithm in Han and Lou [19] is applied. This method splits up the

computation into s parallel sub-problems. The required matrix operations are extremely simple.

The main idea of this method is to solve the dual problem of (50) using parallel computations

in an iterative scheme. The application of the method [19] to our problem is summarized in the

following. We use q as iteration counter of the method. A superscript (q) is used to denote the

values of variables calculated at iteration q. Define f (0) = y
(0)
1 = . . . = y

(0)
s = 0. Let ρ be a

sufficiently large number. For q = 1, 2, . . . , we perform the following calculations

1) For i = 1, s, find f
(q)
i that solves

min
fi

1
2
(fi + ρy

(q−1)
i − f (q−1))T (fi + ρy

(q−1)
i − f (q−1)),

s.t.
[
x(k)T fT

i

]
Qi

 x(k)

fi

 ≤ 1
(51)

To solve (51), the algorithm in [21] is employed. This method requires only to find the

unique positive root of a well behave polynomial equation [2]. The solution can be found

by a univariate Newton–Raphson procedure with quadratic convergence rate.

2) Assign

y
(q)
i = y

(q−1)
i +

1

ρ
(f

(q)
i − f (q−1)) (52)



3) Set f (q) = y
(q)
1 + . . .+ y

(q)
s

The design parameter ρ must be sufficiently large. With ρ ≥ s
ρ′

, the method [19] will converge

with the following contraction rate

(f (q) − f (q−1))T (f (q) − f (q−1)) ≤ s

2ρ′
(y

(q)
i − y

(q−1)
i )T (y

(q)
i − y

(q−1)
i )

For a quadratic cost function, we can choose ρ′ as the smallest eigenvalue of the Hessian matrix,

i.e., ρ′ = 1 in our case. Therefore ρ = s.

Remark 4: With q = 1, the optimization problem (50) with only one active ellipsoidal

constraint is the same as (51). If there exists index i such that, for q = 1,[
x(k)T (f

(q)
i )T

]
Qp

 x(k)

f
(q)
i

 ≤ 1, ∀i = 1, s

then f ∗ = f
(q)
i is the solution of (50).

To sum up, the proposed control policy with linear feedback consists of two stages: offline

stage and online stage.

Offline Stage
1: Select the matrix gain L.

2: Obtain Pi, ∀i = 1, s by solving (34).

3: Obtain Γ∗
i ,Φ

∗
i , ∀i = 1, s by solving (41).

Online Stage

1: Measure/estimate x(k).

2: Obtain v∗(k) by solving (42).

3: Apply the control law u(k) = Kx(k) + (L−K)v∗(k) to (1).

III. PREDICTION DYNAMICS WITH SATURATED FEEDBACK

A. Prediction Dynamics

As written in Introduction, despite an efficient online computation, the control signal of the

prediction dynamics based MPC method with linear feedback hits rarely the constraints. Hence

the time to regulate the plant to the origin is much longer than, e.g., by time-optimal control. To

overcome this problem, a new prediction dynamics based MPC method with saturated feedback



was considered in [2]. With the new algorithm, the control range is fully exploited, and the

performance can be significantly improved. In addition, the domain of attraction of the new

control law can be as large as that of any static saturated state feedback law, L ∈ Rm×n

u(k) = sat(Lx(k)) (53)

However the method in [2] is still based on common quadratic functions to characterize the

domain of attraction as well as to calculate the upper bound of the cost function. The main aim

of this section is to present a way to reduce the convervativeness of [2]. In addition, a particular

choice of the dynamic controller parameters is also proposed. To this aim, consider the following

saturated dynamic control law

u(k) = sat(Kx(k) + (L−K)v(k)) (54)

where v(k) ∈ Rn is the controller state. The saturation function sat(u) : Rm → Rm is defined as

sat(u) = [sat(u1) sat(u2) . . . sat(um)]
T (55)

sat(uj) =


−1, if uj ≤ −1,

uj, if − 1 ≤ uj ≤ 1,

1, if 1 ≤ uj

Note that using (54), (55), the input constraints (4) are automatically satisfied. Note also that if

v(k) = 0, then (54) is the robust optimal saturated LQ controller

u(k) = sat(Kx(k)) (56)

In the following we recall the linear differential inclusion (LDI) modeling framework, which

was proposed in [8]. It will be used to model the saturation nonlinearity.

Define D as the set of m×m diagonal matrix whose diagonal elements are either 0 or 1. For

example, if m = 2, then

D =


 1 0

0 1

 ,

 1 0

0 0

 ,

 0 0

0 1

 ,

 0 0

0 0


There are 2m elements in D. Define Er, r = 1, 2m as an element in D. Define also E−

r =

Im×m − Er. Clearly, E−
r is also an element of D.

Lemma 3: [8] Let Sv, So ∈ Rm×n. One has, ∀x(k) ∈ L(So)

sat(Svx(k)) =
2m∑
r=1

αr(k)(ErSv + E−
r So)x(k) (57)



where
2m∑
r=1

αr(k) = 1, αr(k) ≥ 0.

For example, if m = 2, we have sat(Sv,1x)

sat(Sv,2x)

 = α1

 Sv,1x

Sv,2x

+ α2

 Sv,1x

So,2x

+ α3

 So,1x

Sv,2x

+ α4

 So,1x

So,2x


Remark 5: For simplicity the LDI modeling framework in [8] is used. However, the approach

in the paper can be straightforwardly extended with the LDI framework in [22]. Compared with

[8], the main advantage of [22] is that the conservativeness is reduced. However, it comes with

a cost of higher computational complexity.

Using Lemma 3, a way to model the system (1) with the saturated control law (53) and (56) is

proposed. The obtained models are then used to design the prediction dynamics with the control

law (54). Since the way to model (1) with (53), or (1) with (56) are the same, only the one with

(53) is shown here. Using Lemma 3, ∀x(k) ∈ L(H)

u(k) = sat(Lx(k)) =
2m∑
r=1

αr(k)(ErL+ E−
r H)x(k) (58)

where H ∈ Rm×n is an unknown matrix that will be treated as a decision variable,
2m∑
r=1

αr(k) =

1, αr(k) ≥ 0.

Consider the polytope S, the vertices of which are given by taking all possible combinations

of {Ai +BiErL+BiE
−
r H}, where i = 1, s, r = 1, 2m. There are s2m vertices of S.

Theorem 5: The closed-loop system matrix of (1), (53) can be expressed as a convex

combination of the vertices of S, ∀x(k) ∈ L(H).

Proof: Substituting (58) into (1), one gets

x(k + 1) =

(
s∑

i=1

λi(k)Ai +
s∑

i=1

λi(k)Bi

2m∑
r=1

αr(k)(ErL+ E−
r H)

)
x(k)

=
s∑

i=1

λi(k)

(
Ai +

2m∑
r=1

αr(k)Bi(ErL+ E−
r H)

)
x(k)

or equivalently

x(k + 1) =
s∑

i=1

2m∑
r=1

λi(k)αr(k)
(
Ai +BiErL+BiE

−
r H
)
x(k) (59)

Define, ∀i = 1, s,∀r = 1, 2m

Ap = Ai +BiErL,Bp = BiE
−
r ,∀p = 1, s2m (60)



and ζp(k) = λi(k)αr(k). For example, if s = 2,m = 1, then

A1 = A1 +B1L,B1 = 0,A2 = A1,B2 = B1,

A3 = A2 +B2L,B3 = 0,A4 = A2,B4 = B2,

ζ1 = λ1α1, ζ2 = λ1α2, ζ3 = λ2α1, ζ4 = λ2α2

Rewrite (59) as

x(k + 1) =
s2m∑
p=1

ζp(k)(Ap +BpH)x(k) (61)

Using the fact that
s2m∑
p=1

ζp(k) =
s∑

i=1

2m∑
r=1

λi(k)αr(k) =
s∑

i=1

λi(k)
2m∑
r=1

αr(k) = 1

it follows that the system matrix (61) can be expressed as a convex combination of vertices of

S. □

The following theorem concerns conditions for a set to be robustly invariant and constraint-

admissible for (1), (4) under the control law (53).

Theorem 6: Suppose that matrices Wp ∈ Rn×n,Wp ≻ 0,∀p = 1, s2m, G ∈ Rn×n, Y ∈ Rm×n

satisfy the following LMIs Wp1 (ApG+BpY )

(∗) G+GT −Wp

 ⪰ 0, ∀p,∀p1 = 1, s2m (62)

 1 Yj

Y T
j G+GT −Wp2

 ⪰ 0, ∃p2 ∈ 1, s2m,∀j = 1,m (63)

1− flWp3f
T
l ≥ 0,∃p3 ∈ 1, s2m,∀l = 1, nc (64)

where Yj is the jth row of Y . Then
s2m⋂
p=1

E(Wp) is robustly invariant for

x(k + 1) = A(k)x(k) +B(k)sat(Lx(k))

and constraint-admissible with respect to (4).

Proof: Using Lemma 1, condition (64) guarantees that E(Wp3) ∈ L(fl). Because
s2m⋂
p=1

E(Wp) ⊆

E(Wp3), it follows
s2m⋂
p=1

E(Wp) ⊆ L(fl),∀l = 1, nc. Hence the state constraints are satisfied.

∀x ∈ L(H), the closed-loop system (1), (53) can be modeled by (61). Using Lemma 1,

∀j = 1,m, if ∃p2 ∈ 1, s2m such that

1−HjWp2H
T
j ≥ 0 (65)



then E(Wp2) ∈ L(Hj). With Hj = YjG
−1, condition (65) becomes

1− YjG
−1Wp2(G

−1)TY T
j ≥ 0

Thus, with Schur complement  1 Yj

Y T
j GTW−1

p2
G

 ⪰ 0 (66)

Using Lemma 2, if (63) holds then (66) is satisfied. Since
s2m⋂
p=1

E(Wp) ⊆ E(Wp2), condition (63)

assures that ∀x ∈
s2m⋂
p=1

E(Wp), system (1), (53) can be modeled using (61). It remains to show

that
s2m⋂
p=1

E(Wp) is robustly invariant. Using Lemma 2, if (62) holds then Wp1 (ApG+BpY )

(∗) GTW−1
p G

 ⪰ 0, ∀p,∀p1 = 1, s2m (67)

Pre- and post-multiplication of (67) by W−1
p1

0n×n

0n×n (G−1)T

 ,

 W−1
p1

0n×n

0n×n G−1


one obtains, H = Y G−1 W−1

p1
W−1

p1
(Ap +BpH)

(∗) W−1
p

 ⪰ 0, ∀p, ∀p1 = 1, s2m

For each p1, multiply the corresponding p = 1, s2m by ζp(k), and sum to obtain W−1
p1

W−1
p1

s2m∑
p=1

ζp(k)(Ap +BpH)

(∗)
s2m∑
p=1

ζp(k)W
−1
p

 ⪰ 0, ∀p1 = 1, s2m

Thus, with Schur complement, p1 = 1, s2m(
s2m∑
p=1

ζp(k)W
−1
p

)
−

(
s2m∑
p=1

ζp(k)(Ap +BpH)

)T

W−1
p1

(
s2m∑
p=1

ζp(k)(Ap +BpH)

)
⪰ 0 (68)

Pre- and post-multiplication of (68) with x(k)T and x(k), and note that

x(k + 1) =

(
s2m∑
p=1

ζp(k)(Ap +BpH)

)
x(k)



one gets (
s2m∑
p=1

ζp(k)x(k)
TW−1

p x(k)

)
− x(k + 1)TW−1

p1
x(k + 1) ≥ 0

If x(k) ∈
s2m⋂
p=1

E(Wp), then x(k)TW−1
p x(k) ≤ 1. If follows that

s2m∑
p=1

ζp(k)x(k)
TW−1

p x(k) ≤ 1. As

consequence, x(k+ 1)TW−1
p1

x(k+ 1) ≤ 1, or x(k+ 1) ∈ E(Wp1),∀p1 = 1, s2m. In other words,

x(k + 1) ∈
s2m⋂
p=1

E(Wp). Hence
s2m⋂
p=1

E(Wp) is robustly invariant. □

In general, one would like to maximize the size of
s2m⋂
p=1

E(Wp). This can be done as in Section

II-B, i.e., maximize
s2m⋂
p=1

E(Wp) with respect to some shape reference sets. Alternatively, the

following SDP problem can be used to optimize the volume of
s2m⋂
p=1

E(Wp).

max
Wp,G,Y

{
s2m∑
p=1

logdet(Wp)

}
,

s.t. (62), (63), (64)
(69)

Denote W ∗
p , p = 1, s2m, G∗, Y ∗ and H = Y ∗(G∗)−1 as an optimal solution of (69). W ∗

p will be

used to show a theoretical property of the new control law (54), while H is for designing the

prediction dynamics.

Analogously, by solving a corresponding SDP problem, one can obtain an auxiliary matrix

gain V ∈ Rm×n for the saturated controller (56) such that the domain of attraction of the closed-

loop system (1), (56) is maximized. Consider now the saturated dynamic control law (54). Using

Lemma 3, one gets

sat(Kx+ (L−K)v) =
2m∑
r=1

αr

{
Er(Kx+ (L−K)v) + E−

r (V x+ (H − V )v)
}

(70)

∀x, and ∀v such that

[xT vT ]T ∈ L(H) (71)

where H = [V H − V ]. By using the same procedure as the one to prove theorem 5, it can be

shown that the closed-loop system (1), (54) can be rewritten as, ∀x,∀v satisfying (71)

x(k + 1) =
s2m∑
p=1

ζp(k) (Ax,px(k) +Bx,pv(k)) (72)

where ζp(k) = λi(k)αr(k), ∀i = 1, s, r = 1, 2m, p = 1, s2m, and Ax,p = Ai +BiErK +BiE
−
r V,

Bx,p = BiEr(L−K) +BiE
−
r (H − V )



Assuming v(k) is the output of the following auxiliary system

v(k + 1) =
s2m∑
p=1

ζp(k)(Ap +BpH)v(k) (73)

where Ap,Bp are given in (60). Note that the dynamics (73) depend not only on the polytopic

uncertainty (2), but also on the input saturations. Combining (72), (73), one obtains

z(k + 1) =
s2m∑
p=1

ζp(k)Ac,pz(k) (74)

where

z(k) =

 x(k)

v(k)

 , Ac,p =

 Ax,p Bx,p

0n Ap +BpH

 ,∀p = 1, s2m

Define Ωc,z as a robustly invariant and constraint-admissible set for (74), for the state constraints

(4), and for (71). Define also Ωc,x as the projection of Ωc,z onto the x−space. The following

corollary holds

Corollary 1: Ωc,z can be optimized in such a way that
s2m⋂
p=1

E(W ∗
p ) ⊆ Ωc,x.

Proof: It is omitted here, since it follows the same lines as the proof of Theorem 1. □

Corollary 1 states that the domain of attraction of the control law (54) can be as large as that

of any static saturated state feedback law. Note that for simplicity the intersection of ellipsoids
s2m⋂
t=1

E(W ∗
p ) is used as the domain of attraction for the closed-loop system (1), (53). However, it

is clear that this set can be any kind of set.

B. Domain of Attraction, Cost Function and Control Law

Once the prediction dynamics are designed, the next steps are: i) calculate the domain of

attraction, ii) estimate the upper bound of the cost function J(k), iii) minimize the obtained

upper bound online.

Similarly to Theorem 2, the following corollary establishes the theoretical support of the

algorithm proposed to obtain an estimation of the domain of attraction for (74).

Corollary 2: Suppose that matrices Pc,p ∈ R2n×2n, Pc,p ≻ 0, ∀p = 1, s2m satisfy the following

LMIs  Pc,p1 Ac,pPc,p

Pc,pAT
c,p Pc,p

 ⪰ 0, ∀p1,∀p = 1, s2m (75)

1−HjPc,p2Hj ≥ 0, ∃p2 ∈ 1, s2m,∀j = 1,m (76)

1− FlPc,p3F
T
l ≥ 0,∃p3 ∈ 1, s2m,∀l = 1, nc (77)



where Hj is the jth row of H. Then the set
s2m⋂
p=1

E(Pc,p) is robustly invariant for (74), and

constraints admissible with respect to the state constraints (4), and to (71).

Proof: It is omitted here. □

Once robust invariance and constraint admissible conditions are expressed as LMI constraints,

the size of
s2m⋂
p=1

E(Pc,p) can be maximized as in Section II-B. Details are not considered further.

Our next step is to calculate the upper bound of the cost function J(k). Consider the following

time-varying quadratic function

Vc(k, z(k)) = z(k)T

(
s2m∑
p=1

ζp(k)Ξc,p

)
z(k) (78)

where Ξc,p ∈ R2n×2n,Ξc,p ⪰ 0,∀p = 1, s2m are chosen to satisfy

x(k + t)TQx(k + t) + u(k + t)TRu(k + t) ≤

≤ Vc(k, z(k))− Vc(k + 1, z(k + 1))
(79)

By summing (79) from t = 0 to t = ∞, one can show that J(k) ≤ Vc(k, z(k)). Or equivalently

Vc(k, z(k)) is an upper bound of J(k).

Define, ∀i = 1, s,∀r = 1, 2m,∀p = 1, s2m

Rp =
(
ErK+ E−

r H
)T

Ri

(
ErK+ E−

r H
)

(80)

where Ri = R, ∀i = 1, s. The following corollary concerns the existence of Ξc,p.

Corollary 3: There exist Ξc,p,∀p = 1, s2m satisfying (79), if and only if the following LMIs

hold, ∀p,∀p1 = 1, s2m  (Ξc,p −Q−Rp) AT
c,pΞc,p1

Ξc,p1Ac,p Ξc,p1

 ⪰ 0 (81)

where Q is defined in (38).

Proof: The proof is omitted since it is almost the same as the one of Theorem 3. □

We are generally looking for Ξc,p in the diagonal form, p = 1, s2m

Ξc,p =

 Γc,p 0n×n

0n×n Φc,p

 (82)

The optimal Ξc,p can be found by solving the following SDP problem

min
Γc,p,Φc,p

{
s2m∑
p=1

(trace(Γc,p) + trace(Φc,p))

}
,

s.t. (81)
(83)



Denote Γ∗
c,p,Φ

∗
c,p, p = 1, s2m as an optimal solution of (83). At time k, for a given state x(k),

let v∗(k) be the optimal solution of the following optimization problem,

min
v(k)

max
q=1,s2m

{
1
2
x(k)TΓ∗

c,px(k) +
1
2
v(k)TΦ∗

c,pv(k)
}
,

s.t. [x(k)T v(k)T ]T ∈
s2m⋂
p=1

E(Pc,p)
(84)

As in Section II-D, (84) can be decomposed into s2m parallel sub-problems. To solve each sub-

problems, we employ the method [19] in conjunction with the Newton-Raphson based technique

in [21]. Note that the online computational burden is reduced if the same Φ∗
c,p can be used for

a set of vertices. Γ∗
c,p can be different for different vertices.

The control signal is computed as

u(k) = sat (Kx(k) + (L−K)v∗(k)) (85)

Corollary 4: The controller (85) guarantees recursive feasibility and robust asymptotic stability

for all feasible initial states.

Proof: It is omitted here. □

In the following, the prediction dynamics based MPC with saturated feedback is summarized.

It consists of two stages: offline stage and online stage.

Offline Stage
1: Select the matrix gain L.

2: Optimize H,V by solving (69) for H , and by solving a corresponding problem for V .

3: Optimize Pc,p, ∀p = 1, s2m by using Corollary 2.

4: Optimize Γ∗
c,p,Φ

∗
c,p, ∀p = 1, s2m by solving (83).

Online Stage

1: Measure/estimate x(k).

2: Obtain v∗(k) by solving (84).

3: Apply the control law u(k) = sat (Kx(k) + (L−K)v∗(k)) to (1).

IV. EXAMPLES

Two example systems are shown in this section. The CVX toolbox [14] was used to solve

the SDP optimization problems. For comparison purposes, the prediction dynamics based MPC



methods with linear feedback when a common quadratic function [1], and a set of quadratic

functions are used, are denoted as algorithm 1, and algorithm 2, respectively. The prediction

dynamics based MPC method with saturated feedback is denoted as algorithm 3.

A. Example 1

To illustrate the concept of the intersection of ellipsoids used to characterize of the domain of

attraction, a very simple example is presented. Consider the system (1) with A1 = 0.25, A2 =

1.5, B1 = 1, B2 = 2. There are only input constraints −1 ≤ u ≤ 1.

The weighting matrices are Q = 1, R = 0.01. The unconstrained LQ controller is obtained

by solving a SDP problem K = −0.5833. The gain L is chosen as L = −0.4268. The auxiliary

gain matrices are V = −0.2570, and H = −0.2560.

Fig. 1 presents the robustly invariant and constraint-admissible sets for algorithm 1, E(P )

(dash-dot yellow line), for algorithm 2, E(P1) ∩ E(P2) (dashed red lines), and for algorithm 3,
4⋂

p=1

E(Pc,p) (solid blue lines). It can be observed that E(P ) ⊂ (E(P1) ∩ E(P2)) ⊂
4⋂

p=1

E(Pc,p).

The ellipsoid matrices are

P =

 8.4881 14.6720

14.6720 32.2985

 , P1 =

 20.3697 58.8904

58.8904 196.8595

 , P2 =

 16.6790 −4.5257

−4.5257 77.2940

 ,

Pc,1 =

 15.2260 11.2142

11.2142 409.0984

 , Pc,2 = 106

 0.4497 0.6441

0.6441 2.3785

 ,

Pc,3 =

 222.0988 −146.1684

−146.1684 214.7797

 , Pc,4 =

 15.6129 10.0605

10.0605 99.2449


Note that E(Pc,p) ⊂ E(Pc,2), p = 1, 2, 4. Hence

4⋂
p=1

E(Pc,p) = E(Pc,1) ∩ E(Pc,3) ∩ E(Pc,4).

B. Example 2

This example is a classical angular positioning system [5]. The system consists of a rotating

antenna at the origin of the plane, driven by an electric motor, see Fig. 2. The control problem

is to rotate the antenna by applying the input voltage to the motor so that it always points in the

direction of a moving object in the plane. The motion of the antenna can be described by the

discrete-time system (1) obtained from its continuous-time counterpart by discretizations with a
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Fig. 1: Robustly invariant and constraint-admissible set for algorithm 1 (dash-dot yellow), for

algorithm 2 (dashed red), for algorithm 3 (solid blue) for example 1.

Fig. 2: Angular positioning system for example 2.

sampling time of 0.1 sec and Euler’s first-order approximation for the derivative. As the result,

one obtains

A1 =

 1 0.1

0 1

 , A2 =

 1 0.1

0 0

 , B1 = B2 =

 0

0.1574

 (86)

The input and state constraints are: −1 ≤ u ≤ 1,−3 ≤ x1 ≤ 3. The weighting matrices are

Q =

 1 0

0 0

 , R = 2× 10−5

The corresponding LQ gain matrix is K = [−46.0650 − 7.7831]. The gain matrix L is chosen

as L = [−0.1479 − 1.4582]. The auxiliary gain matrices are V = [−10.0079 − 2.9145], and



H = [−0.0307 − 0.0576].

Fig. 3 shows the cut of the robustly invariant and constraint-admissible sets through v = 0

for algorithm 1 (dash-dot yellow line), for algorithm 2 (dashed red lines), and for algorithm 3

(solid blue line). Note that, since v = 0

• The prediction dynamics controller becomes u(k) = Kx(k) for algorithm 1 inside the

dash-dot yellow set.

• The prediction dynamics controller becomes u(k) = Kx(k) for algorithm 2 inside the

intersection of the two dashed red sets.

• The prediction dynamics controller becomes u(k) = sat(Kx(k)) for algorithm 3 inside the

intersection of the four solid blue sets.
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Fig. 3: Cut of the robustly invariant and constraint-admissible sets through v = 0 for algorithm

1 (dash-dot yellow), for algorithm 2 (dashed red), for algorithm 3 (solid blue) for example 2.

For the initial condition x(0) = [−1 −0.5]T , Fig. 4 shows the state and input trajectories of the

closed-loop system as functions of time using algorithm 1 (dash-dot yellow), using algorithm

2 (dashed red), and using algorithm 3 (solid blue). Note that for algorithm 2, one matrix Φ is

used to calculate the upper bound of the cost function. For algorithm 3, two matrices Φc,1,Φc,2

are used. Fig. 4(b) also presents the realization of λ.

Finally, using the TIC/TOC function of MATLAB 2020b, we found that the online computation

times for one sampling interval were 1.2292× 10−4[s], 2.9461× 10−4[s], and 5.7352× 10−4 for

algorithm 1, for algorithm 2, and for algorithm 3, respectively.
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Fig. 4: (a) State, (b) Input and λ realization trajectories as functions of time for algorithm 1

(dash-dot yellow), for algorithm 2 (dashed red), and for algorithm 3 (solid blue) for example 2.

V. CONCLUSION

Two novel prediction dynamics based MPC approaches are presented for constrained discrete-

time systems with uncertain and/or time-varying polytopic uncertainties. A particular choice of

the parameters of the prediction dynamics with linear/saturated feedback is proposed without

solving any optimization problem. This choice has the same desired property as that of ear-

lier solutions in the literature, i.e., the domain of attraction of the controlled system under a

linear/saturated dynamic feedback law is identical to the domain of attraction under any static

linear/saturated state feedback law. To describe the domain of attraction as well as to estimate

the upper bound of the cost function, the algorithms use a set of quadratic functions, each one

corresponding to a different vertices of the uncertainty polytope and/or the saturated inputs. The

design procedures do not require the assumption of quadratic stability. Two numerical examples

with comparison to earlier solutions in the literature demonstrate the effectiveness of the new

methods.
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