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Electromagnetic Inversion with Local Power
Conservation for Metasurface Design

Trevor Brown, Yousef Vahabzadeh, Christophe Caloz, and Puyan Mojabi

Abstract—A method based on electromagnetic inversion is
extended to facilitate the design of passive, lossless, and reciprocal
metasurfaces. More specifically, the inversion step is modified
to ensure that the field transformation satisfies local power
conservation, using available knowledge of the incident field. This
paper formulates a novel cost functional to apply this additional
constraint, and describes the optimization procedure used to find
a solution that satisfies both the user-defined field specifications
and local power conservation. Lastly, the method is demonstrated
with a two-dimensional (2D) example.

Index Terms—Electromagnetic metasurfaces, inverse prob-
lems, inverse source problems, optimization, antenna design.

I. INTRODUCTION

Metasurfaces have emerged as useful devices for sys-
tematically controlling electromagnetic fields [1]–[6]. These
subwavelengthly thin structures can perform arbitrary field
transformations by imposing appropriate generalized boundary
conditions, providing a level of control over some desired field
produced by a known incident field. This fundamental ability
has led to a variety of applications, including generalized
refraction and reflection [7], polarization manipulation [8], [9],
spatial processing [10], impedance matching [11], radiation
pattern tailoring [12], and others.

In order to design a metasurface to perform a given field
transformation, the tangential electric and magnetic fields must
be known on either side of the boundary imposed by the
metasurface. Most existing design procedures are limited to
problems in which the output field is known analytically on
the output side of the metasurface. However, this is satis-
factory only for well-defined problems such as plane wave
refraction [13]. In order to generalize this to incompletely
defined problems, we recently developed a design method
which allows for more flexible output field specifications [14].
Using this method, referred to as electromagnetic inversion
for metasurface design, the field can be specified at arbitrary
locations external to the metasurface, either with or without
phase (amplitude-only) information. Furthermore, the desired
field can also be specified as a set of performance criteria,
such as main beam direction(s), null location(s), beamwidth, or
polarization. While this method allows for more general field
specifications, it does not take advantage of prior knowledge
of the incident field and typically requires loss and/or gain to
perform the specified field transformation.

In this work, we extend the electromagnetic inversion al-
gorithm of [14] to allow for the design of lossless, passive,
and reciprocal metasurfaces. This method uses electromagnetic
inversion to solve for a set of tangential output (transmitted)

fields that produce some user-specified field, but modifies
the inversion process by incorporating an additional step that
penalizes solutions that do not satisfy local power conser-
vation (LPC). Note that LPC dictates that for reflectionless
metasurfaces the power entering a given unit cell is equal to the
power exiting that unit cell in the direction normal to the meta-
surface. Once an appropriate solution is found that satisfies
both the field specifications and LPC, surface susceptibilities
(or, other types of parameters such as surface impedances) can
be computed to perform the required transformation.

Enforcing LPC necessarily limits the ability to tailor the
amplitude of the wavefronts. This can be understood by noting
that LPC is concerned with power at the unit cell level,
thus, immediately placing a constraint on the amplitude of
the wave at the output port of each unit cell. This can be an
issue for complex design problems such as antenna pattern
synthesis as they often need full control over both amplitude
and phase. Recently, different methods have been suggested
to enable more amplitude control by considering total power
conservation (TPC); e.g., see [15] for different examples. One
of these methods [12], [16] uses two metasurfaces instead
of one, each of which individually satisfies LPC. However,
collectively, the two-metasurface system only satisfies TPC.
Herein, we restrict our attention to single metasurfaces and do
not consider cascaded structures.

We begin by briefly reviewing the electromagnetic inversion
design procedure without LPC. We then discuss and derive
the constraint used to enforce LPC, and then describe how
the inversion process is modified to account for this new
constraint. An example is then presented to demonstrate this
idea. Finally, some conclusions and a discussion of possible
extensions to this work are presented.

II. INVERSE SOURCE DESIGN FRAMEWORK

Herein, we present a brief review of the design method
presented in [14], where the main goal is to find tangential
fields on the output side of the metasurface that satisfy some
set of user-defined field specifications S in some external
region of interest (ROI). An overview of the problem is
depicted in Figure 1. We denote the input and output surface
boundaries of the metasurface as Σ− and Σ+, respectively.
The tangential fields (denoted as such by the subscript t) that
we require to design the metasurface consist of the total fields
on Σ−, ~E−

t and ~H−
t (consisting of the incident and reflected

fields), and the transmitted fields on Σ+, ~E+
t and ~H+

t . The
user-defined specifications S in the ROI fall into three general
categories, ordered from most to least specific (i.e., most to
least information):
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Fig. 1. Overview of the metasurface design problem. The input and output
surface boundaries of the metasurface are denoted by Σ− and Σ+, respec-
tively. Some source generates an incident field ~Ψinc which interacts with the
metasurface, producing both a reflected field ~Ψref and a transmitted field ~Ψtr.
The tangential components of the electric and magnetic fields on Σ− are
denoted as ~E−

t and ~H−
t , while the tangential fields on Σ+ are denoted as

~E+
t and ~H+

t . The user-defined field specifications S are defined on some
of interest (ROI) external to the metasurface. Since the metasurface may be
of arbitrary shape, we define the local coordinate system (û, v̂, n̂) on Σ+,
where n̂ is the unit outward normal to Σ+. © 2019 IEEE. Reprinted, with
permission, from [14] with minor modifications.

1) Complex (amplitude and phase) field distributions (ei-
ther in the near-field or far-field regions),

2) Phaseless field distributions (i.e., amplitude-only, power
pattern),

3) Far-field performance criteria (i.e., main beam direc-
tions(s), null locations, beamwidth, etc.).

The specifications S in the ROI will be inputted to an
electromagnetic inverse source algorithm, which we simply
refer to as an inversion algorithm.1 This inversion algorithm
solves for a set of equivalent electric ( ~J) and magnetic ( ~M)
currents that produce the field specifications in the ROI. It
should be noted that a unique solution for the equivalent
currents does not exist due to the inherent ill-posedness of
the inverse source problem; however, this non-uniqueness is
actually advantageous for design problems as it increases
the available degrees of freedom [18], [19]. The domain
upon which the equivalent currents are determined, commonly
referred to as the ‘reconstruction surface’, is chosen to coincide
with the physical boundary imposed by the metasurface. These
currents are found by minimizing a data misfit cost functional,
which we denote herein as C1( ~J, ~M), using the conjugate gra-
dient method. (This cost functional is a mapping from complex
equivalent currents to a real value.) This functional essentially
quantifies the difference between the fields generated by the
equivalent currents and the field specifications, with the exact
form depending on the category of field specifications listed
above. (For more details on this data misfit cost functional,
see (12), (13), and (20) in [14].)

If Love’s equivalence condition is enforced (i.e., null fields

1In addition to electromagnetic inverse source algorithms, electromagnetic
inverse scattering algorithms have also been used for design applications; e.g.,
see [17].

on the input side of the metasurface), then the resulting
equivalent currents are related to the desired transmitted fields
as

~H+
t = −αn̂× ~J and ~E+

t = αn̂× ~M, (1)

where α is a real-valued scaling parameter which does not
affect the characteristics of the normalized radiated field, but
allows for some flexibility that will be utilized in the next sec-
tion. Once the desired tangential transmitted fields are known,
the generalized sheet transition conditions (GSTCs) [20] can
be utilized to determine a set of surface susceptibilities mod-
elling the discontinuity from the (known) incident/reflected
field and (desired) transmitted field [6]. Assuming a time-
dependency of ejωt and free space on either side of the
metasurface, the relationship can be written as(
−∆Hv

∆Hu

)
= jωε0

(
χuuee χuvee
χvuee χvvee

)(
Eu,av
Ev,av

)
+ jω

√
ε0µ0

(
χuuem χuvem
χvuem χvvem

)(
Hu,av
Hv,av

) (2a)

(
−∆Eu
∆Ev

)
= jωµ0

(
χvvmm χvumm
χuvmm χuumm

)(
Hv,av
Hu,av

)
+ jω

√
ε0µ0

(
χvvme χvume
χuvme χuume

)(
Ev,av
Eu,av

)
,

(2b)

where ω is the angular frequency of the time harmonic fields,
and ε0 and µ0 are the permittivity and permeability of free
space.2 The subscripts and superscripts u and v denote the
tangential components of the local coordinate system of each
unit cell defined by û× v̂ = n̂ and û ⊥ v̂. The χ terms repre-
sent the electric/magnetic (first subscript) surface susceptibility
components in the presence of an electric/magnetic (second
subscript) field excitation [21]. The spatial dependencies of the
E, H , and χ terms, which span the metasurface geometrical
surface, have been dropped for brevity. The difference and
average fields are defined for an arbitrary field ~Ψ as

∆~Ψ , ~Ψtr −
(
~Ψinc + ~Ψref

)
(3)

~Ψav ,
~Ψtr|Σ+ +

(
~Ψinc|Σ− + ~Ψref|Σ−

)
2

. (4)

The final step in the design procedure is solving (2) for the
non-zero susceptibility terms (depending on the problem, some
χ terms may be assumed to be zero). Once the susceptibilities
are determined, they can be implemented in different ways,
e.g., as three-layered (dogbone) impedance sheets [22], [23], as
will be considered later. Note that in the three-layer impedance
sheet approach, it is often assumed that the impedance sheets
are purely reactive, and that they are printed on (nearly)
lossless dielectric substrates. Therefore, LPC needs to hold
when considering this unit cell design approach.

2The formulation shown here assumes that the normal components of the
polarization densities are zero for mathematical simplicity.
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III. ENFORCING LOCAL POWER CONSERVATION (LPC)
The main limitation of the electromagnetic inversion design

procedure presented in [14] is that the synthesized susceptibil-
ities may require (undesirable) loss and/or gain. To overcome
this issue, we first require that the input and output fields must
satisfy LPC [23], [24]. That is, the real power incident on each
unit cell must be equal to the real power transmitted from each
unit cell, as enforced by the following equation that must hold
along the metasurface, i.e., at each unit cell:

1

2
Re( ~E−

t × ~H−∗
t ) =

1

2
Re( ~E+

t × ~H+∗
t ) (5)

where ‘Re’ denotes the real-part operator and the superscript
‘∗’ denotes the complex conjugate operator. From this point
onwards, we will assume 2D TEz polarized fields and a 1D
metasurface along the line x = 0 (i.e., û = ŷ, v̂ = ẑ, and n̂ =
x̂) for simplicity, although the formulation would still hold for
arbitrarily-shaped metasurfaces and 3D fields. We denote the
left hand side of (5) evaluated at the ith unit cell as

pi =
1

2
Re(E−

y ×H−∗
z )

∣∣∣∣
unit cell i

. (6)

Note that pi for all i values is known since it corresponds to
the input power density at each unit cell of the metasurface.
(Herein, we assume a reflectionless metasurface; thus, E−

y

and H−
z correspond to the incident electromagnetic field.)

Using (6) and the relationship between the equivalent currents
and the tangential transmitted fields in (1), we can write the
LPC constraint in (5) as the following vector equality p1

...
pN

 =
α2

2
Re(

MzJ
∗
y |unit cell 1

...
MzJ

∗
y |unit cell N

) (7)

where N is the total number of unit cells. The above vector
equality can then be compactly written as

p =
α2

2
Re(M� J∗) (8)

where J and M are discretized complex vectors of the
equivalent currents Jy and Mz at each unit cell; i.e., J ∈ CN
and M ∈ CN . In addition, ‘�’ represents the element-wise
Hadamard product. The vector p ∈ RN is a discrete vector of
the real incident power calculated at each unit cell, with the
ith element of p equal to pi.

Separating the equivalent currents into their real and imagi-
nary parts, denoted by the subscripts ‘R’ and ‘I’, (8) becomes

p =
α2

2
Re
{

(MR + jMI)� (JR − jJI)
}

=
α2

2
(JR �MR + JI �MI). (9)

At this point, the restriction imposed by the LPC constraint
becomes obvious. In [14], the equivalent currents had four
degrees of freedom (i.e. JR, JI, MR, and MI) to satisfy the
field specifications, but as shown in (9), the LPC constraint
reduces the degrees of freedom to three. In other words,
enforcing LPC results in a reduction in the dimension of the
solution space, and may exclude some solutions that would
otherwise satisfy the field constraints in an optimal manner.

We can now formulate a cost functional, say C2, to quantify
the LPC constraint and include it in the design procedure. This
term is formulated from (9) as

C2(J,M) =

∥∥JR �MR + JI �MI − 2
α2 · p

∥∥2

2∥∥ 2
α2 · p

∥∥2

2

(10)

where ‖ · ‖2 represents an L2 norm. Since we have complete
freedom in selecting the scaling parameter α, it should be
chosen in a way that minimizes (10) for a given set of currents.
Therefore, when (10) is evaluated, the parameter α that results
in the minimum of (10) is used.

IV. METHODOLOGY

Our unknowns consist of the separated real and imaginary
parts of the electric and magnetic equivalent currents, which
we collectively write for convenience as

x =
[
JR ; JI ; MR ; MI

]
∈ R4N (11)

where ‘;’ denotes the column-wise vector concatenation. First,
as described in [14], C1(x), which includes the desired field
specifications, is minimized without the LPC constraint using
the conjugate gradient method. This provides an estimate for
x that satisfies the field constraints and Love’s condition prior
to applying the LPC constraint. This estimate of x is denoted
as x0. Next, we minimize

C (x) = C1 (x)︸ ︷︷ ︸
specifications

+ κ C2 (x)︸ ︷︷ ︸
LPC

, (12)

where κ is a real-valued scalar weighting parameter used
to balance the contribution of C2 (LPC) with respect to C1
(field specifications). Particle swarm optimization (a global
optimization technique) is used to minimize (12), rather than
a gradient-based technique, due to the increased nonlinearity
introduced by C2 (x). The initial particle states are set to
x0 and the absolute search space bounds are set to be 10%
above the maximum absolute value of x0. Once convergence is
reached, the required tangential fields are obtained using (1).3

Next, the susceptibility components required to support the
desired transformation must be computed. As noted in [23],
if we want to support a transformation of this nature without
using loss and/or gain, we require more degrees of freedom
than afforded by only χee and χmm (tensors collectively repre-
senting the various χee and χmm terms in (2), respectively).
One way to overcome this limitation is by allowing the
bianisotropic terms χem and χme to be non-zero, introducing
magnetoelectric coupling to the metasurface.

Assuming 2D TEz fields with a 1D metasurface along
x = 0, (2) simplifies to

−∆Hz = (jωε0Ey,av)χyyee + (jω
√
µ0ε0Hz,av)χyzem (13a)

−∆Ey = (jωµ0Hz,av)χzzmm + (jω
√
µ0ε0Ey,av)χzyme. (13b)

3In this framework, the number of discrete points used to enforce the
field specifications does not typically increase with problem size. Therefore,
for larger problems, the number of ‘observation’ points (related to the rows
of the matrix operator involved in computing C1) will become dominated
by the ‘virtual’ points at which Love’s equivalence condition (null field) is
enforced. With this assumption, the computational complexity of evaluating
C1 is O(N2) and C2 is O(N), where N is the number of unit cells.
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In order to avoid loss and gain, we first stipulate that χyyee

and χzzmm must be purely real [23]. Next, we note that since
χyyee ∈ R and χzzmm ∈ R satisfy the first two conditions for
losslessness and passivity, the remaining (third) condition for
losslessness and passivity, i.e., (χyzem)∗ = χzyme, must also hold
since the field transformation satisfies LPC. If we enforce
χyzem and χzyme to be purely imaginary, then any lossless and
passive solution will also satisfy the condition of reciprocity,
χyzem = − χzyme [13]. This results in four real unknowns (per
unit cell) that must satisfy the two complex equations in (13),
which can be directly computed assuming the tangential fields
on both sides of the metasurface are known.

V. RESULTS

To illustrate the proposed method, we design a reflectionless
1D metasurface specified to transform an incident TEz plane
wave into a desired power pattern (phaseless field information
only) specified in the far-field region. The fields are assumed to
propagate in 2D in the xy plane, with the metasurface placed
at x = 0. The frequency is 10.5 GHz and the metasurface
unit cells are λ/6 in length, where λ represents the free space
wavelength. The designed region of the metasurface extends
from y = −2.5λ to y = 2.5λ, with absorbing elements placed
along the rest of the x = 0 line. The incident field is a normally
incident uniform plane wave. The desired phaseless power
pattern is produced by simulating an array of 9 uniformly
spaced elementary dipoles along the y-axis between y = −2λ
and y = 2λ. The specified desired far-field power pattern is
computed for −90◦ ≤ ϕ ≤ 90◦ and shown (in red) in Figure 2.

The surface on which the equivalent currents are recon-
structed is chosen to coincide with the metasurface, with
the same λ/6 discretization. First, a solution is found by
minimizing the cost functional without the LPC constraint.
This solution is then used to initialize a particle swarm
optimization algorithm that minimizes (12) using a swarm size
of 200 and a scaling factor of 0.1 for κ. The far-field pattern
corresponding to the equivalent currents from the particle
swarm optimization stage is shown in Figure 2 to demonstrate
the decrease in pattern accuracy that must be made to enforce
the LPC constraint. The resulting solution is then used to
compute the four susceptibility terms using (1) and (13), which
are necessarily passive, lossless, and reciprocal.

We then simulate the designed metasurface in ANSYS
HFSS using the method described in [25]. This technique
implements each unit cell using a three-layer admittance sheet
topology [26], using the conversion between susceptibilities
and admittances explicitly stated in [25]. The unit cells are then
modelled in HFSS using three impedance boundary conditions,
between which exist two substrate layers. The substrate used in
this example is Rogers RO3010 (εr = 10.2, tan δ = 0.0022)
with each layer having a thickness of 50 mil. Additionally,
metallic baffles have been placed between the unit cells, as
in [22]. The total electric field resulting from this simulation is
shown in Figure 3, and the far-field pattern associated with this
simulation is shown in Figure 2. These results show that the
main features of the desired power pattern have been generated
with only minor reflections, despite some deviation in the
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Fig. 2. Far-field power pattern produced by the equivalent currents generated
after enforcing LPC using PSO (dashed black curve), the power pattern
produced by the HFSS simulation of the designed metasurface (solid blue
curve), and specified power pattern (solid red curve with circular markers).
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Fig. 3. Electric field amplitude when the designed metasurface is implemented
using the three-layer admittance sheet topology and illuminated by a normally
incident uniform plane wave, simulated using ANSYS HFSS.

sidelobes. As noted earlier, this might be attributed to the fact
that LPC does not allow for full control over the amplitude of
the transmitted field. The transmission efficiency, defined as
the ratio of the real power transmitted through the metasurface
to the real power incident on the metasurface, is 78.7%.

VI. CONCLUSION

A general metasurface design method was extended to
ensure that the resulting field transformation satisfies local
power conservation, allowing for the design of passive, loss-
less, and reciprocal metasurfaces. A constraint on the equiv-
alent currents was derived from the local power conservation
relationship, and incorporated into the design procedure us-
ing a secondary optimization step. Non-zero magnetoelectric
coupling terms are introduced to compensate for the loss of
degrees of freedom resulting from excluding loss and gain.
A preliminary 2D example was shown for the design of a
passive, lossless, and reciprocal metasurface attempting to
produce a specified (phaseless) power pattern, with relatively
good agreement.
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