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Illumination Estimation for Nature Preserving
Low-Light Image Enhancement

Kavinder Singh∗ and Anil Singh Parihar†, Member, IEEE

Abstract—Low-light images may degrade the performance of
a vision-based system due to low visibility. Thus, enhancement of
low-light images is an essential step to achieve the effective object
and feature extraction from low-light images. In this paper, we
present a new approach to estimate illumination and reflectance
for low-light image enhancement. The proposed algorithm per-
forms a structure-aware estimation of the initial illumination
to preserve natural variation in the illumination of the images.
The work formulates a multi-objective optimization function
using textural and structural details of the image. It refines
the illumination estimation by minimizing the multi-objective
function. The proposed algorithm performs image enhancement
with color constancy and preserves the natural details of the
image. To analyze the performance of the proposed approach, we
perform qualitative and quantitative analysis on low-light images
with varying illumination from several benchmark datasets.
The performance comparison with state-of-the-art algorithms
shows the superiority of the proposed algorithm. Moreover, the
proposed method performs favorably for low-light images with
varying illumination while enhancing the details of the dark
regions.

Index Terms—Low-light image, illumination, illumination es-
timation, image enhancement.

I. INTRODUCTION

IMAGES with proper illumination are always desired in the
design of any vision-based system. However, many times

the environment is not conducive to capture an image with
proper illumination and results in a low-light image. Moreover,
the other cause of low-light images may be improper or
variable lighting in a scene, night time imaging, improper
camera setting, or limitations with the camera, bad lighting
sources, etc. Low-light images suffer from low visibility
of object details due to inadequate illumination. Sometimes
an image may contain two types of regions: regions with
properly illuminated objects, and regions with poorly illu-
minated objects(i.e., image with varying illumination). Low-
light images pose challenges in object and feature detection
and may degrade the performance of a vision-based system.
Low-light image enhancement may improve the visual quality
of an image. Thus, results in gathering more information
about the scene details. However, an inferior enhancement
algorithm may result in loss of crucial details and introduce
undesirable artifacts. Thus, designing an effective algorithm
for the enhancement of low-light images is a challenging task.

In literature, many researchers have attempted to develop
algorithms for low-light image enhancement. Low-light im-
ages contain most of the pixels with low intensity and can
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be loosely considered as low contrast images. To this end,
one of the simplest and fundamental approaches is His-
togram Equalization (HE) [1]. HE based approaches focus
on performing intensity transformation using frequencies of
pixel intensities. However, HE based methods may introduce
saturation effect, over or under enhancement, halo effects, loss
of local details, etc. Several modifications of HE are developed
to overcome these drawbacks. Abdullah et al. [2] proposed
a dynamic HE (DHE) algorithm by dividing a histogram at
local minima and keeping the dynamic range of each sub-
histogram in proportion to the original image. Parihar and
Verma [3] developed an entropy-based DHE and proposed an
optimal division of histogram using entropy. Many algorithms
[4, 5, 6] use a 2D histogram to incorporate local characteristics
of the image to retain its natural characteristics. Parihar et
al. [7] proposed an algorithm Fuzzy Contextual Contrast En-
hancement (FCCE). FCCE uses fuzzy properties of the images
to develop a fuzzy difference histogram (FDH). The authors
further proposed a new intensity transfer function based on
the intensity and local characteristics of the image to achieve
natural-looking enhanced images. The above algorithms give
reasonably good performance in properly illuminated regions.
However, these algorithms focus on contrast enhancement
rather than improving the illumination of the image, thus
sometimes fail to improve the contrast of low-light images
and introduce artifacts like saturation effect, halo effect, etc.

It has been found that Retinex[8] based enhancement
algorithms work reasonably well for low-light images. In
the Retinex theory, an image is considered as the prod-
uct of illumination and reflectance. In early Retinex based
approaches[9, 10, 11], lightness is considered as the ration
of a pixel value to the average value of surrounding pixels
and term it as center/surround operation. Jobson et al. [12]
explored the properties of center/surround operation and used
a Gaussian filter to develop Single Scale Retinex (SSR)
for image enhancement. SSR has a major drawback that it
provides either dynamic range compression or color constancy
but fails to provide both simultaneously. To overcome these
limitations, Jobson et al. [13] used multiple scales of Gaussian
and developed Multi-Scale Retinex (MSR). MSR works well
for grayscale images, but for color images, it may lead to
unnatural color appearance. The problem of color restoration
is attempted in another work by Jobson et al. [14]. In these
algorithms [12, 13, 14] reflectance is considered as the final
enhanced image, which may look unnatural at times.

Many authors [15, 16, 17] have attempted simultaneous
estimation of illumination and reflectance. It is an ill-posed
problem to estimate reflectance and illumination from a single
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image. Fu et al. [15] proposed a method for computing both
components from a single image simultaneously with proba-
bilistic based prior (PIRE). The authors framed priors for both
illuminance and reflectance to formulate maximum a posteriori
(MAP). Fu et al. [16] proposed another approach for finding
both components (i.e., illuminance and reflectance) from a
single image based on the log of the Retinex model. These
algorithms [15, 16] work well for objects with proper illumina-
tion in a low-light image, but for darker regions enhancement
is limited. Li et al. [17] proposed an algorithm based on
simultaneous estimation of reflectance and illumination. The
work focuses on the inherent noise present in dark regions
of the image. The algorithm gives good color constancy
and enhancement. However, algorithm[17] results in degraded
images due to over smoothening in many images. In general,
the complexity of algorithms estimating both illumination and
reflectance is high. Thus, these algorithms may not be useful
for real-time applications.

Another set of algorithms [18, 19] estimate the illumination
component and use it to find the reflectance component. The
final enhanced image is obtained as the product of refined il-
lumination and reflectance. Wang et al. [18] proposed an algo-
rithm Natualness Preserved Enhancement Algorithm (NPEA)
to deal with non-uniform illumination images. NPEA estimates
illumination using a bright pass filter to find the reflectance
component of the image. NPEA preserves naturalness at the
cost of illumination improvement. Thus, darker regions may
not enhance adequately. Fu et al. [19] proposed a fusion-based
method to deal with weakly illuminated images. The algorithm
uses a multi-fusion of Gaussian and Laplacian at multiple
scales. The algorithm performs well in normal dark images
but fails to provide significant lightness for a darker region.
Guo et al. [20] proposed a low-light image enhancement
algorithm using illumination map estimation (LIME). Similar
to many other approaches, [18, 19] LIME estimates initial
illumination by taking a pixel-wise maximum of all color
channels of the low-light image. The algorithm computes
refined illumination by optimizing a multi-objective problem
based on initial illumination and its gradient. The performance
of LIME is significantly good, however over enhancement
occurs in properly illuminated regions of low-light images.
Moreover, LIME sometimes fails to retain color constancy.

Estimation of illumination and reflectance is an ill-posed
problem, and developing an effective low-light enhancement
algorithm is still a challenging task. Most of the low-light
image enhancement algorithms suffer from one or more of
the following limitations:
• Inadequate enhancement of non-uniformly illuminated

images, i.e., over-enhancement in the bright regions and
under-enhancement in dark regions.

• Enhanced images with unnatural colors, i.e., Fail to
preserve natural colors.

• Generation of undesired artifacts in the enhanced images.
• Unable to restrict the dispersion effect in light dominant

regions of the low-light image with varying illumination.
• Loss of finer details in the resulting images.
• Trade-off between lightness enhancement and naturalness

preservation, i.e. if an algorithm preserves naturalness,

then the overall lightness of the image is low and vice-
a-versa.

In this paper, we proposed a new low-light image en-
hancement approach to overcome the above limitations. The
proposed algorithm is named as Nature Preserving Low-
light Image Enhancement (NPLIE). NPLIE estimates initial
illumination and performs optimal refinement. The proposed
algorithm computes the reflectance component through an
element-wise division of input image by illumination. The en-
hanced image is obtained as a product of adjusted illumination
and reflectance component. In this work, we estimate initial
illuminance from structure-aware smoothening of a low-light
image using guided filters of variable box sizes. We compute
refined illumination by solving the proposed multi-objective
optimization problem. The major contributions of this work
are as follows:
• Proposed a new method for estimation of initial illumi-

nation using Guided filters of variable and optimal box
sizes.

• Formulated a multi-objective optimization problem with
a new regularization term to preserve structural details in
refined illumination.

• Proposed a solution of a multi-objective optimization
problem using ADMM with the augmented lagrangian
multiplier.

• Proposed an algorithm for low-light image enhancement
and addressed all the limitations listed earlier.

The remaining paper is organized as follows. Section II
contains a brief discussion about methodology. Section III
presents results and analysis. Section IV concludes the pro-
posed approach and findings.

II. NATURE PRESERVING LOW-LIGHT IMAGE
ENHANCEMENT (NPLIE)

In this section, we present the proposed Nature Preserv-
ing Low-Light Enhancement (NPLIE) Algorithm. We discuss
motivation in the first subsection and describe the detailed
algorithm in the following subsections.

A. Motivation

In this work, we consider widely used Retinex model [10]
of image formation, defined as:

J = R ◦ I (1)

where J is an image, R is reflectance of the image, I is illumi-
nation, and symbol ‘◦’ represents element-wise multiplication.
The reflectance component depends on the objects in images
and their colors. The illumination component depends on the
source of light present at the time of image acquisition. The
source of light might be sunlight, moonlight, an artificial light
source like LED, CFL, camera flashlight, etc. Change in the
source of light may lead to a change in the properties of
illumination. Illumination properties of low-light images are
different from day-light images. It is mainly because sunlight
provides uniform illumination except in shaded regions. Gen-
erally, illumination in low-light images is non-uniform due to
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the dominance of light sources in some regions of the scene.
In many algorithms [18, 19, 20], illumination estimation is
obtained from the image, and reflectance is computed using
relation in (1). Thus, illumination estimation is a crucial
step in the low-light image enhancement algorithm. Improper
estimation of illumination leads to a degraded image and may
produce artifacts.

In early works [12, 13], a smooth image is considered
as an estimation of illumination. However, direct smoothen-
ing using a center/surround function does not capture the
characteristics of non-uniform illumination. In dark regions,
most of the information about illumination is available on the
channel with the maximum value of intensity. Image with non-
uniform illumination can have maximum illumination across
any color channel depending on illumination for that particular
region. Illumination does not depend on the color properties
of the object. Many algorithms [18, 19, 20] use pixel-wise
maximum across all color channels (bright-channel) as initial
illumination. However, the bright-channel of low-light images
may not represent true illumination. An image is indeed
a 2D representation of 3D scenes (real world). Therefore,
two adjacent objects in an image may be at far distant in
reality, and illumination in such cases may also vary. However,
maximum intensity for two adjacent objects may be similar,
and bright-channel will not distinguish their illumination.
Moreover, in light source dominated areas (artificial source of
light) of low-light images, the bright-channel will scatter light
in adjacent areas. Consider images shown in Fig. 1, it shows
a portion dark image, illumination estimation, and enhanced
image by LIME [20] algorithm and proposed algorithm. LIME
algorithm considers bright-channel as initial illumination. The
proposed algorithm (NPLIE) proposes a structure-aware initial
illumination instead of bright-channel, described in section-II
B. One may notice in the red box areas of Fig. 1 that structural
details are lost in Fig. 1(d) (in case of LIME), while details
are preserved in Fig 1(e) (in case of NPLIE). Similarly, in
the green box of Fig. 1(d) artifacts are prominently visible

(a) (b) (c)

(d) (e)

Fig. 1: Results of House. (a) Original Image; (b) Illumination of LIME; (c) Illumination
of Proposed method; (d) LIME[20]; (e) Proposed Method.

on the pillar. These losses of structural details and artifacts
can be understood by analyzing the illumination estimation
shown in Fig. 1(b). It may be noticed that illumination is
changing abruptly, which is quite unnatural. Thus, in the case
of images with non-uniform light conditions, a structure-aware
illumination estimation is highly desirable. In this work, we
proposed a structure-aware illumination estimation approach.
To estimate non-uniform illumination, we apply guided filters
with three different sizes of box-filter in each color channel.
The algorithm preserves structural information in illumination
by using multiple box sizes. We consider a pixel-wise maxi-
mum of structure-aware smoothen image as initial illumination
estimation. We refine illumination by solving a multi-objective
optimization problem. Section II B describes the proposed
approach of illumination estimation in detail.

B. Illumination Estimation for Nature Preserving Low-Light
Image Enhancement

Initial illumination has a defining effect on final illumina-
tion. Thus, it should be estimated carefully. The estimated
illumination component should represent natural variation in
illumination as per structural information of low-light images.
The textural details of the image have almost no effect on the
spatial variation of the illumination. Thus, illumination of an
image may be considered to be independent of textural details.
The Reflectance component preserves the textural details of the
image. The algorithm should smoothen textural details while
preserving structural details to achieve an actual (or near ac-
tual) estimation of the illumination. In the proposed approach,
we first apply Guided filters [21] at three different box sizes to
perform structure-preserving smoothening of textural detail at
multiple scales. We apply guided filters to each channel with
the same three box sizes. The proposed algorithm considers
three box sizes : minimum box size bmin = 3, maximum box
size bmax, and mean box size bm.

bmax = round(min(H,W )/2) (2)

where H and W represents number of rows and columns of
the image respectively.

bm = round((bmin + bmax)/2) (3)

Let us consider b1 = bmin, b2 = bm, and b3 = bmax for
notational convenience. The number and size of boxes are de-
cided empirically. Guided filter with smaller box size performs
less smoothening and preserves more details, while larger box
sizes provide more smoothening. In this approach, our motive
is to obtain illumination details for images with spatially
varying illumination. It is established by various researchers
[18, 19, 20] that maximum intensity across all color channels
(i.e., bright-channel) provides a reasonable estimation of the
illumination. However, it has some limitations like generation
of unwanted artifacts, dispersion of light in light dominant
areas, over enhancement in bright regions, etc. The proposed
algorithm considers the maximum of all smooth versions (i.e.,
all box sizes) of the input image, to get a structure-aware
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Fig. 2: Framework of Structure-Aware Initial Illumination Estimation. In first step, guided
filters with box sizes bmin, bm, and bmax are applied to the low-light image. Then,
the pixel-wise max operation is performed across all three color channels on each output
images of guided filters. This results in three max channels corresponding to each box
size (lets call them as max guided channels.). Finally, the pixel-wise max operation
is applied on above three max guided channels to achieve the structure-aware initial
illumination.

estimation of illumination. The proposed algorithm computes
initial estimation as given below:

Î = max
i

{ 3⋃
i=1

max
c∈{R,G,B}

{
Jcbi
}}

(4)

where Î denotes the initial illumination, Jcbi denotes cth color
channel of the output image of guided filter with box size
bi, where i=1, 2, 3 and R, G, B denotes red, green & blue
component of the color image. The framework of structure-
aware initial illumination estimation are shown in Fig. 2.

Indeed, there are two extreme cases of illumination estima-
tions: (i). smooth image by applying center/surround functions
such as Gaussian filtering, and (ii). select the maximum of all
three color channels of the input image. In the first extreme
case, estimated illumination fails to capture spatial variations
in actual illumination. While in the second case, initial esti-
mation fails to limit the effect of dominating intensities such
as artificial light sources, and thereby produces a scattering
effect. Hence, in the proposed algorithm, we maintain the
trade-off between these extremities. We consider a maximum
of smooth versions of all color channels, which prevents the
aforementioned biases and produces a better estimation of the
actual illumination. The proposed initial illumination gives a
reasonably good estimation of actual illumination and results
in good enhancement. However, the estimated illumination
still contains textural details and may result in over-enhanced
images. Thus, there is a need for smoothening of the initial
illumination while preserving the structural details. To achieve
a structure-aware smoothening, we formulate the following
multi-objective optimization problem:

min
I
||̂I− I||22 + α||∇Jm −∇I||22 + β||G ◦ ∇I||1 (5)

where I is the refined illumination, Î is initial illumination
as obtained by (4), ∇ denotes first-order derivative operator,
∇Jm denotes maximum of ∇ from all channels of J (i.e.,
input image), G is a weight matrix based on initial illumination
as discussed later in this section, || • ||p represents Lp norm
operator, and α & β are the regularization parameters.

The first term (i.e., ||̂I−I||22) of (5) provides fidelity between
initial illumination and refined illumination. The second term

(i.e., ||∇Jm −∇I||22) pulls the gradient of the refined illumi-
nation towards the maximum gradient of input images (∇Jm).
It tries to maximize the structural details in the illumination.
The third term (i.e., ||G◦∇I||1) is used to provide smoothness
to minimize textural details. The second term of (5) limits
the smoothing effect introduced by the third term, while the
third term prevents the second term from enhancing textural
or noisy details. Thus, a combination of the second and third
term results in preserving structural details, and smoothening
textural details in the refined illumination.

In the third term, weight matrix G plays a vital role in
smoothening of the textural details. The weights in matrix G
are calculated as below:

Gx = −log(∇xÎ) (6)

Gy = −log(∇y Î) (7)

where ∇x denotes first-order derivative along horizontal di-
mension and ∇y denotes first-order derivative along vertical
dimension. The logarithmic of derivative in both directions
assign a higher weight to textural details, while reducing the
importance of structural details. Note that low gradient values
characterize texture details, while high gradient values charac-
terize structural details. Thus, the minimization of the multi-
objective function significantly suppresses textural details and
result in textural smoothening, while reducing the smoothening
effect in structural details.

C. Solution of the optimization problem

The efficient solution of the problem (5) can be obtained us-
ing the Alternative Direction Minimization (ADM) algorithm
[22]. The researchers [15, 17, 20] have proven the convergence
of optimization problem like in (5) to the global optimum. Let
us replace the term∇I with an auxiliary variable K and rewrite
objective function in (5) as:

arg min
I, K

||̂I− I||22 + α||∇Jm −K||22 + β||G ◦K||1

s.t.∇I = K
(8)

The multi-objective optimization which contains equality con-
straint can use Lagrangian multiplier to compute the optimum
point. The equality constraint in (8) can be included in
the objective function using Lagrangian multiplier (L). The
augmented Lagrangian function of (8) is given as:

L = ||̂I− I||22 + α||∇Jm −K||22 + β||G ◦K||1
+ϕ(L,∇I−K)

(9)

where ϕ(L,∇I−K) =
ω

2
||∇I−K||22 + 〈L,∇I−K〉 and 〈·, ·〉

denotes element-wise multiplication, ω is a positive penalty
term. The penalty term is required to control the rate of
convergence to the solution [22]. The optimization problem
can be solved easily by iteratively updating one variable while
considering others as constant. The optimization problem (5)
can be simplified by separating it into sub-problems. We divide
the proposed multi-objective function into two sub-problems, I
sub-problem, and K sub-problem. I sub-problem is the formed
by considering the all terms of (9) which contain illumination
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component. K sub-problem is the formed by considering the
all terms of (9) which contain equality constraint. Let us solve
both sub-problems using ADM[22] algorithm.
I sub-problem: Considering only terms related to the variable
I of (9), we obtain the following sub-problem at ith iteration:

Ii+1 = arg min
I
||̂I− I||22 + ϕ(Li,∇I−Ki) (10)

This is a well-known least square problem and can be solved
by differentiating it w.r.t. to I and putting it equal to 0:

2(Î− I) + ωiDT (DI−Ki) + DTLi = 0 (11)

I =
2Î + DT (ωK− L)

2 + ωDTD
(12)

where D denotes the matrix containing Dx and Dy, Dx is the
difference along rows and Dy is the difference along columns.
Multiplication, transpose, and inverses of large matrices may
be computationally costly. Thus, we use the 2D-FFT method
by considering the condition of the circular boundary, and
compute I as:

Ii+1 = F−1
(F(2Î

)
+
∑
d∈{x,y} Fc

(
Dd(ωiKi − Li)

)
2 + ωi

∑
d∈{x,y} Fc

(
Dd
)
· F
(
Dd
) )

(13)
where F denotes 2D-FFT operation, Fc denotes complex
conjugate of 2D-FFT operation, F−1 denotes the inverse of
2D-FFT operation and 2 is a matrix equivalent to image size
having all elements 2. Here, all operations are element-wise.
K sub-problem: K sub-problem is obtained from (9) by
selecting terms related to K only. Thus, we have the following
sub-problem at ith iteration:

Ki+1 = arg min
K

α||∇Jm −K||22 + β||G ◦K||1

+
ω

2
||∇I−K||22 + 〈L,∇I−K〉

(14)

To solve the minimization problem (14) take derivative with
respect to K and equate it to zero.

K(2α+ ω)− 2α∇Jm + βG− ω∇I− L = 0 (15)

K =
2α∇Jm + ω∇I + L

(2α+ ω)
− βG

(2α+ ω)
(16)

The value of a pixel in an image cannot be negative. However,
due to higher weights, K can have negative pixel values
if computation uses direct subtraction of weights as (16),
which is inappropriate while dealing with images. Thus, the
computation of K requires normalization to deal with negative
pixel values. Shrinkage operation like in [17, 20] helps in
thresholding the values of the image. Hence, we can solve
K sub-problem with the help of shrinkage operation:

Ki+1 = S β·G
2α+ωi

[
2α∇Jm + ω∇Ii+1 + Li

2α+ ωi

]
(17)

where Sφ[x] = sign(x)max(|x|−φ, 0) and, all operations are
element-wise. The values of parameters α and β are chosen
empirically. The parameters analysis shows that the best values
of α and β are 0.5, and 0.1 respectively. The detailed analysis
is discussed in section III-C.

Algorithm 1: Solution of problem (5)

Input: Estimated initial illumination Î, α & β
Initialization: I0 = K0 = L0 = 0, ω0= 1, δ = 1.5.
while not converged do

Update Ii+1 via Eq. (13);
Update Ki+1 via Eq. (17);
Update Li+1 via Eq. (18);
i=i+1;

end
Output: Refined Illumination I=Ii

L and ω: The Lagrangian multiplier matrix L and penalty
term ω can be updated as follows:

Li+1 = Li + ωi(∇Ii+1 −Ki+1);

ωi+1 = ωiδ, δ > 1.
(18)

The above iterative algorithm needs suitable stopping criteria
to achieve an optimal solution. We can either consider a
threshold for the difference between Ii+1 and Ii (i.e., Iierror)
or work out the maximum number of iteration. We have
considered the second option and find the maximum number
of iteration using a large number of experiments with various
image datasets. We analyze the results and found that after
eight iterations, the proposed algorithm gives optimal results,
as shown in Fig. 11. If we consider threshold difference many
times algorithm runs a larger number of iteration without
significant improvement, and results in the wastage of compu-
tation power. Moreover, finding a fixed (optimal) number of
iteration helps in keeping time complexity independent of the
number of iteration. The whole procedure of estimating refined
illumination is summarized in Algorithm 1, which covers all
details regarding variables initialization.

After estimation of illumination component for input image,
we require to find reflectance components. Remember illumi-
nation component is independent of color channel, however
reflectance component will depend on color channel. The
estimated reflectance components are given as:

Rc = Jc./I (19)

where Rc is estimated reflectance of cth color channel and
division is element-wise.

To further improve the visibility of the input image, the
range illumination is adjusted using gamma correction. The
final enhanced image Jcf is given as:

Jcf = Rc ◦ If (20)

where If is gamma-corrected illumination estimation.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed algorithm is analyzed and validated experi-
mentally. The performance is evaluated with both Quantita-
tive and Visual assessments. The time complexity is another
important aspect to assess the performance of an algorithm.
Thus, the computational cost is also analyzed for the proposed
approach. We tested the proposed method using more than 200
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 3: Street. (a) Input image; (b) Marked patch of (a); (c) Result of PIRE; (d) marked patch of (c); (e) Result of WRIE; (f) Marked patch of (e); (g) Result of LIME; (h) Marked
patch of (g); (i) Result of SRLIME; (j) Marked patch of (i); (k) Result of proposed method; (l) Marked patch of (k).

images (having varying illumination) taken from various image
datasets: ExDark Dataset [23], HDR Dataset [24], Kodak
Dataset [25], NASA Database [26] and Berkeley Segmentation
Dataset [27]. We compare the performance of the proposed
algorithm with other state-of-the-art algorithms: PIRE [15],
WRIE [16], LIME [20] and SRLIME [17]. We have used
codes and parameters (of other algorithms) as available on
the author’s websites/or as provided by authors for a fair
comparison.

A. Quantitative Assessment
The quantitative assessment is always desirable to validate

any experimental result. However, it is a challenging task to
develop a quantitative measure in case of image enhancement.
There have been several attempts to design such a measure.
It may be easily verified that a quantitative measure may
give better value for poorly enhanced image and inferior
value for a high quality enhanced image and vice-a-versa.
There is no single universally accepted quantitative assess-
ment method available. Thus, we have used two quantitative
methods (mostly used in other works): Contrast Gain (CG)
[15], and Structure-aware Lightness Order Error (SLOE).

Contrast Gain [15] is the ratio of the contrast of an enhanced
image to an original image.

CG =
Cenhanced
Cinput

(21)

where Cenhanced denotes weber contrast of an enhanced image
and Cinput denotes weber contrast of input image.

TABLE I: CONTRAST GAIN VALUES FOR QUANTITATIVE MEASURE

Image MSR PIRE WRIE LIME SRLIME Proposed

City 0.33 0.75 0.79 0.78 0.57 0.84
Landscape 0.61 0.85 0.95 0.92 0.55 0.98
Street 0.43 0.88 0.97 0.88 0.56 0.99
Rider 0.52 0.93 1.00 0.97 0.33 1.04
Dog 0.45 0.83 0.97 0.94 0.53 0.99
Swing 0.50 0.79 0.85 0.83 0.75 0.86
Girl 0.36 0.78 0.84 0.79 0.58 0.88
Window 0.40 0.81 0.90 0.85 0.59 0.93
House 0.36 0.87 0.93 0.88 0.64 0.92
Taxi 0.43 0.86 0.91 0.89 0.71 0.92

Mean 0.44 0.84 0.91 0.87 0.58 0.94

In general, a properly illuminated image should give a
higher contrast value. Moreover, higher structural details con-
tribute to better contrast. Thus, higher CG is desirable for
enhanced images. The CG values for ten sample images out of
more than 200 test images are shown in Table-I. The highest
CG values are shown in bold for better reference. It may be
noticed that the proposed algorithm gives the best CG values
in most cases. The means of CG values of all images for
various algorithms are shown at the bottom of the Table-I.
The proposed algorithm gives the best mean CG value. It
validates that the proposed algorithm gives better illumination
and preserves more structural details in comparison to other
algorithms.

However, the higher CG values sometimes may be due
to enhanced noise or over enhancement of some regions of
the image. Thus, we may use another quantitative measure,
namely Lightness Order Error (LOE) [18]. LOE is an average
of the relative order of lightness of pixels in input and
enhanced images. LOE is given as:

LOE =
1

H ∗W

H∑
x=1

W∑
y=1

RO(x, y) (22)

RO(x, y) =

H∑
u=1

W∑
v=1

U
(
Ī(x, y), Ī(u, v)

)
⊕U
(
Īf (x, y), Īf (u, v)

)
(23)

U(a, b) =

{
1, if a ≥ b
0, otherwise

(24)

Ī(x, y) = max
c∈R,G,B

(
Jc(x, y)

)
(25)

where ⊕ represents XOR operation, Ī and Īf is the lightness
of input image and final enhanced image respectively. LOE
is a measure of the number of pixels that maintained relative
intensity order in the enhanced image. Thus, the lower LOE
represents better image enhancment. LOE may be a good
measure of enhancement for images with uniform illumination.
However, the order of relative lightness may not be main-
tained in case of non-uniform illumination. It happens because
some pixels in dark regions require a higher increase in the
illumination, while pixels in properly illuminated areas may
remain the same. For example, consider the images shown
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 4: Landscape. (a) Input image; (b) Marked patch of (a); (c) Result of PIRE; (d) marked patch of (c); (e) Result of WRIE; (f) Marked patch of (e); (g) Result of LIME; (h)
Marked patch of (g); (i) Result of SRLIME; (j) Marked patch of (i); (k) Result of proposed method; (l) Marked patch of (k).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 5: City. (a) Input image; (b) Marked patch of (a); (c) Result of PIRE; (d) marked patch of (c); (e) Result of WRIE; (f) Marked patch of (e); (g) Result of LIME; (h) Marked
patch of (g); (i) Result of SRLIME; (j) Marked patch of (i); (k) Result of proposed method; (l) Marked patch of (k).

in Fig. 6 and Fig. 7. It can be noted that LIME obtains
the best LOE values (3.38, and 3.23, respectively), while the
proposed algorithm gives LOE values: 4.17 and 12.11 for Fig.
6 and Fig. 7 respectively. However, it may be noted from
both images that LIME gives over enhancement with some
prominent artifacts. Thus, there is a poor correlation between
the quality of enhanced image and LOE value. We proposed a
modification to LOE by incorporating structural information of
the image along with relative order of lightness. We consider
structure-aware lightness (Î) instead of simple lightness (Ī).
Structure-aware lightness is given as:

Î(x, y) = max
i

{ 3⋃
i=1

max
c∈{R,G,B}

{
Jcbi(x, y)

}}
(26)

Indeed, the lightness defined in (25) is the same as the initial
illumination estimation used in various algorithms [18, 19, 20].
The SLOE uses structure-aware lightness (defined in (4) and
(26)), thus it have the same advantages over simple lightness
as discussed in section II-A. We consider images from NASA
[26] and LOL [28] database as these have reference images
with good illumination. The SLOE values for various methods
are shown in Table-II. It may be noticed that the proposed
method gives best SLOE values for the majority of the images
with few exceptions. It is found that there is much better
correlation between visual quality of enhanced image and its

SLOE values than LOE values. In Table-II, WRIE [16] gives
better SLOE value than the proposed algorithm. However,
it may be noted from Fig.6 (c) and (j) that the proposed
algorithm gives much better and natural enhancement than
WRIE.

B. Visual Assessment

As discussed in the earlier section that there is no uni-
versally accepted quantitative measure for the assessment of
the enhancement. Almost every method fails in one or other
situations. Thus, a visual assessment of the results becomes
a necessity. An exhaustive visual assessment of the results

TABLE II: SLOE VALUES FOR QUANTITATIVE MEASURE

Image MSR PIRE WRIE LIME SRLIME Proposed

Book 3.40 3.01 3.24 4.25 2.51 3.40
Closet 5.92 3.53 3.57 3.53 4.83 5.78
Machine 4.94 4.37 4.66 4.64 4.67 4.25
Pool 2.59 2.33 2.59 3.54 2.34 2.33
Stands 3.17 2.76 2.99 4.30 3.24 2.75
Swing 4.23 3.46 2.90 5.08 3.84 2.86
Dress 3.95 3.75 3.83 4.78 3.34 2.66
Girl 7.73 4.95 4.32 8.13 9.38 6.41
House 7.32 7.43 6.89 11.47 6.25 5.19
Shoe 5.02 4.62 4.42 5.79 3.52 3.24

Mean 4.83 4.02 3.94 5.55 4.39 3.59
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Fig. 6: Girl. (a) Input image; (b) Result of PIRE; (c) Result of WRIE; (d) Result of NASA; (e) patch of (d); (f) Result of LIME; (g) patch of (f); (h) Result of SRLIME; (i) patch
of (h); (j) Result of proposed method, (k) patch of (j).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Fig. 7: House. (a) Input image; (b) Result of PIRE; (c) Result of WRIE; (d) Result of NASA; (e) patch of (d); (f) Result of LIME; (g) patch of (f); (h) Result of SRLIME; (i) patch
of (h); (j) Result of proposed method, (k) patch of (j).

obtained by the proposed algorithm and other contemporary
algorithms is performed. The sample results are shown in Fig.
3-8.

Fig. 3 shows a dark image ‘street’ and enhanced images
by various algorithms. It may be observed from Fig. 3 (c)-(f),
that algorithms PIRE and WRIE are unable to give significant
enhancement. Image details are not visible in many regions
of the images for example highlighted regions in red boxes.
Fig. 3(g) shows that LIME gives relatively better enhancement.
However, light dominated regions get over enhanced as shown
in Fig. 3(h). It may be noticed that details are hardly visible in
the window region. LIME gives over enhancement as shown
in Fig. 3(g). It fails, especially in light dominant regions.
As highlighted in Fig. 3(h), details in the window region
are hardly visible. Fig. 3(i) shows an enhanced image by
SRLIME algorithm. SRLIME focuses on noise removal that
may be present in dark images. However, it smooths out
natural details as well and produces a blurring effect. One
may notice blurred details in the cycle stand in Fig. 3(i) and
upper red color region in Fig. 3(j). The proposed algorithm
provides good enhancement with almost no artifacts. Fig. 3(k)
and 3(l) show that the scattering of light is restricted and
details are preserved. In other words, low light regions are
lightened up properly, while already lightened regions are not
over enhanced as in the case of LIME. Moreover, Fig. 3(k)
shows that the proposed algorithm effectively preserves color

constancy.
A low-light image ‘Landscape’ and its enhanced versions by

various algorithms are shown in Fig. 4. It may be noticed that
PIRE and WRIE produce natural quality images, but lightness
is not much improved. Fig. 4(g) and 4(h) show results by
LIME algorithm. It shows good enhancement of details, but
over enhancement may be noticed in patches as shown in
Fig. 4(h). SRLIME gives images with improved visibility.
However, the blurring effect and fading of colors may be seen
in Fig. 4(i) and 4(j). The results of the proposed algorithm
are shown in Fig. 4(k) and 4(l). It can be noticed that image
details are much more clear with color constancy.

Fig. 5 shows a low-light image ‘City’ with non-uniform
illumination and the results of various algorithms. The red
box highlights thunder lightning in clouds. PIRE and WRIE
are unable to enhance low-light regions significantly. LIME
again provides reasonably good enhancement in dark regions
of the image. However, it produces dispersion effect in thunder
lightening region as highlighted in red box, see Fig. 5(g) and
5(h). The artifact is highlighted in Fig. 5(d), where thunder
lightning is dispersed in large cloud region. Fig. 5(i) and 5(j)
show the results of SRLIME algorithm. It gives satisfactory
enhancement, but produce smoothening of the image details.
It may be noted in Fig. 5(i) that cloud texture details are wiped
out. The proposed algorithm gives significant enhancement
while preserving natural texture details.
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(a) (b) (c) (d)

(e) (f)

Fig. 8: Shoe. (a) Original Image; (b) Result of PIRE; (c) Result of WRIE; (d) Result of
LIME, (e) Result of SRLIME; (f) Result of Proposed method.

An image ‘Girl’ with varying illumination and its enhanced
versions by the various algorithm are shown in Fig. 6. Original
image has a shaded region with low visibility, and other
areas have typical daylight visibility. PIRE and WRIE provide
limited visibility improvement in the shaded areas. It may
be noted from Fig. 6(b) and 6(c) that reflection in car glass
has low visibility. NASA results are shown in Fig. 6(j) and
(k). It shows significantly improved visibility without any
artifacts. LIME gives much-improved visibility in the shaded
region as well. However, it may be noted from Fig. 6(g) that
LIME introduces artifacts, especially near the nose of the
girl. SRLIME also gives improved visibility, but Fig. 6(h) and
6(i) show that face texture and color of images are disturbed.
The proposed algorithm gives much-improved visibility in all
regions without any artifacts. It may be observed from Fig. 6(j)
and (k) that color constancy of the image is also preserved.

Fig. 7 shows a low-light image ‘House’ with varying
illumination, and results of various enhancement algorithms.
One can notice that PIRE, WRIE, and NASA image have
almost similar enhancement with NASA image having slightly
better contrast. Fig. 7(a-e) shows that these algorithms fail to
improve visibility in the shaded regions. The result of LIME
in Fig. 7(f), shows that it gives much-improved visibility.
However, artifacts are introduced in the enhanced image as
indicated in Fig. 7(g). SRLIME again gives improved visibility
but vanishes texture as well as some structural details as shown
in Fig. 7(h) and 7(i). The proposed algorithm gives improved
visibility even in a shaded region as shown in Fig. 7(j) and
7(k). It may be noticed that the proposed algorithm provides
enhancement without disturbing natural colors.

In Fig. 8 another shaded image ‘shoe’ and its enhanced
results are shown. We again find similar kinds of effects as in
other cases. PIRE and WRIE give less improvement visibility.
LIME gives much-improved visibility, but over enhancement
may be noticed as near the sole of the shoe in Fig. 8(d).
SRLIME produces the washout effect due to the loss of the
textural details. Fig. 8(f) shows that the proposed algorithm
again gives much-improved visibility without any artifacts.

Fig. 9: Mean contrast gain for different pairs of (α,β). The contour denotes that pairs
inside the contour have values based on the contour color. The colorbar represents the
value of the contrast gain with respect to the color from the surface plot.

(a) (b) (c) (d)

Fig. 10: Effects of Regularization parameters on illumination Estimation. (a) α=0.5,
β=0.1; (b) α=0.5, β=1; (c) α=1, β=0.1; (d) α=1, β=1.

C. Parameter Analysis

The proposed algorithm involves two regularization param-
eters α and β. To analyze the effect of these parameters,
we performed exhaustive experimentation and it is found that
the values of α and β should vary between 0 and 1. Since
the optimization problem (5) is multi-objective optimization,
considering negative values of α and β does not make any
sense. As discussed in section II-B, parameters α and β
regularize structural information and smoothening of textu-
ral details respectively. Thus, if either of the parameter α
and β have value greater than 1 then one of the objective
(textural or structural details) will be dominant. For example,
if parameter α is increased beyond value 1, the structural
details will be dominant. Moreover, while capturing structural
details, textural details may also get enhanced due to use of
the gradients in the related term. It may result in unnatural
enhanced images. Similarly, large value of β may result in
smoothening of structural details as well. This results in over-
smoothen refined illumination. To avoid the dominance of the
term related to regularization parameter and limit the adverse
effect we consider values of α and β between 0 and 1. To
arrive at optimal values of the parameters α and β, we perform
experimentation over 50 images of diverse illumination and
consider their mean contrast gain as measure of enhancement.
However, to have better correlation between image qualities
and values, we also analyze best values using visual analysis.
The results are plotted in Fig. 9. It may be noted that the
best values of α and β are 0.5 and 0.1 respectively. Thus at
α = 0.5, better structural details are captured without over-
enhancing textural details. In case of α values less than 0.5,
structural information of the image is not captured adequately.
On the other hand, for α greater than 0.5, textural details
are captured along with structural details. The parameter β
at value 0.1 provides desirable smoothening of textural details
without losing structural details. For case of β less than 0.1,
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Fig. 11: Convergence curve for proposed Algorithm.

TABLE III: AVERAGE COMPUTATIONAL TIME PER IMAGE (IN SECONDS)

PIRE WRIE LIME SRLIME Proposed

0.22 2.23 0.27 4.27 0.28

smoothening of textural details is inadequate, while in case of
β greater than 0.1 smoothening of structural details occurs as
well. Fig. 10 shows the estimated illumination for few distinct
values of α = 0.5, and β = 0.1. In our experimentation, the
empirical values of parameters generate satisfactory results.

D. Computational Analysis

The computational time complexity plays an important
role in the performance analysis of any algorithm. Thus,
the Computational time analysis of the various algorithm is
performed on a set of 200 images with size 640x424. Table
III shows the average computational time per image. We use
MATLAB 2018a on Windows10 running at 8GB RAM and
core i5 processor @ 3.40GHz. WRIE and SRLIME are slower
than other algorithms. These algorithms are not useful for
Real-Time applications due to slow convergence. PIRE and
LIME take slightly lesser time than the proposed algorithm.
However, the visual quality of enhanced images produced by
the proposed method are much better than PIRE and LIME.
Further, let us analyze the time complexities of various algo-
rithms for an image with N number of pixels. In case of PIRE,
one iteration of estimation (both components: illumination &
reflectance) requires O(N) time, and its convergence requires
O(logN) iterations. Hence, total time complexity of PIRE
is O(N logN). In case of WRIE, one iteration of estima-
tion (both components: illumination & reflectance) requires
O(N) time, and its convergence requires O(N) iterations.
Hence, total time complexity of WRIE is O(N2). In case
of LIME, one iteration of estimation of illumination using
Exact Solver requires O(N) time, and its convergence requires
O(logN) iterations. Hence, total time complexity of LIME is
O(N logN). In case of SRLIME, one iteration of Estimation
(all components: illumination, reflectance and noise) requires
O(N) time, and its convergence requires O(N) iterations.
Hence, total time complexity of SRLIME is O(N2). In case of
proposed algorithm, one iteration of estimation of illumination
requires O(N) time, and its convergence requires O(logN)
time. It requires comparable time as LIME.

IV. CONCLUSION

In this paper, we presented a new approach for the es-
timation of illumination and reflectance from a low light
image. The algorithm gives natural contrast enhancement for

images with varying lighting. The experimental analysis shows
that the proposed algorithm improves darks regions of the
image without over-enhancing properly illuminated areas of
the same image. Our algorithm has various advantages over
other methods, which are:
• Works effectively for images that contain both low-light

and properly illuminated images with shaded regions.
• Produces nature preserving enhanced image with almost

no artifacts.
• Restrict light dispersion in the light dominant region

while improving luminance in the dark regions.
We performed exhaustive experimentation over a large number
of images with different variations in the illumination condi-
tions to check the performance of the proposed method. The
visual assessment shows that the proposed method maintains
color constancy over the object under varying light conditions.
The proposed algorithm outperforms most of the state-of-the-
art low-light image enhancement algorithms.
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