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Further Results on the Control Law via the Convex

Hull of Ellipsoids

H.-N. Nguyen†

Abstract

A new Lyapunov function based on the convex hull of ellipsoids was introduced in [8] for the

study of uncertain and/or time-varying linear discrete-time systems with/without constraints. The new

Lyapunov function has many attractive features such as: i) it provides a necessary and sufficient

conditions for robust stability and robust stabilization; ii) the design conditions are formulated as linear

matrix inequality constraints. The control law is obtained by solving a convex optimization problem

online. This optimization generally does not have a closed-form solution, and hence it is solved by

numerical methods. In this paper, we intend to complement the results in [8] by analyzing the solution

of the optimization problem as well as the geometric structure of the control law. In particular, we show

that the control law is a piecewise linear and continuous function of the state.

I. INTRODUCTION

Lyapunov functions play a central role in the study of dynamical systems, and the construction

of Lyapunov functions is one of the most fundamental problems in systems theory. The most

direct applications is stability analysis, but similar problems appear in performance analysis,

and controller design. Consequently, methods for constructing Lyapunov functions is of great

theoretical and practical interest.

For uncertain and/or time-varying linear discrete-time systems, the most popular types of

Lyapunov functions are the polyhedral functions [2] and the quadratic functions. Polyhedral

functions have been involved mostly in control problems with state and input constraints [1],

[2], [5], [7]. Their main strengths are: i) the arbitrary approximation of the domain of attraction;

ii) various analysis and design problems can be transformed into algebraic problems. The main

weakness of polyhedral functions lies in the construction of the corresponding polyhedral sets.
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In general, this is a difficult problem, especially for high dimensional systems. In contrast with

the polyhedral functions, the quadratic functions are tractable because of the existence of the

linear matrix inequality (LMI) technique. Combining quadratic functions and the LMIs, several

analysis and design problems can be converted into a convex optimization problems. However,

the results obtained by quadratic functions can be conservative. It is well known [9] that there

are stable/stabilizable systems that are not quadratically stable/stabilizable..

In the recent publication [8], the author proposed a novel Lyapunov function which is based

on the convex hull of ellipsoids. The new Lyapunov function has several advantages over the

standard quadratic and polyhedral Lyapunov functions. Compared to the quadratic one, the new

Lyapunov function reduces the conservativeness as it provides a necessary and sufficient condi-

tion for stability and stabilization. Compared to the polyhedral Lyapunov function, the design

conditions are formulated as LMI constraints. Hence the new Lyapunov function overcomes the

main construction challenge of the polyhedral Lyapunov function. It is legitimate to say that the

new Lyapunov function goes for the best of both quadratic and polyhedral functions worlds.

The main objective of this paper is to complement the results in [8]. We will analyze the

geometric structures of the control law, and of the solution of the optimization problem.

The paper is organized as follows. Section II covers notations and preliminaries. Section

III is dedicated to the problem formulation. Section IV is concerned with the question of the

uniqueness of the solution. Then in Section V, geometric structures of control law are presented.

One simulated example is evaluated in Section VI before drawing the conclusions in Section

VII.

II. NOTATION AND PRELIMINARIES

Notation: For a given set C, its boundary is denoted as Fr(C). We denote by 0n/In n × n

zero/identity matrices. A positive definite matrix P is denoted by P ≻ 0. For symmetric matrices,

the symbol (∗) denotes each of its symmetric block. We denote by R the set of real numbers,

by Rn×m the set of real n×m matrices, and by Sn the set of positive definite n× n matrices.

For a given P ∈ Sn, E(P ) represents the following ellipsoid

E(P ) = {x ∈ Rn : xTP−1x ≤ 1} (1)

The convex hull of ellipsoids E(P1), E(P2), . . . , E(Pp) is denoted as

P = Co {E(P1), E(P2), . . . , E(Pp)} (2)



P is the smallest convex set containing E(Pj), ∀j = 1, p. For any x ∈ P , there exist vj and λj ,

j = 1, p such that

x = λ1x1 + λ2x2 + . . .+ λpxp (3)

where vj ∈ E(Pj),
p∑

j=1

λj = 1, and λj ≥ 0, ∀j = 1, p.

Definition 1 (Redundant Ellipsoid): For a given convex hull of ellipsoids P = Co(E(Pj)),

j = 1, p, the set P−l is defined by removing the l−th ellipsoid E(Pl) from Co (E(Pj)), i.e.,

P−l = Co (E(Pj)) ,∀j = 1, p, j ̸= l (4)

The ellipsoid E(Pl) is redundant if and only if

E(Pl) ⊆ P−l (5)

Definition 2 (Minimal Representation): P = Co(E(Pj)) has the minimal representation if and

only if the removal of any ellipsoid would change P , i.e., there are no redundant ellipsoids.

Clearly, the minimal representation of P can be achieved by removing all the redundant

ellipsoids.

Definition 3 (Supporting Hyperplane): For a given vector β ∈ Rn, and a given convex set

C, the hyperplane βTx = 1 is a supporting hyperplane of C if and only if βTx ≤ 1,∀x ∈ C, and

there exists at least one point x0 ∈ Fr(C) such that βTx0 = 1.

If C is an ellipsoid, then x0 is unique [6]. If C is the convex hull of ellipsoids, i.e., C = P , then

there are several x0 ∈ Fr(P) such that βTx0 = 1. To characterized the set of x0, the following

definition is recalled [11].

Definition 4 (Face): A face of P is the intersection of P with a supporting hyperplane of P .

Definition 5 (Extreme Point): A point v ∈ Fr(P) is an extreme point of P if it cannot be

represented as a convex combination of other points in P .

III. PROBLEM FORMULATION

In this section, we first summarize the results in [8]. We then formulate the problems that

need to be solved.

Consider the following uncertain and/or time-varying linear discrete-time systems

x(k + 1) = A(k)x(k) +B(k)u(k) (6)



where x(k) ∈ Rn is the measurable state, u(k) ∈ Rm is the control input. The matrices

A(k), B(k) satisfy

A(k) =
s∑

i=1

αi(k)Ai, B(k) =
s∑

i=1

αi(k)Bi (7)

where Ai ∈ Rn×n, Bi ∈ Rn×m,∀i = 1, s are known matrices. α(k) = [α1(k) α2(k) . . . αs(k)]
T

is a vector of unknown and time-varying parameters, with
s∑

i=1

αi(k) = 1, αi(k) ≥ 0 (8)

One of the most simple and well-known ways to control the system (6) is to employ a

linear state feedback control law u(k) = Kx(k) and an associated quadratic Lyapunov function

V (x) = x(k)TP−1x(k). In this case it is well known [3] that the problem of finding K and P

can be converted into a convex semidefinite program (SDP). However, requiring the existence of

a linear control law and a quadratic function can be quite restrictive. This is because the same

control gain and the same Lyapunov matrix must verify for all vertices of the uncertain domain

(7).

In [8], to overcome the conservative weakness of the quadratic Lyapunov function and the

linear control law, the convex hull of quadratic functions P = Co (E(Pj)) and the associated

matrix gains Kj ∈ Rm×n, j = 1, p are employed. It was shown that the new Lyapunov function is

universal in the sense that (6) is robustly stabilizable if and only there exist a Lyapunov function

based on the convex hull of ellipsoids. From this point on using the results in [8], it is assumed

that Pj ∈ Sn, as well as Kj,∀j = 1, p are known.

Remark 1: As shown in [8], although the set P = Co (E(Pj)) is robustly invariant, the

ellipsoids E(Pj), ∀j = 1, p are generally not. The gains Kj are also generally not robustly

stabilizing ∀j = 1, p. □

At time instant k, for a given state x(k) ∈ P , the control action is computed as

u(k) =

p∑
j=1

λ∗
j(k)Kjv

∗
j (k) (9)

where λ∗
j(k) and v∗j (k) are a solution of the following optimization problem

min
λj ,vj

{
p∑

j=1

λj

}
,

s.t.



p∑
j=1

λjvj = x,

vTj P
−1
j vj ≤ 1,∀j = 1, p,

λj ≥ 0,∀j = 1, p

(10)



The optimization problem (10) is a nonlinear and non-convex due to the multiplication of λj, vj .

Using a change of variables, (10) can be converted into a convex optimization problem, for

which there exists an efficient solver [8]. It was shown that the closed-loop system is robustly

asymptotically stable under the control law (9), (10).

Problem (10) might have multiple solutions because the cost function (10) is linear. Multiple

solutions are undesirable, as they might lead to a fast switching between the different control

actions when (10) is solved on-line.

In this paper, we aim to answer the following three questions

Q1: What conditions need to be hold for (10) to have a unique solution?

Q2: The implementation of the control law (9) is based on solving online the optimization

problem (10), which generally does not have an analytical solution. Therefore u(k) is an

implicit function of x(k), i.e., u(k) = f(x(k)). What is the form of the function f(x)?

Q3: Is the control law u(k) = f(x(k)) a continuous function of the state?

Remark 2: The results in [8] were obtained with/without state and input constraints. Because

the aim of this paper is to answer Q1, Q2, Q3, these constraints are not considered here for

simplicity. □

IV. GEOMETRICAL PROPERTIES OF THE SOLUTION

In this section we aim to reveal the geometrical properties of the solution of (10) to answer the

question Q1. For this purpose, we will first propose a procedure to eliminate redundant ellipsoids

in the convex hull of ellipsoids. We will then study the geometrical properties of the solution.

A. Removing Redundant Ellipsoid

The objective of this section is to propose a procedure to remove redundant ellipsoids. This

redundancy elimination is with two purposes

• To reduce the online computational burden of the optimization problem (10). Obviously, if

the number of constraints in (10) is smaller, then the computational burden is lower.

• It will be shown that if there is no redundant ellipsoid in the constraints (10), then the

solution is unique.



For the given set of ellipsoids E(Pj), j = 1, p, consider the following optimization problem

min
γj

{
p∑

j=1,j ̸=l

γj

}

s.t.


Pl ⪯

p∑
j=1,j ̸=l

γjPj,

γj ≥ 0, ∀j = 1, p, j ̸= l

(11)

Denote γ∗
j , ∀j = 1, p, j ̸= l as an optimal solution of (11). The following theorem holds

Theorem 1: The ellipsoid E(Pl) is redundant in Co(E(Pj)) if and only if
p∑

j=1,j ̸=l

γ∗
j ≤ 1.

Proof: Consider the set P−l in (4). Using the proof of Theorem 1 in [8], it follows that P−l

can be parameterized as E

(
p∑

j=1,j ̸=l

γjPj

)
with

p∑
j=1,j ̸=l

γj ≤ 1, γj ≥ 0 (12)

In other words, x belongs to P−l if and only if there exist γj satisfying (12) such that

xT

(
p∑

j=1,j ̸=l

γjPj

)−1

x ≤ 1 (13)

Using (5), (13), it follows that E(Pl) is redundant if and only if ∃γj satisfying (12), j = 1, p, j ̸= l,

such that

P−1
l ⪰

(
p∑

j=1,j ̸=l

γjPj

)−1

or equivalently Pl ⪯
p∑

j=1,j ̸=l

γjPj . This completes the proof. □

Remark 3: Theorem 1 is the first one that provides a convex condition to verify if a given

ellipsoid is redundant in the convex hull of ellipsoids. To the best of the author’s knowledge,

there does not exist any condition in the literature. □

Using Theorem 1, the following procedure can be used for removing the redundant ellipsoids

in P = Co(E(Pj)), j = 1, p.

Algorithm 1: Redundant Ellipsoids Elimination
1: Set l← 1, pm ← 0;

2: Obtain γ∗
j ,∀j = 1, p, j ̸= l by solving (11);

3: If
p∑

j=1,j ̸=l

γ∗
j > 1, then set pm ← pm + 1, Spm = Pl;

4: If l < p, then set l← l + 1 and go to step 2, else terminate;

5: The minimal representation of P is given by P = Co (E(Sj)) , j = 1, pm.



B. Uniqueness of Solutions

The main aim of this section is to derive a condition to guarantee the uniqueness of the solution

of (10). To this aim, it is assumed that P = Co(E(Pj)), j = 1, p has the minimal representation.

The following theorem concerns a geometrical property of the optimal solution.

Theorem 2: For a given state x(k), (λ∗
j , v

∗
j ) is an optimal solution of (10) if and only if

•
p∑

j=1

λ∗
j = g∗ where g∗ ≥ 0 is the scalar such that x(k)

g∗
∈ Fr(P) if x(k) ̸= 0, and g∗ = 0 if

x(k) = 0.

• Either (v∗j )
TP−1

j v∗j = 1 or v∗j = 0,∀j = 1, p.

Proof: If x(k) ∈ Fr(P), then it is clear that
p∑

j=1

λ∗
j = 1. In this case, v∗j is a solution of (10)

if and only if either (v∗j )
TP−1

j v∗j = 1 or v∗j = 0,∀j = 1, p.

Consider now the case when x(k) is strictly inside P . If x(k) = 0, then v∗j = 0, ∀j = 1, p.

Otherwise there exists 0 < g∗ < 1 such that xf (k) ∈ Fr(P), where xf (k) =
1
g∗
x(k), see Fig. 1.

Define λf,j =
1
g∗
λj,∀j = 1, p.

Fig. 1: Geometrical interpretation for the proof of Theorem 2.

Rewrite the problem (10) as

min
λj ,vj

{
g∗

p∑
j=1

λf,j

}
,

s.t.



p∑
j=1

λf,jvj = xf ,

vTj P
−1
j vj ≤ 1,∀j = 1, p,

λf,j ≥ 0,∀j = 1, p

(14)



Since xf ∈ Fr(P), one has
p∑

j=1

λ∗
f,j = 1. It follows that

p∑
j=1

λ∗
j = g∗

p∑
j=1

λ∗
f,j = g. One also has

either (v∗j )
TP−1

j v∗j = 1 or v∗j = 0. The proof is complete. □

Remark 4: Using the proof of Theorem 2, three observations can be made

1) Note that x(k) = g∗xf (k), 0 < g < 1. Hence x(k) lies on the line segment joining xf (k)

and the origin.

2) The level set of the optimal value function is given by scaling the boundary of P .

3) For any j = 1, p, if v∗j = 0 then λ∗
j = 0. If (v∗j )

TP−1
j v∗j = 1 then λ∗

j > 0. In other words,

for any j = 1, p if the constraint (vj)TP−1
j vj ≤ 1 is active then the constraint λj ≥ 0 is

inactive and vice versa. □

For a given x(k), if there is only one active ellipsoidal constraint, i.e., there exists only one

index 1 ≤ l ≤ p such that v∗l P
−1
l v∗l = 1 and v∗j = 0,∀j = 1, p, j ̸= l. Then one obtains in this

case, λ∗
l = g∗, λ∗

j = 0,∀j = 1, p, j ̸= l. If in addition x(k) ∈ Fr(P), then λ∗
l = g∗ = 1 and

v∗l = x(k). In this case, x(k) is an extreme point of P , as it cannot be represented as the convex

combination of other points in P .

Consider now the case where we have more than one active ellipsoidal constraints. Without

loss of generality, it is assumed that the first pa ellipsoidal constraints are active for a given

x(k), 2 ≤ pa ≤ p, i.e.,

vTj P
−1
j vj = 1,∀j = 1, pa

The following result holds.

Theorem 3: The optimal solution v∗j , ∀j = 1, pa and x(k)
g∗

belong to the same supporting

hyperplane of P , i.e.,

βTv∗j = βT x(k)

g∗
= 1 (15)

where 0 < g∗ ≤ 1 is a scalar such that x(k)
g∗
∈ Fr(P). The normal vector β ∈ Rn satisfies the

following set of equations

βTPjβ = 1,∀j = 1, pa (16)

Proof: Following the proof of Theorem 2, if vTj P
−1
j vj = 1,∀j = 1, pa, one gets λj > 0,∀j =

1, pa, and vj = 0 λj = 0,∀j = pa + 1, p.

Define g =
pa∑
j=1

λj, ηj =
λj

g
, and ej = gvj , ∀j = 1, pa. One has

pa∑
j=1

ηj =
1

g

pa∑
j=1

λj = 1



Rewrite the problem (10) as

min
g,ηj ,ej

{g} ,

s.t.



pa∑
j=1

ηjej = x,

pa∑
j=1

ηj = 1,

eTj P
−1
j ej = g2,∀j = 1, pa

(17)

Consider the Lagrange function

L(g, β, ηj, ej, ρ, µj) = g + βT (x−
pa∑
j=1

ηjej) + ρ(

pa∑
j=1

ηj − 1) +
1

2

pa∑
j=1

µj(e
T
j P

−1
j ej − g2) (18)

The factor 1
2

introduced in the Lagrange function is for the purpose of scaling. An optimal

solution (g∗, β∗, η∗j , e
∗
j , ρ

∗, µ∗
j) satisfies the following conditions

g∗
pa∑
j=1

µ∗
j = 1,

(
from

∂L
∂g

= 0

)
(19)

(β∗)T e∗j = ρ∗,

(
from

∂L
∂µj

= 0

)
, (20)

β∗ =
µ∗
j

η∗j
P−1
j e∗j ,

(
from

∂L
∂ej

= 0

)
(21)

Using (20), one gets

(β∗)Tx = (β∗)T

(
q∑

j=1

η∗j e
∗
j

)
=

q∑
j=1

η∗j (β
∗)T e∗j = ρ∗

q∑
j=1

η∗j

It follows that

(β∗)Tx = ρ∗ (22)

Substituting (21) to (20), one obtains

µ∗
j

η∗j
(e∗j)

TP−1
j e∗j = ρ∗,∀j = 1, pa (23)

Recall (e∗j)
TP−1

j e∗j = (g∗)2,∀j = 1, pa. It follows that

µ∗
1

η∗1
=

µ∗
2

η∗2
= . . . =

µ∗
pa

η∗pa

thus, ∀j = 1, pa

µ∗
j

η∗j
=

pa∑
j=1

µ∗
j

pa∑
j=1

η∗j

=
1

g∗



Hence η∗j = g∗µ∗
j ,∀j = 1, pa. Using (23), one has ρ∗ = g∗. As a consequence, using (20), (22)

(β∗)T e∗j = (β∗)Tx = g∗,∀j = 1, pa

or equivalently

(β∗)Tv∗j = (β∗)T
x

g∗
= 1 (24)

Hence v∗j ,∀j = 1, pa and x
g∗

belong to the same supporting hyperplane.

Using (21) and since η∗j = g∗µ∗
j , one gets e∗j = g∗Pjβ

∗. Using the fact that (e∗j)
TP−1

j e∗j = (g∗)2,

one obtains

(β∗)TPjβ
∗ = 1, ∀j = 1, pa

The proof is complete. □

Remark 5: For β given in (16), on has βTx ≤ 1,∀x ∈ E(Pj). The hyperplane βTx = 1

touches the ellipsoid E(Pj) at the extreme point vj = Pjβ, ∀j = 1, pa. Hence βTx = 1 is a

supporting hyperplane of E(Pj), ∀j = 1, pa. Because there is no redundant ellipsoid in P , it

follows that vj,∀j = 1, pa are also extreme points of P . □

We are now ready to state the main theorem of this section.

Theorem 4: If P = Co (E(Pj)) , j = 1, p has the minimal representation, then the solution of

(10) is unique.

Proof: Using Theorem 3, the normal vector β of the supporting hyperplane for given x(k)

can be found by solving the set of equations (16). Obviously, one needs at most n equations

in (16) to obtain β, since β ∈ Rn. It follows that the number of points vj = Pjβ is at most

equal to n. Combining with the fact that vj ∈ Rn are extreme points of P , i.e., they cannot be

represented as the convex combination of other points in P , one concludes that vj are linearly

independent.

Now suppose on the contrary that x(k) can be decomposed as

x = λ1v1 + . . .+ λqvq = ζ1v1 + . . .+ ζqvq (25)

where q ≤ n, and
q∑

j=1

λj =
q∑

j=1

ζj . Using (25), one obtains

(λ1 − ζ1)v1 + . . .+ (λq − ζq)vq = 0 (26)

Because vj are linearly independent, (26) holds if and only if λj = ζj,∀j = 1, q. In other words,

the solution of (10) is unique. □



Remark 6: The number of active extreme points q in (25) can be different to the number of

active ellipsoidal constraints pa in (17). Indeed one always has q ≤ pa. This is because two or

many non-redundant ellipsoids can share the same extreme points. For example, consider the

following matrices P1, P2

P1 =

 1 0

0 Q1

 , P2 =

 1 0

0 Q2


where Q1 ≻ 0, Q2 ≻ 0. It is clear that v = [1 0]T is as extreme point of both P1 and P2. Hence

if x(k) = v, then both ellipsoidal constraints are active, i.e., pa = 2. However there is only one

active extreme point v. □

V. GEOMETRICAL PROPERTIES OF THE CONTROL LAW

In this section we aim to study the geometrical properties of the control law to answer the

questions Q2 and Q3.

A. Continuous Piecewise Linear Control Law

Definition 6 (Dimension of Face): Suppose that a given supporting hyperplane has q extreme

points of P , q ≥ 1. A face of dimension q − 1 is the convex hull of all the q extreme points.

Using the proof of Theorem 4, one has q ≤ n. The boundary of P is the union of faces of

dimension 0, 1, . . . , n− 1. For example in R2, the boundary of P is composed of elliptical arcs

and line segments. The elliptical arcs have dimension 0, and the line segments have dimension

1. In R3, the boundary of P consists of three different kinds of faces

• Elliptical faces, which are parts of the ellipsoids. The dimension of the elliptical faces is 0.

• Conical faces, which are the convex hull of two extreme points. The dimension of the

conical faces is 1.

• Planar faces, which are the convex hull of three extreme points, i.e., triangles. The dimension

of the planar faces is 2.

The following definition is borrowed from [10].

Definition 7 (Critical Region): A critical region (CR) is the set of all states x which have

the same set of active extreme points.

For example the origin is a CR, because in this case, the set of active extreme points is empty.

Otherwise for any x ̸= 0, there is always at least one active extreme point. Consider the case



of an extreme point, such that a corresponding supporting hyperplane contains only this point.

Using remark 4 - point 1, it is clear that the half-open line segment connecting the extreme point

and the not-included origin is a CR.

Without loss of generality, consider now the case where the first q extreme points v1, . . . , vq

are active, 2 ≤ q ≤ n. With a slight abuse of notation, Co(0, v1, . . . , vq) is used to denote

the convex hull of the origin and of v1, v2, . . . , vq. We also denote by Co−0(0, v1, . . . , vq) the

set Co(0, v1, . . . , vq) where the origin is excluded from the set. Note that Co(0, v1, . . . , vq) is a

closed set, while Co−0(0, v1, . . . , vq) is neither open nor closed.

The following result holds

Theorem 5: Co−0(0, v1, . . . , vq) is a CR.

Proof: Note that Co(v1, . . . , vq) is a face of P . For any x ∈ Co(v1, . . . , vq), it is clear that

v1, . . . , vq are active extreme points.

Now consider the case x is strictly inside Co−0(0, v1, . . . , vq). Define xf as the intersection

between the line connecting the origin and x and the face Co(v1, . . . , vq). One has

x = gxf + (1− g)0 = gxf (27)

where 0 < g < 1. Because xf ∈ Co(v1, . . . , vq), one has

xf = λ1v1 + . . .+ λqvq

where
q∑

j=1

λj = 1, λj ≥ 0,∀j = 1, q. Using (27), one has

x = gλ1v1 + . . .+ gλqvq

with gλ1 + . . . + gλq = g

(
q∑

i=1

λj

)
= q. Therefore v1, . . . , vq are active extreme points ∀x ∈

Co−0(0, v1, . . . , vq). □

Our next step is to reveal the form of the control law in a CR. Clearly, if x(k) = 0, then

u(k) = 0.

Consider the case where x(k) ∈ Co−0(0, vj) with vj ∈ E(Pj) being an extreme point of

P , j = 1, p. In this case x(k) is rewritten as x(k) = λj(k)vj , where 0 < λj(k) ≤ 1. The control

action is computed as

u(k) = λj(k)Kjvj = Kjλj(k)vj = Kjx(k) (28)

If x(k) = 0, then using the control law (28), one has u(k) = 0. Hence, ∀x ∈ Co(0, vj), the

control law is (28).



Without loss of generality, consider now the case x(k) ∈ Co(0, v1, . . . , vq), where vj ∈ E(Pj)

are extreme points of P , and 2 ≤ q ≤ n. One has

x(k) = λ1v1 + . . .+ λqvq (29)

where λj ≥ 0, j = 1, p. Rewrite (29) in a compact vector form as

x(k) = V Λ (30)

where Λ = [λ1 λ2 . . . λq]
T ∈ Rq and

V =
[
v1 v2 . . . vq

]
(31)

Since v1, v2, . . . , vq are linearly independent, one has rank(V ) = q. Using the singular decom-

position (SVD), rewrite the matrix V ∈ Rn×q as

V = UvSvV
T
v (32)

where Uv ∈ Rn×q, Vv ∈ Rq×q with UT
v Uv = Iq, V

T
v Vv = Iq, and Sv ∈ Rq×q is a diagonal matrix.

Since rank(V ) = q, it follows that the diagonal elements of Sv are positive. Using (30), (32),

one obtains

Λ = VvS
−1
v UT

v x(k) (33)

The control action for the given x(k) is computed as

u(k) = λ1K1v1 + . . .+ λqKqvq

Thus, with uj = Kjvj,∀j = 1, q

u(k) = [u1 u2 . . . uq] Λ

Combining with (33), one obtains

u(k) = [u1 u2 . . . uq]VvS
−1
v UT

v x(k) = Fvx(k) (34)

where Fv = [u1 u2 . . . uq]VvS
−1
v UT

v .

If x(k) = 0 then using (34), one gets u(k) = 0. Hence ∀x ∈ Co(0, v1, v2, . . . , vq), the control

law is (34).

With a slight abuse of notation, a partition of dimension q is the convex hull of the origin

and of a face of dimension q − 1, 1 ≤ q ≤ n. The following result holds.

Theorem 6: The control law (9), (10) is a piecewise linear function of the state over a partition

of dimension 1, 2, . . . , n of the state space.



Proof: The proof comes directly by using (28), (34), and by the fact that the set P is the

union of the partitions of dimension 1, 2, . . . , n. □

Remark 7: We separate two cases with one, and with more than one active extreme points

only for clarity. The SVD technique (32) works also with one active extreme point. □

Theorem 7: The control law (9), (10) is a continuous function of the state.

Proof: The proof comes from two facts that: i) the partitions are closed sets; ii) the control

law is continuous in any partition. □

B. Particular Case: n = 2

The aim of this section is to illustrate graphically the discussions in Section V-A for the case

n = 2.

Consider the convex hull of ellipsoids P = Co(P1, . . . , Pp), Pj ∈ S2, and the associated matrix

gains Kj ∈ Rm×2,∀j = 1, p. It is clear that in R2, our main problem is to construct the partitions

of dimension 2 as well as the control gains in these partitions. Our first step is to calculate all

possible normal vectors β of all faces of dimension 1. This can be done by solving the following

set of equation, ∀j1 = 1, p− 1,∀j2 = j1 + 1, p βTPj1β = 1,

βTPj2β = 1
(35)

Once the normal vector β is computed, the extreme points vj1 , vj2 are given as

vj1 = Pj1β, vj2 = Pj2β (36)

Since vj1 , vj2 are linearly independent, and [vj1 vj2 ] is a square matrix, it follows that [vj1 vj2 ] is

invertible. In this case, one does not need to perform the SVD technique to factorize [vj1 vj2 ].

The control law for x ∈ Co(0, vj1 , vj2) is given as

u(k) = Kj1j2x(k) (37)

where the control gain Kj1j2 is computed as

Fj1j2 = [Kj1vj1 Kj2vj2 ][vj1 vj2 ]
−1 (38)

Remark 8: Except the partitions of dimension n in Rn, the other partitions are degenerate.

Consider now the partitions of dimension 1. Recall that these partitions are the convex hull of

the origin and of faces of dimension 0. If these faces belong to the same elliptical arc, then



the control gains for these partitions are the same. Hence the partitions with faces of the same

elliptical arc can be merged to create a new full dimensional partition. One can expect the same

behavior for the partitions of dimension 2, . . . , n− 1, as the boundary of P is smooth. However

this is beyond the scope of this paper. □

VI. EXAMPLE

In this section, we will demonstrate the obtained results via an example taken from [8].

Consider the system (6) with

A1 =

 1.0 −1.4

−1.0 −0.8

 A2 =

 1.0 1.4

−1.0 −0.8

 , B1 =

 5.9

2.8

 , B2 =

 3.1

−2.8

 (39)

In [8], input constraints were considered: −1 ≤ u(k) ≤ 1. The goal is to design a robust

stabilizing controller.

As written in [8], it can be verified that (39) is not quadratically stabilizable. LMI conditions

for designing a linear feedback gain and its associated quadratic Lyapunov function are not

feasible. Also we were not able to construct a robustly controlled invariant polyhedral set using

procedures in [2].

Using [8] one obtains the matrices P1, P2, K1, K2 as

P1 =

 22.9061 −19.9925

−19.9925 18.0114

 , P2 =

 21.2384 −10.5083

−10.5083 8.9691

 ,

K1 =
[
−0.0949 0.1296

]
, K2 =

[
−0.0095 0.2060

] (40)

Note that the closed-loop system with the linear control law u(k) = K1x(k) or with u(k) =

K2x(k) is are unstable. For example, the eigenvalues of A1 +B1K2 are 1.0887 and −0.3676.

By solving (35), one obtains the set of normal vectors β = [β1 β2 − β1 − β2] with

β1 =
[
0.2271 0.0209

]
, β2 =

[
0.2568 0.5150

]
(41)

Fig. 2 presents the sets E(P1), E(P2) and the supporting hyperplanes of dimension 1.

Using (36), one obtains the corresponding extreme points V = [Vh − Vh] with

Vh =

 4.7854 −4.4150 4.6047 0.0414

−4.1650 4.1428 −2.1996 1.9210

 (42)

Fig. 3 shows the state space partition. Note that we can merge those partitions, whose faces of

dimension 0 belong to the same elliptical arc. We have in total 8 partitions.
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Fig. 2: Convex hull of ellipsoids.
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Fig. 3: State Space Partition.

Using (37), (38), the control law over the state space partition is

u(k) =


[0.0135 0.2541]x if x ∈ C1

⋃
C5,

[−0.0949 0.1296]x if x ∈ C2
⋃
C6,

[−0.0229 0.2063]x if x ∈ C3
⋃
C7,

[−0.0095 0.2060]x if x ∈ C4
⋃
C8

(43)

Using the control law (43), for the initial condition x(0) = [−4.75 4.2]T , Fig. 4 presents the

state trajectories of the closed-loop system as functions of time. Fig. 5 shows the input trajectory

and the realization of α as functions of time.
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Fig. 4: State trajectories as functions of time.
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Fig. 5: Input trajectory and α realization as functions of time.

VII. CONCLUSION

In this paper we complement the recent results in [8] by studying geometric structures of the

solution of the optimization problem, and of the control law. We propose a procedure to remove

redundant ellipsoids in the convex hull of ellipsoids. We prove that if the convex hull of ellipsoid

has the minimal representation, then the solution of the optimization problem is unique. We also

show that the control law is a continuous piecewise linear function of the state. An unstable

uncertain time-varying second order system example is used to validate the theoretical results.
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