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Explaining the Black-box Smoothly-
A Counterfactual Approach

Sumedha Singla, Brian Pollack, Stephen Wallace and Kayhan Batmanghelich

Abstract— We propose a BlackBox Counterfactual Ex-
plainer that is explicitly developed for medical imaging
applications. Classical approaches (e.g., saliency maps) as-
sessing feature importance do not explain how and why
variations in a particular anatomical region are relevant to
the outcome, which is crucial for transparent decision mak-
ing in healthcare application. Our framework explains the
outcome by gradually exaggerating the semantic effect of
the given outcome label. Given a query input to a classifier,
Generative Adversarial Networks produce a progressive set
of perturbations to the query image that gradually changes
the posterior probability from its original class to its nega-
tion. We design the loss function to ensure that essential
and potentially relevant details, such as support devices,
are preserved in the counterfactually generated images. We
provide an extensive evaluation of different classification
tasks on the chest X-Ray images. Our experiments show
that a counterfactually generated visual explanation is con-
sistent with the disease’s clinical relevant measurements,
both quantitatively and qualitatively.

Index Terms— Explainable AI, Interpretable Machine
Learning, Counterfactual Reasoning, Chest X-Ray diagno-
sis explanation

I. INTRODUCTION

Machine learning, specifically Deep Learning (DL), is being
increasingly used for sensitive applications such as Computer-
Aided Diagnosis [1] and other tasks in the medical imaging
domain [2], [3]. However, for real-world deployment [4],
the decision-making process of these models should be ex-
plainable to humans to obtain their trust in the model [5],
[6]. Explainability is essential for auditing the model [7],
identifying various failure modes [8], [9] or hidden biases in
the data or the model [10], and for obtaining new insights
from large-scale studies [11]. Current explanation methods
focus on highlighting the important regions (where) for the
classification decisions. The location information alone is
insufficient for applications in medical imaging. A thorough
explanation should explain what imaging features are present
in those locations and how these features can be modified to
change the classification decision. In this paper, we provide
counterfactual explanations. A visual explanation is derived by
gradually transforming the input image into its perturbation,
where the model’s decision has flipped.
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Post-hoc explanation is a popular approach that aims to
improve human understanding of a pre-trained model. Our
work broadly relates to the following post-hoc methods:

Feature Attribution methods provide an explanation as a
saliency map that reflects the importance of each input compo-
nent (e.g., pixel) to the classification decision. Gradient-based
approaches [12]–[18] produce a saliency map by computing
the gradient of the classifier’s output with respect to the input
components. Such methods are often applied to the medical
imaging studies, e.g., chest x-rays [19], skin imaging [20],
brain MRI [21] and retinopathy [22].

Perturbation-based methods identify salient regions by di-
rectly manipulating the input image and analyzing the result-
ing changes in the classifier’s output. Such methods aim to
modify specific pixels or regions in an input image, either
by masking with constant values [23] or with random noise,
occluding [24], localized blurring [25], or in-filling [26]. Es-
pecially for medical images, such perturbations may introduce
anatomically implausible features or textures. Our explanation
framework enforces consistency between the perturbed data
and the real data distribution to ensure that the perturbation is
plausible and realistic-looking.

Counterfactual Explanations are a type of contrastive [27]
explanation that are generated by perturbing the real data such
that the classifier’s prediction is flipped. Similar to our method,
generative models like GANs and variational autoencoders
(VAE) are used to compute interventions that generate realistic
counterfactual explanations [28]–[34]. Much of this work is
limited to simpler image datasets like MNIST, celebA [30]–
[32] or simulated data [33]. For more complex natural images,
previous studies [26], [34] focused on finding and in-filling
salient regions to generate counterfactual images. In contrast,
our explanation model doesn’t require any re-training for
generating explanations for a new image at inference time. In
another line of work [35], [36] provide counterfactual expla-
nations that explain both the predicted and the counter class.
Further [37], [38] used a cycle-GAN [39] to perform image-
to-image translation between normal and abnormal images.
Such methods are independent of the classifier. In contrast,
our model uses special loss to enable image perturbation that
is consistent with the classifier.

Recently, researchers have focused on providing explana-
tions in the form of human-defined concepts [40]–[42]. In
medical imaging, such methods have been adopted to derive an
explanation for breast mammograms [43], breast histopathol-
ogy [44] and cardiac MRIs [45]. We used such human-defined
concepts to quantify the differences in real images and their
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respective counterfactual explanations.

Saliency-based 
Explanation

Input Image

Normal Explanation (Counterfactual)

Abnormal Explanation

Classifier output: 
Positive for Pleural 

Effusion
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Fig. 1. Counterfactual explanation shows where” in the image the
classifier is paying attention and “what” image-features in those regions
are associated with the disease. For Pleural Effusion, we can observe
the appearance of the meniscus (green) in anabnormal image as
compared to the normal counterfactual image.

Fig. 1 shows an example of a saliency map generated by
a generic explanation model. Saliency maps are inconclusive
when different diagnoses affect the same anatomical regions.
For example, both pleural effusion and edema may localize in
the lower lung lobe region, highlighted in Fig. 1. In contrast,
our explanation framework generates a perturbation of the
input image, such that the classifier’s prediction for the new
image is shifted by δ. One can view δ as a “tuning knob”
to gradually perturb the input image and traverse the decision
boundary from one extreme (normal) to another (abnormal). In
Fig. 1, we compared the images generated for the two extremes
to identify the salient regions and zoomed-in those regions to
understand how the image features have transformed to flip
the classification decision for pleural effusion.

We adopted a conditional Generative Adversarial Network
(cGAN) as our explanation framework to learn the desired
perturbation over the input image [46]. However, using cGAN
is challenging, as GANs with an encoder may ignore small
or uncommon details during image generation [47]. This
is particularly important in our application, as the missing
information includes foreign objects such as a pacemaker
that influence human users’ perception. To address this issue,
we stipulate when the input image has reconstructed the
shape of the anatomy and that foreign objects are preserved.
We achieve this by incorporating semantic segmentation and
object detection into our loss function.

Our contributions are summarized as follows:
1) We developed a framework to generate a counterfac-

tual visual explanation for a black-box classifier. Our
conditional GAN-based approach generates a realistic
sequence of images that gradually exaggerate the disease
effect.

2) Our method accounts for subtleties of medical imaging
by incorporating context from a semantic segmentation
and a foreign object detection network.

3) We evaluated our method extensively on various tasks
on a chest x-ray dataset.

4) We proposed a quantitative metric based on clinical
knowledge for the evaluation of counterfactual expla-
nations.

II. METHOD

In this paper, we assume that we are given a pre-trained
function f , i.e., a black-box that accepts the input image, x,
and outputs the posterior probability of the classifier, f(x) ∈
[0, 1]. Also, we assume the gradient of the function ∇xf(x),
can be computed. To avoid notation clutter, we focus on binary
classification throughout this section. However, the proposed
method is general and can be used for multi-class or multi-
label settings.

Our goal is to learn an explanation function xδ =∆ If (x, δ),
that perturbs the input image x and outputs a new image xδ
such that the prediction from f is changed by the desired
amount δ, i.e., f(xδ)− f(x) = δ. This formulation allows us
to view δ as a “knob” that gradually perturb the input image to
achieve visually perceptible differences in x while crossing the
decision boundary given by function f . Figure 2 summarizes
our framework. We design the explanation function to satisfy
the following properties:

(A) Data consistency: xδ should resemble data instance
from input space X i.e., if input space comprises chest x-rays,
xδ should look like a chest x-ray with minimum artifacts or
blurring.

(B) Classification model consistency: xδ should produce
the desired output from the classifier f , i.e., f(I(x, δ)) ≈
f(x) + δ.

(C) Context-aware self-consistency: To be self-consistent,
the explanation function should satisfy three criteria (1) Re-
constructing the input image by setting δ = 0 should return
the input image, i.e., If (x, 0) = x. (2) Applying a reverse
perturbation on the explanation image xδ should recover
x, i.e., If (xδ,−δ) = x. (3) Achieving the aforementioned
reconstructions while preserving anatomical shape and foreign
objects (e.g., pacemaker) in the input image.

Next, we will discuss each property in detail.

A. Data consistency

We formulated the explanation function, If (x, δ), as
an image encoder E(·) followed by a conditional GAN
(cGAN) [48], with δ as the condition. The encoder enables the
transformation of a given image, while the GAN framework
generates realistic-looking transformations as an explanation
image. The cGAN is a variant of GAN that allows the condi-
tional generation of the data by incorporating extra information
as the context. Like GANs, cGANs are composed of two deep
networks, generator G(·) and discriminator D(·). The G(·)
network learns to transform samples drawn from a canonical
distribution such that D(·) network fails to distinguish the
generated data from the real data. The G, D are trained
adversarially by optimizing the following objective function,

LcGAN(D,G) = Ex,c∼P (x,c)

[
log
(
D(x, c)

)]
+

Ez∼Pz,c∼Pc

[
log
(
1−D(G(z, c), c)

)] (1)

where c denotes a condition and z is noise sampled using
a uniform distribution Pz. In our formulation, z is the latent
representation of the input image x, learned by the encoder
E(·).
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Fig. 2. Explanation function If (x, δ) for classifier f . Given an input image x, we generates a perturbation of the input, xδ as explanation, such
that the posterior probability, f , changes from its original value, f(x), to a desired value f(x)+δ while satisfying the three consistency constraints.

We model δ as the condition, by defining a discretizing
function cf (·) that maps the posterior probability of the
classifier f ∈ [0, 1] to b 1

δ c equally-sized bins of width δ.
Hence, the explanation function learns to transform the input
image, x, which is in bin cf (x, 0), to a perturbed image, xδ ,
with prediction f(x) + δ, which corresponds to bin number
cf (x, δ). Finally, the explanation function is defined as,

xδ = If (x, δ) = G(E(x), cf (x, δ)). (2)

x�
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Fig. 3. The explanation function is a conditional-GAN with an encoder.
The discriminator evaluates the similarity between real and fake data
and the correspondence between fake data and the condition.

For the discriminator in cGAN, we adapted the loss function
from Projection GAN [48] based on our application. As
cf (x, δ) is discrete, we can view its as a one-hot vector c.
The loss function of projection cGAN has two terms. The first
term is the distribution ratio between marginals i.e., the real
data distribution pdata(x) and the learned distribution of the
generated data q(x). The second term is the distribution ratio
between conditionals. It evaluates the correspondence between
the generated image and the condition. This formulation allows
us to skip calculating q as we are only interested in the ratio.
The overall loss function is as follows,

LcGAN(D, Ĝ)(x, c) = log
pdata(x)

q(x)
+ log

pdata(c|x)

q(c|x)

:= r(x) + r(c|x)

:= ψ(φ(Ĝ(z); θφ); θψ) + cTVφ(x; θφ),
(3)

where LcGAN(D, Ĝ) indicates the loss function in Eq. 1 when
Ĝ is fixed. φ(·) is an image feature extractor that become

modulated on the embedding of the condition, c, defined by
the embedding matrix V. The inner product computes the
similarity between the latent representation and the condition.
Function ψ(·) outputs a scalar value as loss. We modified
r(c|x) to make it consistent with our formulation, in the next
section. The parameters θ = {V, θφ, θψ} are learned through
adversarial training.

Input Image Explanation Image
x
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Fig. 4. To enforce consistency with the classifier f, we minimize
a KullbackLeibler (KL) divergence between the actual f(xδ) and the
desired f(x)+δ prediction from f . If (x, δ) is the explanation function
in Fig. 3.

B. Classification model consistency
The bin-index cf (x, δ) is an ordinal-categorical variable,

i.e., cf (x, δ1) < cf (x, δ2) when δ1 < δ2. We adapted Eq. 3
to account for a categorical variable as the condition, by
modifying the second term to support ordinal multi-class
regression. Specifically, we replaced a single one-hot vector for
the condition c, with b 1

δ c− 1 binary classification terms [49].
The ith binary attribute represents the test i < n where c = n.
The modified loss function is as follows:

r(c = n|x) :=
∑
i<n

vTi φ(x), (4)

Along with conditional loss for the discriminator, we need
additional regularization for the generator to ensure that the
actual classifier’s outcome, i.e., f(xδ), is very similar to the
desired outcome, i.e., f(x) + δ. To ensure this compatibility
with f , we further constrain the generator to minimize the
KullbackLeibler (KL) divergence that encourages the classi-
fier’s score for xδ to differ from x by a margin of δ (see
Fig. 4). Our final condition-aware loss is as follows,

Lf (D,G) := r(c|x) +DKL(f(xδ)||f(x) + δ), (5)



4

Here, the first term evaluates a conditional probability asso-
ciated with the generated image given the condition c and
is a function of both G and D. The second term uses a
KL divergence to compare the actual posterior probability for
new image f(xδ) against the desired prediction distribution
f(x) + δ. It influences only the G. Please note that, the term
r(x) is not appearing in Eq. 5 as it is independent of the
condition c or δ.

x
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(b) Types of Reconstruction

Fig. 5. (a) A domain-aware self-reconstruction loss with pre-trained
semantic segmentation S(x) and object detection O(x) networks. (b)
The self and cyclic reconstruction should retain maximum information
from x. Note, explanation image xδ may differ from input image, x.

C. Context-aware self consistency
A valid explanation image is a minor modification of the in-

put image and should preserve the inputs’ identity i.e., patient-
specific information such as the anatomy shape. While images
generated by a GAN are shown to be realistic looking [50],
GAN with an encoder may ignore small or uncommon details
in the input image [47]. To preserve these features, we propose
a context-aware reconstruction loss (CARL) that exploits extra
information from the input domain to refine the reconstruction
results. This additional information comes as semantic seg-
mentation and detection of any foreign object present in the
input image. The CARL is defined as,

Lrec(x,x
′) =

∑
j

Sj(x)� ||x− x′||1∑
Sj(x)

+DKL(O(x)||O(x′)).

(6)
Here, S(·) is a pre-trained semantic segmentation network

that produces a label map for different regions in the input
domain. O(x) is a pre-trained object detector that, given an
input image x, output a binary mask O(x), highlighting the

region where FO is present. In Eq. 6, we used KL divergence
to compare the probability mask created by O(·) over the input
x and the reconstructed x′ image. Rather than minimizing a
distance such as `1 over the entire image, we minimize the
reconstruction loss for each segmentation-label (j). Such a loss
heavily penalizes differences in small regions to enforce local
consistency.

Finally, we used the CAR loss to enforce two important
properties of the explanation function:

1) If δ = 0, the self-reconstructed image should resemble
the input image.

2) For δ 6= 0, applying a reverse perturbation on the
explanation image xδ should recover the initial image
i.e., x ≈ If (If (x, δ),−δ).

We enforce these two properties by the following loss,

Lidentity(E,G) = Lrec(x, If (x, 0))+Lrec(x, If (If (x, δ),−δ)).
(7)

where Lrec(·) is defined in Eq. 6. We minimize this loss only
while reconstructing the input image (either by performing self
or cyclic reconstruction). For the explanation image, xδ , with
a bin number different from the input image, we didn’t enforce
the reconstruction loss to ensure that the explanation function
is not biased towards foreign objects or region-specific details.

D. Objective function
The overall objective function is

min
E,G

max
D

λ1LcGAN(D,G) + λ2Lf (D,G) + λ3Lidentity(E,G)

(8)
where λ’s are the hyper-parameters to balance each of the loss
terms. The encoder E(·) and generator G(·) network follows
ResNet [51] architecture. G(·) processes the latent represen-
tation to create a new image while incorporating condition
information using conditional batch normalization (cBN). For
discriminator D(·) network, we adapted the architecture from
SNGAN [52]. The model is trained end-to-end to learn param-
eters for the three networks. Please note that the parameters for
the classifier remained fixed throughout the training process.
We optimized the adversarial hinge loss for the cGAN training.
We set the loss hyper-parameters as λ1 = 1.0, λ2 = 1.0 and
λ3 = 0.5. We used the Adam optimizer [53], with default
hyper-parameters set to α = 0.0002, β1 = 0, β2 = 0.9.

III. EXPERIMENTS

In this section, we evaluate our method using a chest x-ray
dataset. We performed three sets of experiments:

(1) We evaluated our model on the three desiderata of valid
explanations, defined in the method section. We compared our
counterfactual explanations with closest existing methods such
as xGEM [54] and CycleGAN [37], [38]. We considered the
following three evaluation metrics: Fréchet Inception Distance
(FID) score to assess visual quality, counterfactual validity
(CV) score to quantify compatibility with the classifier, and
foreign object preservation (FOP) score to evaluate the reten-
tion of patient-specific information in the explanations.

(2) We compared against the saliency-based methods to
provide post-hoc model explanation. While our method does
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Fig. 6. Qualitative comparison of the counterfactual explanations generated for three classes, cardiomegaly (first row), pleural effusion (PE) (middle
row), and edema (last row). The bottom labels are the classifier’s predictions for the specific class. The yellow color highlight the prediction where
counterfactual fails to flip the decision. The last column shows the difference map between normal and abnormal explanations. For cardiomegaly
and edema, we are reporting cardiothoracic ratio (CTR) calculated from the heart segmentation (yellow) and thoracic diameter (red). For PE and
edema, we show the bounding box (BB) for normal (blue) and abnormal (red) costophrenic (CP) recess. The number on blue-BB is the Score for
detecting a normal CP recess (SCP). The number on red-BB is 1-SCP. For cardiomegaly, we are also showing the corresponding counterfactual
explanations for xGEM and cycleGAN.

not produce a saliency map, we approximate it as a difference
map between the explanations generated for the two extremes
of the decision boundary.

(3) We used two clinical metrics, namely, cardiothoracic
ratio (CTR) and the Score for detecting a normal Costophrenic
recess (SCP) to demonstrate the clinical relevance of our
explanations. CTR is associated with cardiomegaly, and SCP
is indicative of pleural effusion (PE).

Experimental setup: We performed our experiments on
MIMIC-CXR [55], which is a multi-modal dataset consist-
ing of 377K chest X-ray images and 227K reports from
65K patients. Images are provided with binarized labels over
fourteen radio-graphic observations, namely, enlarged cardio-
mediastinum, cardiomegaly, lung-lesion, lung-opacity, edema,
consolidation, pneumonia, atelectasis, pneumothorax, pleural
effusion, pleural other, fracture, support devices and no-

finding. The images are preprocessed using a standard pipeline
involving cropping, re-scaling, and intensity normalization.
Following the prior work on diagnosis classification [56],
we used DenseNet-121 [57] architecture as the classification
model, which performs multi-label classification over fourteen
labels, given the frontal view chest x-ray images. The model
is trained on 80% of the images. The rest 50K images are
further divided into 3:2 to create a training-testing dataset
for the explanation model. No data augmentation was used
for training the explanation model. Our experiment learns
three explanation models to explain the three target labels:
cardiomegaly, pleural effusion, and edema.

In our experiments, we set δ = 0.1, and divide f(x)[y] ∈
[0, 1] into ten equally size bins of width 0.1. Here, y is a
target label. Next, we map each input image to a bin-index
depending on the classification prediction f(x)[y]. From the
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TABLE I
THE FID SCORE QUANTIFIES THE VISUAL APPEARANCE OF THE EXPLANATIONS. THE COUNTERFACTUAL VALIDITY (CV) SCORE IS THE FRACTION

OF EXPLANATIONS THAT HAVE AN OPPOSITE PREDICTION COMPARED TO THE INPUT IMAGE.

Cardiomegaly Pleural Effusion Edema
Ours xGEM CycleGAN Ours xGEM CycleGAN Ours xGEM CycleGAN

FID score
Normal (f(x), f(xδ) < 0.2) 166 384 30 146 347 37 149 376 72

Abnormal (f(x), f(xδ) > 0.8) 137 316 56 122 355 35 102 274 77
Counterfactual Validity Score

Real (f(x) ∈ [0, 1]) 0.91 0.91 0.43 0.97 0.97 0.49 0.98 0.66 0.57

training set of the explanation model, we sample images such
that each bin has 2500 to 3000 images. We created a similar
non-overlapping dataset to test the explanation model with 700
to 1000 images in each bin. All the results are computed on
this testing dataset.

For semantic segmentation, we adopted a 2D U-Net [58]
to mark the lung and the heart contour in a chest x-ray.
The network is trained on 385 chest x-rays and masks from
Japanese Society of Radiological Technology (JSRT) [59] and
Montgomery [60] datasets. We trained a Fast Region-based
CNN [61] network for detecting foreign objects (FO) such
as pacemaker and hardware in a chest x-ray. We manually
created a training dataset of 300 x-rays by collecting bounding
box annotations for FO. We further trained two detectors for
identifying normal and abnormal costophrenic (CP) recess
regions in the chest x-ray. We identify an abnormal CP recess
through a positive mention for “blunting of the costophrenic
angle” in the corresponding radiology report. For the normal-
CP recess, we considered images with a positive mention for
“lungs are clear” in the reports. The detailed architecture for
all modules is provided in the Supplementary Material (SM).

A. Desiderata of explanation function
In this section, we evaluate our method on three desiderata

of a valid counterfactual [62]. First, Data consistency: A
counterfactual should be realistic-looking i.e., it should be
very similar to the input image. Second, Classification model
consistency: A counterfactual should flip the classification
decision for the input image. Third, Identify preservation: A
counterfactual should preserve patient-specific details such as
foreign objects.

1) Data consistency: A counterfactual explanation is a min-
imal but perceptible modification of the input x-ray image that
flips the classification decision. Given an input image, our
model generates a series of images xδ as explanations that
eventually flip the classification decision. We create multiple
explanations by gradually changing δ such that f(x) + δ is in
range [0, 1]. In Fig. 6, the left-most image is the input x-ray of
a normal subject. In the middle, we showed the explanation
images for the three target diseases, cardiomegaly, PE, and
edema. The last column presented a pixel-wise difference map
between normal and abnormal explanations. The heatmaps
highlight the regions that changed the most during the trans-
formation. For cardiomegaly, we reported the cardiothoracic
ratio (CTR). It is calculated as the ratio of the cardiac diameter
extracted from the heart contour (yellow) and the thoracic

diameter (red). CTR aids in the detection of enlargement
of the cardiac silhouette. We observed a gradual increase in
posterior probability f(xδ) (bottom label) as we transformed
from normal to an abnormal counterfactual image. During
this transformation, the CTR increased with corresponding
changes in the heart shape. For PE, we showed the results
of an object detector as bounding-box (BB) over the normal
(blue) and abnormal (red) CP recess regions. The number
on the top-right of the blue-BB is the Score for detecting a
normal CP recess (SCP). The number on red-BB is 1-SCP.
The CP recess is the potential area to be analyzed for PE [63].
As we go from left to right, the normal CP recess changed
into an abnormal CP recess with a high detection score. In
edema, we observed changes in both CTR and SCP. The
counterfactual transformation is associated with an increasing
CTR and blurring of the left CP recess region, as highlighted
in the difference map. These findings are consistent with
radiological signs for cardiogenic edema [64]. We also present
a comparison against xGEM and cycleGAN for cardiomegaly.
xGEM created blurry images while cycleGAN creates realistic
images, but the abnormal-counterfactual failed to flip the
classification outcome.

Quantitatively evaluation: We evaluated the visual quality of
our explanations by computing FID score [65]. FID quantifies
the visual similarity between the real images and the syn-
thetic counterfactuals. FID computes the distance between the
activation distributions of the real image x and the synthetic
explanations xδ as,

FID(x,xδ) = ||µx−µxδ ||22+Tr(Σx+Σxδ−2(ΣxΣxδ)
1
2 ), (9)

where µ’s and Σ’s are mean and covariance of the activation
vectors derived from the penultimate layer of a pre-trained
Inception v3 network [65]. We examined real and fake (i.e.,
generated explanations) images on the two extreme of the
decision boundary, i.e., a normal group (f(x) < 0.2) and
an abnormal group (f(x) > 0.8). In Table. I, we compared
three counterfactual-generating algorithms: ours, xGEM, and
cycleGAN, and reported the FID for each group. Our model
creates realistic-looking counterfactuals compared to xGEM.
The cycleGAN model generates the most realistic-looking
images with the lowest FID score (< 80). However, in the
next section, we will show that the explanations generated by
cycleGAN may not flip the classification decision and hence,
may fail to provide a valid counterfactual explanation.

2) Classification model consistency: In this experiment, we
quantify the strength of different counterfactual-generating
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Fig. 7. The plot of desired outcome, f(x)+δ, against actual response
of the classifier on generated explanations, f(xδ). Each line represents
a set of input images with classification prediction f(x) in a given range.
Plots for xGEM and cycleGAN are shown in SM-Fig. 4.

algorithms in creating explanations consistent with the clas-
sification model and, thus, successfully flips the classification
decision. In the last row of Table. I, we report results on coun-
terfactual validity (CV) score. Mothilal et al. [62] proposed
CV score as the fraction of counterfactual explanations that
corresponds to the opposing end of the prediction spectrum
i.e., if the input image is predicted as normal, the generated
explanation is predicted as abnormal by the classifier. For all
three target diseases, our model created the highest percentage
of counterfactually valid explanations. CycleGAN achieved a
low CV score, thus creating explanations that are frequently
inconsistent with the classifier. Next, we quantify this con-
sistency at every step of the transformation. We divided the
classifier’s prediction range of [0, 1] into ten equally sized bins.
For each bin, we generated an explanation image by choosing
an appropriate expected classification output, f(x) + δ. We
further divided the input image space into five groups based
on their initial prediction i.e., f(x). In Fig 7, we represented
each group as a line and plotted the average response of the
classifier i.e., f(xδ) for explanations in each bin against the
expected classification outcome i.e., f(x) + δ. The positive
slope of the line-plot, parallel to y = x line at 45◦ confirms
that starting from images with low f(x), our model creates
fake images such that f(xδ) is high and vice-versa.

TABLE II
THE FOREIGN OBJECT PRESERVATION (FOP) SCORE AND

LATENT-SPACE CLOSENESS (LSC) SCORE FOR OUR MODEL WITH AND

WITHOUT THE CONTEXT-AWARE RECONSTRUCTION LOSS (CARL).
FOP SCORE DEPENDS ON THE PERFORMANCE OF FO DETECTOR.

Foreign LSC score FOP score
Object CARL better than `1 Ours with CARL Ours with `1

Pacemaker 0.79 0.52 0.40
Hardware 0.87 0.63 0.32

3) Identity preservation: Ideally, a counterfactual explana-
tion should differ in semantic features associated with the
target class while retaining unique properties of a patient,
such as foreign objects (FO). FO provide critical information
to identify the patient in an x-ray. The disappearance of
FO in explanation images creates a distraction and increases
confusion that explanation images show a different patient.

In this experiment, we compared explanations generated
using CARL against those generated using simple `1 recon-
struction loss on two identity constraints. First, we used latent-
space closeness (LSC) score to quantify the similarity between

the explanation images and the query image in a latent space.
We derived LSC score as the fraction of the images where
explanation image derived using CARL (xCARL

δ ) is closest to
the query image x as compared to explanations generated
using `1 loss i.e., x`1δ . We calculated similarity as the euclidean
distance between the embedding for the query and explanation
images. LSC score is defined as,

LSC =
∑

x∈X ,δ

1

(
〈E(x), E(xCARL

δ )〉 < 〈E(x), E(x`1δ )〉
)

where E(·) is a pre-trained feature extractor based on the
Inception v3 network. Table II presents our results. A high
LSC score, together with a high CV score shows that the query
and counterfactual images are fundamentally same but differs
only in features that are sufficient to flip the classification
decision.

Second, we compared the two reconstruction losses in their
ability to preserve FO in explanation images. We calculated
FO preservation (FOP) score as the fraction of real images,
with successful detection of FO, in which FO was also de-
tected in the corresponding explanation image xδ . Our model
with CARL loss obtained a higher FOP score, as shown in
Table II. The detector network has an accuracy of 80%. Fig. 8
presents examples of counterfactual explanations generated by
our model with and without the CARL.

Real Images

Counterfactual explanation with CAR loss

Counterfactual explanation w/o CAR loss

Fig. 8. Fidelity of generated images with respect to preserving FO.
The top row shows real images with pacemaker or hardware. The
middle shows counterfactual images generated by our model while
using context-aware reconstruction (CAR) loss. The bottom row shows
the explanation images, without the CAR loss.

B. Comparison with Saliency maps
Popular existing approaches for model explanation consist

of gradient-based methods that provide a qualitative expla-
nation in the form of saliency maps [56], [66]. To compare
against such methods, we approximated a saliency map as an
absolute difference map between the explanations generated
for the two extremes (normal with f(xδ) < 0.2 and abnormal
f(xδ) > 0.8) of the decision function f . For proper com-
parison, we considered the absolute values of the saliency
maps and normalized them in the range [0, 1]. In Fig. 9 we
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Fig. 9. Comparison of our method against different gradient-based methods. A: Input image; B: Saliency maps from existing works; C: Our
simulation of saliency map as difference map between the normal and abnormal explanation images. More examples are shown in SM-Fig. 6, 7.

show an example of an input image, where the gradient-based
saliency maps for two target classes highlight almost the same
region. In contrast, our difference map localized disease to
specific regions in the chest. Fig. 9.C, shows the two extreme
explanation images and the corresponding difference map,
derived for input images shown in Fig. 9.A.

Further, we used the deletion evaluation metric to quan-
titatively compare the different methods [67]. The metric
quantifies how the probability of the target class changes as
important pixels are removed from an image. For a given
image, we plot the change in classification prediction as a
function of the fraction of removed pixels to create the deletion
curve (SM-Fig.11 shows an example). A low area under the
deletion curve (AUDC) signifies a sharp drop in the probability
as more pixels are removed. To remove pixels from an image,
we selectively impaint the region based on its surroundings.

TABLE III
QUANTITY COMPARISON OF OUR METHOD AGAINST GRADIENT-BASED

METHODS. MEAN AREA UNDER THE DELETION CURVE (AUDC),
PLOTTED AS A FUNCTION OF THE FRACTION OF REMOVED PIXELS. A

LOW AUDC SHOWS A SHARP DROP IN PREDICTION ACCURACY AS

MORE PIXELS ARE DELETED.

Method Cardiomegaly Pleural Effusion Edema
Ours 0.040±0.04 0.023±0.02 0.083±0.05
eLRP 0.071±0.05 0.033±0.02 0.055±0.03

Grad-CAM 0.045±0.04 0.058±0.05 0.035±0.02
Integrated Gradients 0.058±0.06 0.046±0.05 0.077±0.04

In Table III, we report the mean AUDC over a sample of 500
images. The images were selected such that the f(x) > 0.9
for the target-disease. Our model achieved the lowest AUC in
deletion-by-impainting for cardiomegaly and pleural effusion.
The results show that the regions modified by our explanation
model are important for the classification decision.

C. Disease-specific evaluation

Quantifying the clinical relevance of an explanation is a
challenging task. We evaluated the clinical relevance in terms
of radiographic features that are clinically used to characterize
a disease. Specifically, we examined the following two metrics,

1) Cardio Thoracic Ratio (CTR): The CTR is the ratio of
the cardiac diameter to the maximum internal diameter of the

thoracic cavity. A CTR ratio greater than 0.5 is an abnormal
finding associated with cardiomegaly [68]–[70]. We followed
the approach in [71] to calculate the CTR from a chest x-
ray. In the absence of ground truth lung and heart segmen-
tation on the MIMIC-CXR dataset, we used a segmentation
network trained on open-sourced supervised datasets [60],
[72] to obtain segmentation. We calculated heart diameter as
the distance between the leftmost and rightmost points from
the lung centerline on the heart segmentation. The thoracic
diameter is calculated as the horizontal distance between the
widest points on the lung mask.

2) Costophrenic recess: The fluid accumulation in
costophrenic (CP) recess may lead to the diaphragm’s
flattening and the associated blunting of the angle between
the chest wall and the diaphragm arc, called costophrenic
angle (CPA). The blunting of CPA is an indication of pleural
effusion [72], [73]. Marking the CPA angle on a chest x-ray
requires expert supervision, while annotating the CP region
with a bounding box is a much simpler task (see SM-Fig. 1).
We learned an object detector to identify normal or abnormal
CP recess in the chest x-rays and used the Score for detecting
a normal CP recess (SCP) as our evaluation metric.

Next, we evaluated the extent to which the counterfactual
explanations adhere to the clinical understanding of a disease.
We performed a statistical test to quantify the differences in
real images and their corresponding counterfactuals based on
the two clinical metrics. We randomly sample two groups
of real images (1) a real-normal group defined as Xn =
{x; f(x) < 0.2}. It consists of real chest x-rays that are
predicted as normal by the classifier f . (2) A real-abnormal
group defined as X a = {x; f(x) > 0.8}. For Xn we generated
a counterfactual group as, X acf = {x ∈ Xn; f(If (x, δ)) >
0.8}. Similarly for X a, we derived a counterfactual group as
Xncf = {x ∈ X a; f(If (x, δ)) < 0.2}.

In Fig. 10, we showed the distribution of differences in CTR
for cardiomegaly and SCP for PE in a pair-wise comparison
between real (normal/abnormal) images and their respective
counterfactuals. Patients with cardiomegaly have higher CTR
as compared to normal subjects. Hence, one should expect
CTR(Xn) < CTR(X acf ) and likewise CTR(X a) > CTR(Xncf ).
Consistent with clinical knowledge, in Fig. 10, we observe
a negative mean difference for CTR(Xn) − CTR(X acf ) (a
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Fig. 10. Box plots to show distributions of pairwise differences in clinical metrics such as CTR for cardiomegaly and the Score of normal CP recess
(SCP) for pleural effusion, before (real) and after (counterfactual) our generative counterfactual creation process. The mean value corresponds to
the average causal effect of the clinical-metric on the target disease. The low p-values for the dependent t-test statistics confirm the statistically
significant difference in the distributions of metrics for real and counterfactual images. The mean and standard deviation for the statistic tests are
summarized in SM-Table 1.

p-value of < 0.0001) and a positive mean difference for
CTR(X a) − CTR(Xncf ) (with a p-value of� 0.0001). The low
p-value in the dependent t-test statistics supports the alternate
hypothesis that the difference in the two groups is statistically
significant, and this difference is unlikely to be caused by
sampling error or by chance.

By design, the object detector assigns a low SCP to any
indication of blunting CPA or abnormal CP recess. Hence,
SCP(Xn) > SCP(X acf ) and likewise SCP(X a) < SCP(Xncf ).
Consistent with our expectation, we observe a positive mean
difference for SCP(Xn) − SCP(X acf ) (with a p-value of
� 0.0001) and a negative mean difference for SCP(X a) −
SCP(Xncf ) (with a p-value of � 0.0001). A low p-value
confirmed the statistically significant difference in SCP for
real images and their corresponding counterfactuals.

IV. DISCUSSION AND CONCLUSION

We provided counterfactual explanations for classification
models that are trained for clinical applications. Our frame-
work explains the decision by gradually transforming the
input image to its counterfactual, such that the classifier’s
prediction is flipped. To generate such an explanation, we have
formulated and evaluated our framework on three properties of
a valid transformation: data consistency, classification model
consistency, and self-consistency. Our results in Section III-
A showed that our framework adheres to all three properties
and creates a realistic-looking explanation that produced a
desired outcome from the classification model while retaining
maximum patient-specific information.

We compared against two other generative methods for the
model explanation, namely, xGEM and cycleGAN. CycleGAN
produced the most visually appealing x-ray images with a
high FID score. However, during training, the objective func-
tion of cycleGAN does not incorporate the external black-
box classifier. Consequently, we observe a low counterfactual
validity (CV) score in Table I. And in Fig. 6, cycleGAN coun-
terfactual images failed to flip the classification decision for

cardiomegaly. In contrast, 90% of the explanations generated
by our model successfully flipped the classification decision.

The xGEM explanations are well-grounded with the classi-
fier, with ahigh CV score. However, unless explicitly imposed,
the explanation image from xGEM does not look realistic.
The expressiveness of the generator limits the visual quality of
images. xGEM adopted a variational autoencoder (VAE) as the
generator. VAE uses a Gaussian likelihood (`2 reconstruction),
an unrealistic assumption for image data, and is known to
produce over-smoothed images [74]. In contrast, our model
uses an implicit likelihood assumption as in GAN [48] that
results in more realistic explanation images.

We also compared our method against popular saliency-
map-based explanations. A good explanation model elaborates
the classifier’s reasoning by providing different explanations
for different decisions i.e., classes. However, for medical
images, saliency maps may highlight almost the same region
for different diseases, resulting in misleading and inconclusive
explanations (see Fig. 9). In contrast, our counterfactual ex-
planations provide additional information to clarify how input
features in the important regions could be modified to change
the prediction decision. Our difference map localizes disease
to specific regions in the chest, and these regions align with
the clinical knowledge of the disease. In Fig. 9 our difference
map focused on the heart region for cardiomegaly and the CP
recess region for PE.

From a clinical perspective, we demonstrated the usability
of our explanations by quantifying the counterfactual changes
in terms of disease-specific radiographic features such as CTR
and SCP. Our explanations showed that the classification deci-
sion is consistent with the medical knowledge of the disease.
For example, changes associated with an increased posterior
probability for cardiomegaly also resulted in an increased
CTR. Similarly, for PE, a healthy CP recess with a sharp
diaphragm arc and a high SCP transformed into an abnormal
CP recess with blunt CPA, as the posterior probability for PE
increases (see Fig. 6 and Fig. 10).

To the best of our knowledge, ours is the first attempt to



10

quantify a model explanation in terms of clinical metrics.
At the same time, our evaluation has certain limitations. Our
automatic pipeline to compute CTR suffers from inaccuracies,
in the absence of ground truth for lung and heart segmen-
tation. Also, the object detector used for detecting normal
and abnormal CP recess has a sub-optimal performance. This
contributed to the large variance in difference plots in Fig. 10.
Nevertheless, on a population level, CTR and SCP success-
fully captured the difference between normal and abnormal
chest x-rays. One may argue using features such as CTR
and SCP to perform disease classification. But models based
on these features will also suffer from similar inaccuracies
due to imperfect segmentation or detection, resulting in poor
performance and generalization compared to the deep learning
methods.

We acknowledge that there are areas of improvement in
our counterfactual explanations. The GAN architecture is
not perfect in preserving small details such as breasts and
foreign objects (FO) in generated images. This behavior is
consistent with a similar finding in computer vision [47]. In
comparison to a simple distance-based reconstruction loss, our
revised context-aware reconstruction loss (CARL) helped in
preserving details such as a pacemaker (see Table II). However,
even with CARL, the FO preservation score is not perfect. A
possible reason for this gap is the limited capacity of the object
detector. To the best of our knowledge, there is no publicly
available FO detector for a chest x-ray. Hence, we trained an
object detector on a manually annotated dataset.

Further, a resolution of 256 × 256 for counterfactually
generated images is smaller than a standard chest x-ray. Small
resolution limits the evaluation for fine details by both the
algorithm and the interpreter. Our formulation of cGAN uses
conditional-batch normalization (cBN) to encapsulate condi-
tion information while generating images. For efficient cBN,
the mini-batches should be class-balanced. To accommodate
high-resolution images with smaller batch sizes, we have to
decrease the number of conditions to ensure class-balanced
batches. Fewer conditions resulted in a coarse transformation
with abrupt changes across explanation images. In our ex-
periments, we selected the smallest δ, which created a class-
balanced batch that fits in GPU memory and resulted in
stable cGAN training. However, with the advent of larger-
memory GPUs, we intend to apply our methods to higher
resolution images in future work; and assess how that impacts
interpretation by clinicians.

Defining clinical metrics for different diseases is a challeng-
ing task. For example, edema is a complex disease. It may
appear as different radiographic concepts (e.g., cephalization,
peribronchial cuffing, perihilar batwing appearance, and opac-
ities etc.) in different patients [75]. Transforming a healthy
chest x-ray to a counterfactual image for edema may introduce
changes in multiple such concepts. Future research should
determine appropriate metrics to quantify and understand these
concepts. Manual annotation is one solution for obtaining
ground truth to train models that can identify concepts. Efforts
should be made to reduce the dependency on manual labeling
as it is expensive and not scalable.

To conclude, the counterfactually generated images in this

study identified commonly utilized radiographic findings that
clinicians use to diagnose and to grade the presence of pathol-
ogy. In particular, the system did this well for cardiomegaly
and pleural effusions and was corroborated by an experienced
radiology resident physician. By providing visual explanations
for deep learning decisions, radiologists better understand the
causes of artificial intelligence decision-making. This is essen-
tial to lessen physicians’ concerns regarding the “BlackBox”
nature by an algorithm and build needed trust for incorporation
into everyday clinical workflow. As an increasing amount of
artificial intelligence algorithms offer the promise of everyday
utility, counterfactually generated images are a promising
conduit to building trust among diagnostic radiologists.

By providing counterfactual explanations, our work opens
up many ideas for future work. Our framework showed that
valid counterfactuals can be learned using an adversarial gen-
erative process that is regularized by the classification model.
However, counterfactual reasoning is incomplete without a
causal structure and explicitly modeling of the interventions.
An interesting next step should explore incorporating or dis-
covering plausible causal structures and creating explanations
grounded with them.
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SUPPLEMENTARY MATERIAL
A. Summarization of the notation

Table. IV summarizes the notation used in the manuscript.

B. Implementation Details
1) Dataset: We focus on explaining classification models

based on deep convolution neural networks (CNN), most state-
of-the-art performance models fall in this regime. We used
a large, publicly available datasets of chest x-ray images,
MIMIC-CXR [55]. MIMIC-CXR dataset is a multi-modal
dataset consisting of 473K chest X-ray images and 206K
reports from 63K patients. We considered only frontal (pos-
teroanterior PA or anteroposterior AP) view chest images. The
datasets provide image-level labels for fourteen radio-graphic
observations. These labels are extracted from the radiology
reports associated with the x-ray exams using an automated
tool called the Stanford CheXpert labeler [56]. The labeler
first defines some thoracic observations using a radiology
lexicon [76]. It extracts and classifies (positive, negative, or
uncertain mentions) these observations by processing their
context in the report. Finally, it aggregates these observations
into fourteen labels for each x-ray exam. For the MIMIC-CXR
dataset, we extracted the labels ourselves, as we have access
to the reports.

2) Classification Model: To train the classifier, we consid-
ered the uncertain mention as a positive mention. We crop the
original images to have the same height and width, then down-
sample them to 256 × 256 pixels. The intensities were normal-
ized to have values between 0 and 1. Following the approach in
prior work [11], [19], [56] on diagnosis classification, we used
DenseNet-121 [57] architecture as the classification model. In
DenseNet, each layer implements a non-linear transformation
based on composite functions such as Batch Normalization
(BN), rectified linear unit (ReLU), pooling, or convolution.
The resulting feature map at each layer is used as input for all
the subsequent layers, leading to a highly convoluted multi-
level multi-layer non-linear convolutional neural network. We
aim to explain such a model in a post-hoc manner without
accessing the parameters learned by any layer or knowing the
architectural details. Our proposed approach can be used for
explaining any DL based neural network.

3) Explanation Function: The explanation function is a
conditional GAN with an encoder. We used a ResNet [51]
architecture for the Encoder, Generator, and Discriminator.
The details of the architecture are given in Table V. For the
encoder network, we used five ResBlocks with the standard
batch normalization layer (BN). In encoder-ResBlock, we
performed down-sampling (average pool) before the first conv
of the ResBlock as shown in Fig. 12.a. For the generator
network, we follow the details in [52] and replace the BN
layer in encoder-ResBlock with conditional BN (cBN) to
encode the condition (see Fig. 12.b.). The architecture for the
generator have five ResBlocks, each ResBlock performed up-
sampling through the nearest neighbor interpolator. For the

https://emedicine.medscape.com/article/355524-overview
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TABLE IV
SUMMARIZATION OF THE NOTATION

Notation Description
X Input image space
x ∈ X Input image
f : X → Y Pre-trained classification function
f(x) ∈ [0, 1] Classifier’s output
δ Desired change in classifier’s output
xδ Explanation image
f(xδ) Classifier’s output for the explanation image
If (x, δ) Explanation function
E(·) Image encoder
z Latent representation of the input image
c Condition for cGAN
cf (x, δ) Discretizing function that maps f(x) + δ to an integer
G(z, c) Generator of cGAN
D(x, c) Discriminator of cGAN
pdata(x) Real image data distribution
q(x) Learned data distribution by cGAN
r(x) Loss term of cGAN that measures similarity between real and learned data distribution
r(c|x) Loss term of cGAN that evaluates correspondence between generated images and condition
φ(x; θφ) Image feature extractor; part of the discriminator function
ψ(·) Loss function over image features

TABLE V
EXPLANATION MODEL (CGAN) ARCHITECTURE

(a) Encoder
Grayscale image x ∈ R256×256×1

BN, ReLU, 3×3 conv 64
Encoder-ResBlock down 128
Encoder-ResBlock down 256
Encoder-ResBlock down 512
Encoder-ResBlock down 1024
Encoder-ResBlock down 1024

(b) Generator
Latent code z ∈ R1024

Generator-ResBlock up 1024, y
Generator-ResBlock up 512, y
Generator-ResBlock up 256, y
Generator-ResBlock up 128, y
Generator-ResBlock up 64, y

BN, ReLU, 3×3 conv 1
Tanh

(c) Discriminator
Grayscale image x ∈ R256×256×1

Discriminator-ResBlock down 64
Discriminator-ResBlock down 128
Discriminator-ResBlock down 256
Discriminator-ResBlock down 512

Discriminator-ResBlock down 1024
Discriminator-ResBlock 1024

ReLU, Global Sum Pooling (GSP) | Embed(y)
Inner Product (GSP, Embed(y)) → R1

Add(SN-Dense(GSP) → R1, Inner Product)

discriminator, we used spectral normalization (SN) [48] in
Discriminator-ResBlock and performed down-sampling after
the second conv of the ResBlock as shown in Fig. 12.c. For
the optimization, we used Adam optimizer [53], with hyper-
parameters set to α = 0.0002, β1 = 0, β2 = 0.9 and updated
the discriminator five times per one update of the generator
and encoder.

For creating the training dataset, we set hyper-parameter
δ to a fix value and divide the posterior distribution for
the target class, f(x) ∈ [0, 1] into b 1

δ c equally-sized bins.

The cGAN is then trained on b 1
δ c conditions. For efficient

training, cBN requires class-balanced batches. A smaller value
for δ results in more conditions for training cGAN, increasing
cGAN complexity and training time. Also, we have to increase
the batch size to ensure each condition is well represented
in a batch. Hence, the GPU memory size bounds the lower
value for δ. A large value of δ is equivalent to fewer bins,
resulting in a coarse transformation which leads to abrupt
changes across explanation images. In our experiments, we
used δ = 0.1, which is equivalent to ten bins with a batch
size of 32. We experimented with different values of δ and
selected the smallest δ, which created a class-balanced batch
that fits in GPU memory and resulted in stable cGAN training.

4) Semantic Segmentation: We adopted a 2D U-Net [58]
to perform semantic segmentation, to mark the lung and the
heart contour in a chest x-ray. The network optimizes a multi-
categorical cross-entropy loss function, defined as,

Lθ :=
∑
s

∑
i

1(yi = s) log(pθ(xi)), (10)

where 1 is the indicator function, yi is the ground truth
label for i-th pixel. s is the segmentation label with values
(background, the lung or the heart). pθ(xi) denotes the output
probability for pixel xi and θ are the learned parameters. The
network is trained on 385 chest x-rays and corresponding
masks from Japanese Society of Radiological Technology
(JSRT) [59] and Montgomery [60] datasets.

5) Object Detection: We trained an object detector net-
work to identify medical devices in the chest x-ray. For the
MIMIC-CXR dataset, we pre-processed the reports to extract
keywords/observations that correspond to medical devices,
including pacemakers, screws, and other hardware. Such for-
eign objects are easy to identify in a chest x-ray and do
not requires expert knowledge for manual labeling. Using
the CheXpert labeler, we extracted 300 chest x-rays images
with positive mentions for each observation. The extracted
x-rays are then manually annotated with bounding box an-
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notations marking the presence of foreign objects using the
LabelMe [77] annotation tool. Next, we trained an object
detector based on fFast Region-based CNN [61], which used
VGG-16 model [78], trained on MIMIC-CXR dataset as its
foundation. We used this object detector to enforce our novel
context-aware reconstruction loss (CARL).

Fig. 11. The costophrenic angle (CPA) on a chest x-ray is marked as
the angle formed by, (a) costophrenic angle point, (b) hemidiaphragm
point and (c) lateral chest wall point, as shown by Maduskar et al.in [73]

We trained similar detectors for identifying normal and
abnormal CP recess region in the chest x-ray. We associated
an abnormal CP recess with the radiological finding of a blunt
CP angle as identified by the positive mention for “blunting of
costophrenic angle” in the corresponding radiology report. For
the normal-CP recess, we considered images with a positive
mention for “lungs are clear” in the reports. To train the object
detector we extracted 300 chest x-rays with positive mention
of respective terms for normal and abnormal CP recess.

Please note that, the object detector for CP recess is only
used for evaluation purposes and they were not used during
the training of the explanation function. In literature, the
blunting of CPA is an indication of pleural effusion [72], [73].
The angle between the chest wall and the diaphragm arc is
called costophrenic angle (CPA). Marking the CPA angle on
a chest x-ray requires an expert to mark the three points,
(a) costophrenic angle point, (b) hemidiaphragm point and
(c) lateral chest wall point and then calculate the angle as
shown in Fig. 11. Learning automatic marking of CPA angle
requires expert annotation and is prone to error. Hence, rather
than marking CPA angle, we annotate the CP region with a
bounding box which is a much simpler task. We then learned
an object detector to identify normal or abnormal CP recess
in the chest x-rays and used the Score for detecting a normal
CP recess (SCP) as our evaluation metric.

6) xGEM: We refer to work by Joshi et al. [29] for the
implementation of xGEM. xGEM iteratively traverses the
input image’s latent space and optimizes the traversal to flip
the classifier’s decision to a different class. Specifically, it
solves the following optimization

x̃ = Gθ(arg min
z∈Rd

L(x,Gθ(z)) + λ`(f(Gθ(z)), y
′
)) (11)

where the first terms is an `2 distance loss for comparing
real and generated data. The second term ensures that the

classification decision for the generated sample is in favour
of class y

′
and y

′ 6= y is a class other than original decision.
Unless explicitly imposed, the explanation image does not look
realistic. The explanation image is generated from an updated
latent feature, and the expressiveness of the generator limits its
visual quality. xGEM adopted a variational autoencoder (VAE)
as the generator. VAE uses a Gaussian likelihood (`2 recon-
struction), an unrealistic assumption for image data. Hence,
vanilla VAE is known to produce over-smoothed images [74].
The VAE used is available at https://github.com/LynnHo/VAE-
Tensorflow. All settings and architectures were set to default
values. The original code generates an image of dimension
64x64. We extended the given network to produce an image
with dimensions 256×256.

7) cycleGAN: We refer to the work by Narayanaswamy et
al. [37] and DeGrave et al. [38] for the implementation
details of cycleGAN. The network architecture for
cycleGAN is replicated from the GitHub repository
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.
For training cycleGAN, we consider two sets of images.
The first set comprises 2000 images from the MIMIC-CXR
dataset such that the classifier has a strong positive prediction
for the presence of a target disease i.e., f(x) > 0.9, and the
second set has the same number of images but with strong
negative prediction i.e., f(x) < 0.1. We train one such model
for each target disease.

TABLE VI
COMPARISON OF OUR METHOD AGAINST XGEM AND CYCLEGAN ON

ESSENTIAL PROPERTIES OF A COUNTERFACTUAL EXPLANATION.

Method Realistic-looking Flipping classification decision
Ours X X

xGEM × X
cycleGAN X ×

C. Extended data consistency results
A counterfactual explanation is a perturbation of input

image such that the decision of the classifier is flipped. For
example, consider a chest x-ray with a positive classification
decision for cardiomegaly. A counterfactual explanation pro-
vides what-if scenario such that a minimal but perceptible
modification is applied to the x-ray image (what), and the
resulting image is negative for cardiomegaly. To create such
an explanation, a counterfactual should satisfy two essential
properties; first, a counterfactual should be very similar to the
input. Second, the counterfactual should produce an opposite
outcome when processed by the classifier.

In Fig. 13 and Fig. 14, we show the results to visualize our
explanations and compared it against xGEM and cycleGAN
method. The results are an extension of main-Fig.6. We
can observe the explanation images generated by xGEM are
blurred and lacks the realistic-looking appeal of an x-ray
image. Consistent with this observation, earlier in our results
Table. 1, xGEM has a high FID i.e., the explanation images are
significantly different from the real x-ray images. The bottom
labels in Fig. 13 are the classifier’s prediction for the specific
disease. For cycleGAN, the results demonstrate an example

https://github.com/LynnHo/VAE-Tensorflow
https://github.com/LynnHo/VAE-Tensorflow
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Fig. 12. Architecture of the ResBlocks used in all experiments.

TABLE VII
RESULTS OF INDEPENDENT T-TEST. WE COMPARED THE DIFFERENCE DISTRIBUTION OF CARDIOTHORACIC RATIO (CTR) FOR

CARDIOMEGALY AND THE SCORE FOR NORMAL COSTOPHRENIC RECESS (SCP) FOR PLEURAL EFFUSION.

Target Paired Differences
Disease Real Counterfactual 95% Confidence Interval

Group Group Mean Difference Std Lower Upper t df p-value
Cardiomegaly Xn Xacf -0.03 0.07 -0.03 -0.01 -4.4 304 < 0.0001

(CTR) Xa Xncf 0.14 0.12 0.13 0.15 24.7 513 � 0.0001
Pleural effusion Xn Xacf 0.13 0.22 0.06 0.13 5.9 217 � 0.0001

(SCP) Xa Xncf -0.19 0.27 -0.18 -0.09 -6.7 216 � 0.0001

Un-Paired Differences
Mean Mean 95% Confidence Interval

Real Group Counterfactual Group Lower Upper t df p-value
Cardiomegaly Xn Xncf 0.46 0.42 0.02 0.06 5.2 817 < 0.0001

(CTR) Xa Xacf 0.56 0.50 0.04 0.07 9.9 817 � 0.0001
Pleural effusion Xn Xncf 0.69 0.61 0.18 0.27 9.3 433 � 0.0001

(SCP) Xa Xacf 0.42 0.56 -0.32 -0.21 -9.7 433 � 0.0001

where the counterfactual image doesn’t have an opposing
prediction as compared to the input image. In Fig. 13, in
cardiomegaly and edema the counterfactual image obtained
by cycleGAN have almost the same prediction (f(xδ) < 0.5)
as compared to input normal x-ray (f(x) < 0.5). Overall,
this finding is consistent with the low counterfactual validity
score in Table. 1. We summarize the comparison between three
methods in Table VI. As compared to our model, both, xGEM
and cycleGAN failed on atleast one essential property of a
valid counterfactual explanation.

Next, we quantify the consistency between our explanations
and the classification model at every step of the transformation.
We generated multiple, progressively changing explanations
for xGEM by traversing the latent space. For each input image,
we generated ten explanation images. For cycleGAN, we can
generate only images at the two extreme ends of the decision
boundary. In Fig. 15, we plotted the average response of the
classifier i.e., f(xδ) for explanations in each bin against the
expected classification outcome i.e., f(x)+δ. The figure shows
an extension of the results in main-Fig.7. The positive slope of
the line-plot, parallel to y = x line at 45◦ confirms that starting
from images with low f(x), our model creates fake images
such that f(xδ) is high and vice-versa. Thus, our model creates

explanations that successfully flips the classification decision
and, hence, represents the decision-making process of the
classifier. In contrast, for cycleGAN model, if f(x) ∈ [0.0, 0.4]
(blue line-plot), the resulting explanations have f(xδ) < 0.5,
hence, cycleGAN model fails to flip the classification decision,
as also evident in low CV score in main-Table.1.

Further, we provide addition plots with different measure-
ments on each axis. In Fig 16, we plot f(x) versus f(xδ)− δ
and color each point based on δ. Ideally, f(xδ) − δ ≈ f(x).
Our model achieved maximum r2 coefficient for regression.
When f(x) is large, δ is mostly negative (darker shades) and
vice-versa. For cardiomegaly and edema, xGEM achieves
a progressive transformation, but it doesn’t cover the entire
prediction range.

D. Evaluating class discrimination

In multi-label settings, multiple labels can be true for a
given image. A multi-label setting is common in chest x-ray
diagnosis. For example, cardiomegaly and pleural effusion are
associated with cardiogenic edema and frequently co-occur in
a chest x-ray. Please note that our classification model is also
trained in a multi-label setting where the fourteen radiological
findings may co-occur in a chest x-ray. In this evaluation,
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Fig. 13. The transformation of a normal chest x-ray into the counterfactual explanations for three classes, cardiomegaly (first row), pleural effusion
(PE) (middle row) and edema (last row). The bottom labels are the classifier’s prediction for the specific class. The yellow color highlight the
prediction where counterfactual fails to flip the decision. The last column shows the difference map between normal and abnormal explanation. For
cardiomegaly and edema, we are reporting cardio thoracic ratio (CTR) calculated from the heart segmentation (yellow) and thoracic diameter (red).
For PE and edema, we show the bounding-box (BB) for normal (blue) and abnormal (red) costophrenic (CP) recess. The number on blue-BB is the
Score for detecting a normal CP recess (SCP). The number on red-BB is 1-SCP.
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Fig. 14. The transformation of an abnormal chest x-ray into the counterfactual explanations for three classes, cardiomegaly (first row), pleural
effusion (PE) (middle row) and edema (last row). The bottom labels are the classifier’s prediction for the specific class. The yellow color highlight
the prediction where counterfactual fails to flip the decision. The last column shows the difference map between normal and abnormal explanation.
For cardiomegaly and edema, we are reporting cardio thoracic ratio (CTR) calculated from the heart segmentation (yellow) and thoracic diameter
(red). For PE and edema, we show the bounding-box (BB) for normal (blue) and abnormal (red) costophrenic (CP) recess. The number on blue-BB
is the Score for detecting a normal CP recess (SCP). The number on red-BB is 1-SCP.
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Fig. 15. The plot of desired outcome, f(x) + δ, against actual response of the classifier on generated explanations, f(xδ). Each line represents
a set of input images with classification prediction f(x) in a given range. Dashed line represents y = x line.

we demonstrate the sensitivity of our generated explanations
to the class being explained. We considered three classes,
or diseases, cardiomegaly, pleural effusion, and edema. For
each target class, we trained one explanation model. Ideally,
an explanation model trained to explain a target class should
produce explanations consistent with the query image on all
the other classes besides the target. Fig. 17 plots the fraction of
the generated explanations, that have flipped in other classes
as compared to the query image. Ideally, the fraction should
be maximum for the target class and small for the rest of the
classes. In Fig. 17, each column represents one class, and each
row is one run of our method to explain a given target class.
The diagonal values also represent the counterfactual validity
(CV) score reported in main-Table.1.

E. Extended results for identity preservation

A FO is critical in identifying the patient in an x-ray. FO’s
disappearance may lead to a false conclusion that removing
FO resulted in the changed classification decision.

We performed an ablation study to investigate if a pace-
maker is influencing the classifier’s prediction for car-
diomegaly. We consider 300 subjects that are positively pre-
dicted for cardiomegaly and have a pacemaker. We used our
pre-trained object detector to find the bounding-box annota-
tions for these images. Using the bounding-box, we created
a perturbation of the input image by masking the pacemaker
and in-filling the masked region with the surrounding context.
An example of the perturbation image is shown in Fig. 20.
We passed the perturbed image through the classifier and
calculated the difference in the classifier’s prediction before
and after removing the pacemaker. The average change in
prediction was negligible (0.03). Hence, pacemaker is not
influencing classification decisions for cardiomegaly. We have
added a new section in supplementary material to discuss this
experiment.

Next, we present the extended results for the identity
preservation experiment. We calculated the FO preservation
(FOP) score to demonstrate the importance of CARL loss in
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Fig. 16. The plot between prediction decision for the fake explanation images f(xδ) minus delta and prediction decision for the real images f(x).
Ideally f(xδ)− δ ≈ f(x).

Fig. 17. Each cell is the fraction of the generated explanations, that have flipped in a class as compared to the query image. The x-axis shows the
classes in a multi-label setting, and the y-axis shows the target class for which an explanation is generated. Note: This is not a confusion matrix.

preserving patient-specific details such as a pacemaker. We
considered real images with successful detection of FO and
reported the FOP score as the fraction of these images in
which FO was also detected in the corresponding CE. In
Table VIII, we provide FOP score our method and cycleGAN
method. CycleGAN is good at preserving small details in the
explanation images, as evident in its high FOP score. But in
previous experiments, we have shown that even though images
created by cycleGAN are the most realistic (with the lowest
FID), they are not valid counterfactuals as they fail to flip the
classification decision with a low CV score.

TABLE VIII
THE FOREIGN OBJECT PRESERVATION (FOP) SCORE FOR DIFFERENT

MODELS. FOP SCORE DEPENDS ON THE PERFORMANCE OF FOREIGN

OBJECT DETECTOR.

Foreign Ours CycleGAN
Object with CARL with `1

Pacemaker 0.52 0.40 0.91
Hardware 0.63 0.32 0.89

F. Extended results for saliency maps
Our method doesn’t produce a saliency map by default.

We approximated a saliency map as an absolute difference
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A. Input Image
(Negative Cardiomegaly)Normal Abnormal

|Normal –
Abnormal| Normal Abnormal

|Normal –
Abnormal|

B.  Input Image
(Positive Cardiomegaly)

CTR = 0.40 CTR = 0.32 ∆ = 0.08 CTR = 0.42

CTR = 0.42 CTR = 0.33 ∆ = 0.09 CTR = 0.44CTR = 0.25 CTR = 0.20 CTR = 0.25 ∆=0.00

CTR = 0.24 CTR = 0.21 CTR = 0.27 ∆=0.03 

CTR = 0.39 CTR = 0.20 ∆ = 0.19 CTR = 0.44

CTR = 0.28 CTR = 0.28 CTR = 0.33 ∆ = 0.05

CTR = 0.27 CTR = 0.20 CTR = 0.25 ∆ = -0.02 

CTR = 0.40 CTR = 0.31 ∆ = 0.09 CTR = 0.41

Fig. 18. Extended results for explanation produced by our model for Cardiomegaly. For each image, we generate a normal and an abnormal
explanation image. We show pixel-wise difference of the two generated images as the saliency map. In column A.(B.), we show input images
negatively (positively) classified for Cardiomegaly. The yellow contour shows the heart boundary learned by a segmentation network. CTR is the
cardiothoracic ratio. For column A, we observe a relatively minor change in CTR (∆) between real and counterfactual images than in column B.

Input Image Normal Abnormal |Normal – Abnormal| Input Image Normal Abnormal |Normal – Abnormal| Input Image Normal Abnormal |Normal – Abnormal|

Fig. 19. Extended results for explanation produced by our model for Pleural Effusion. For each input image, we produce a normal and abnormal
image as an explanation and take their pixel-wise difference to extract the saliency map.

map between the explanations generated for the two extremes
(normal with f(xδ) < 0.2 and abnormal f(xδ) > 0.8) of the
decision function f . In Fig. 18, we showed the two extreme
explanation images and the corresponding difference map,
derived for input images shown in the column A and B.
We highlight the heart contour in yellow and reported CTR
values. The difference maps mostly highlight the heart region
for cardiomegaly. Next, we show extended results for pleural
effusion (PE). For PE, our difference map highlights the CP
recess region, as shown in Fig, 19.

Further, we used the deletion evaluation metric to quanti-

tatively compare the saliency maps generated from gradient-
based methods against our difference map [67]. The metric
quantifies how the probability of the target-class changes as
important pixels are removed from an image. To remove pixels
from an image, we tried selectively impainting the region
based on its surroundings. In Fig. 21, we show an example of
deletion-by-impainting. For generating results in main-Table.3,
we plot the deletion curve for 500 images, and calculated area
under the deletion curve (AUDC) for each.

Please note that, as more pixels are removed, the modified
images become unrealistic and visually appear different from
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Fig. 20. An example of input image before and after removing the
pacemaker.
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Fig. 21. Deletion-by-impainting: (a) input image. (b) transformation
of the input image as important pixels are deleted, and the resulting
patches are in-filled base on the surrounding context. The importance
is derived from the saliency map produced from our (top-row) and
gradient-based (bottom-row) method. The top label shows the fraction
of removed pixels. The bottom label shows the classification outcome for
a target class. (c) The plot shows the change in classification prediction
as a function of the fraction of removed pixels.

a chest x-ray. The behavior of the classifier on such images is
inconsistent. Low AUDC demonstrates that all the methods are
successful in localizing the important regions for classification.
However, unlike saliency-based methods, our counterfactual
explanation provides extra information on what image features
in those relevant regions for classification and how those image
features should be modified to flip the decision.

G. Disease-specific evaluation

For quantitative analysis, we randomly sample two groups
of real images (1) a real-normal group defined as Xn =
{x; f(x) < 0.2}. It consists of real chest x-rays that are
predicted as normal by the classifier f . (2) A real-abnormal
group defined as X a = {x; f(x) > 0.8}. For Xn we generated
a counterfactual group as, X acf = {x ∈ Xn; f(If (x, δ)) >
0.8}. Similarly for X a, we derived a counterfactual group as
Xncf = {x ∈ X a; f(If (x, δ)) < 0.2}.

Next, we quantify the differences in real and counterfactual
groups by performing statistical tests on the distribution of
clinical metrics such as cardiothoracic ratio (CTR) and the
Score of normal Costophrenic recess (SCP). Specifically, we
performed the dependent t-test statistics on clinical metrics
for paired samples (Xn and X acf ), (X a and Xncf ) and the

independent two-sample t-test statistics for normal (Xn, Xncf )
and abnormal (X a, X acf ) groups. The two-sample t-tests are
statistical tests used to compare the means of two populations.
A low p-value < 0.0001 rejects the null hypothesis and
supports the alternate hypothesis that the difference in the two
groups is statistically significant and that this difference is un-
likely to be caused by sampling error or by chance. For paired
t-test, the mean difference corresponds to the average causal
effect of the intervention on the variable under examination. In
our setting, intervention is a do operator on input image (x),
before intervention, resulting in a counterfactual image (xδ),
after intervention.

Table VII provides the extended results for the Fig. 10.
Patients with cardiomegaly have higher CTR as compared
to normal subjects. Hence, one should expect CTR(Xn) <
CTR(X acf ) and likewise CTR(X a) > CTR(Xncf ). Consistent
with clinical knowledge, in Table. VII, we observe a negative
mean difference of -0.03 for CTR(Xn) − CTR(X acf ) (a p-
value of < 0.0001) and a positive mean difference of 0.14 for
CTR(X a) − CTR(Xncf ) (with a p-value of � 0.0001). On a
population-level CTR was successful in capturing the differ-
ence between normal and abnormal chest x-rays. Specifically
in un-paired differences, we observe a low mean CTR values
for normal subjects i.e., mean CTR(Xn) = 0.46 as compared
to mean CTR for abnormal patients i.e., mean CTR(X a) =
0.56. The low p-values supports the alternate hypothesis that
the difference in the two groups is statistically significant.

Further, in Fig 18.A, we show samples from input images
that were predicted as negative for cardiomegaly (Xn). In their
counterfactual abnormal images (third column), we observe
small changes in CTR are sufficient to flip the classification
decision. This is consistent with a small mean difference
CTR(Xn) - CTR(X acf ) = −0.03. In contrast, when we
generate counterfactual normal (sixth column) from real abnor-
mal images (positive for cardiomegaly, Fig 18.B), significant
changes in CTR lead to flipping of the prediction decision.
This observation is consistent with a large mean difference
CTR(X a) - CTR(Xncf ) = 0.14.

By design, the object detector assigns a low SCP to any
indication of blunting CPA or abnormal CP recess. Hence,
SCP(Xn) > SCP(X acf ) and likewise SCP(X a) < SCP(Xncf ).
Consistent with our expectation, in Table. VII, we observe a
positive mean difference of 0.13 for SCP(Xn) − SCP(X acf )
(with a p-value of � 0.0001) and a negative mean differ-
ence of -0.19 for SCP(X a) − SCP(Xncf ) (with a p-value of
� 0.0001). On a population-level SCP was successful in
capturing the difference between normal and abnormal chest x-
rays for pleural effusion. Specifically in un-paired differences,
we observe a high mean SCP values for normal subjects i.e.,
mean SCP(Xn) = 0.69 as compared to mean SCP for abnormal
patients i.e., mean SCP(X a) = 0.42. A low p-value confirmed
the statistically significant difference in SCP for real images
and their corresponding counterfactuals.


