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 6 
Abstract: As deep learning AI becomes more and more common in business and even in our daily lives, it is 7 
important to understand what the carbon impact of this type of software is. Recent papers have shown that it 8 
can be quite great, i.e., the training of a single high-end model can result in emissions of more than 500t of 9 
CO2eq. In this article we describe a life-cycle-focused framework to estimate the carbon drivers of a new deep 10 
learning model. We experimentally verify some claims in the literature and provide suggestions on how to 11 
reduce the carbon footprint of a deep learning-based offering. The article should enable developers and man- 12 
agers to make informed and meaningful decisions to minimize their ML projects’ sustainability impact.   13 
 14 
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 16 

1. Introduction 17 

Artificial intelligence (AI), more specifically machine learning (ML), is increasingly becoming part of our 18 
lives. Many-layered neural networks (deep learning models) have brought us technological wonders. Facial 19 
recognition allows us to conveniently protect our smart phones. Natural language processing models under- 20 
stand human speech and turn it into commands for smart home applications. Companies use AI extensively in 21 
industrial applications ranging from the interpretation of infrared images of machinery to the analysis of pro- 22 
duction-related data. There is a strong competition to improve performance which leads to larger models that 23 
are trained longer. This in turn implies a greater energy consumption and thus more CO2 emissions (cf. [1], 24 
[2] and [3]). 25 
Yet, as concern over the climate crisis increases, more thought is given to the carbon footprint of AI models. 26 
Each model generation seems to grow in size and models start to consume energy on a massive scale for 27 
training alone. Critics of this trend cite examples such as GPT-3 [4], a deep NLP model with 175B parameters 28 
that writes human-like texts and needed 1’287 MWh for training. This corresponds to 552 t of CO2, which is 29 
equal to the annual emission of 276 average-style cars [2]. On the other hand, many AI models used today are 30 
much smaller. In fact, Patterson et al feel that some studies exaggerate the scope of the problem (cf. [5]). In 31 
the end, many AI providers are not sure what their models’ carbon footprint is and how to reduce it.  32 
The purpose of this article is to give managers and data scientists some guidance to understand exactly what 33 
impact their individual models have on the environment. For this purpose, a simple but comprehensive frame- 34 
work is presented that explains the key carbon drivers. We will give some advice as to how to reduce those 35 
drivers. Finally, some experimental results test the statements in the literature and challenge the current rec- 36 
ommendations related to transfer learning.   37 
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2. The Carbon Footprint of AI – State of the Art 38 

There is already a body of related work that has analyzed potential drivers for the carbon footprint of deep 39 
learning AI models. For example, there is a series of theoretical models that can be used ex ante to estimate 40 
the carbon impact of a new AI model based on its architecture (mainly layer types and size), training approach, 41 
and use for inference (see [2], [3], [6], and [7]). Between these approaches, there is some discussion about 42 
which metrics drive the carbon footprint and which are potentially deceiving ( [3], [8], [9], [10]). Since most 43 
of these models put focus on a particular step in the ML lifecycle and they use different input metrics, a 44 
consolidated view is hard to achieve.      45 
On the other hand, the carbon footprint of ML models can be measured ex post with software tools to document 46 
the impact of development or use (carbon accounting). Some tools are web-based and use key metrics such 47 
as training time, energy mix, and hardware information to estimate the carbon footprint of a model ( [6], [15]). 48 
Other tools such as energyusage or codecarbon integrate directly with the ML code ([6], [12], [16], [17]). 49 
Often, CPU power usage is computed using the RAPL (Running Average Power Limit) interfaces found on 50 
Intel processors. Tools like nvidia-smi can be used to make an estimate for computations run on the GPU. 51 
Comparison of different types of hardware or types of models in benchmark experiments is an important 52 
aspect of research ( [11], [12], [11], [13], [14]). 53 
Related topics are the use of deep learning to solve sustainability problems (e.g., [18]) and ML applications 54 
not related to deep learning. However, these are beyond the scope of this paper.    55 

3. Drivers of Deep Learning AI Models’ Carbon Footprints 56 

The carbon footprint (CO2eq) of deep ML is driven by the energy use of the models (in kWh) and the carbon 57 
intensity of the energy source (lbs/kWh). Various decisions at the different life cycle stages influence a model’s 58 
energy use and location and sourcing influence the carbon intensity. Among the most expensive examples 59 
given in the literature are GTP-3 (1’214’400 lbs CO2eq) [2] or NAS (626’155 lbs CO2eq) [7]. However, the 60 
carbon footprint of other high-performing models is a lot lower, e.g., BERTbase has a footprint of 1’438 lbs 61 
CO2eq [7]. For comparison, an average car emits 11’000 lbs per year.  62 
There are three important life cycle phases to consider when estimating the impact of a deep learning model 63 
(cf. [2], [3]): First a model is designed (Model Architecture Search). Next, it is trained with data (Training) 64 
and finally, it is run by its users (Inference). 65 

3.1. Inference 66 
Inference is the “usage stage” of a model and thus the last life cycle stage in ML While a single inference is 67 
quite cheap, inference is executed many times in the field and is estimated to cause 80-90% of a model’s total 68 
energy use (see [2], [19], or [20] and section 4.3). Also, the other life cycle phases execute inferences multiple 69 
times to optimize various parameters. Thus, the energy use of inference needs to be explained first as it influ- 70 
ences Training and Model Architecture Search.  71 
In essence, inference is the application of a complex mathematical formula using learned parameters to trans- 72 
form an input vector into an output vector. The output could be an image, a time series, a predicted value, or 73 
interpreted as a classification of the input. For example, a model could take a matrix of float values (repre- 74 
senting a grey-scale image) as input and return a number that is close to 1.0 if there is a car shown in the image 75 
and near 0.0 if not.  76 
 77 
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In the simplest case shown in Figure 1 (i.e., a model consisting only of dense layers, the most basic of all 78 
layer types), the mathematical operations for a layer consist of a matrix multiplication as well as the applica- 79 
tion of a simple activation function such as 𝑓(𝑥) = max (0, 𝑥), called ReLU, to the result. The output of one 80 
layer acts as the input for the next layer leading to a series of matrix multiplications. These mathematical 81 
operations need a certain amount of energy while being executed. 82 
 83 

 84 
Figure 1. Inference on a single layer expressed as a matrix multiplication 85 

Inference energy use depends on the model architecture (M), i.e., layer types, their order, and their size, as 86 
well as the type and quantity of processing units (PT), the main types being CPUs, GPUs, and TPUs. The 87 
energy use is further influenced by the power usage effectiveness (PUE) of the data center or similar infra- 88 
structure [21]. Thus, the energy cost I of an inference can be described as: 89 
 90 

𝐼 = 𝑓(𝑀, 𝑃𝑇) ∙ 𝑃𝑈𝐸 91 
 92 
It is not easy to determine a simple approximation for f because the exact way the hardware performs compu- 93 
tations and uses memory can differ greatly. Also, more specialized layers used in modern models differ quite 94 
a bit from the basic principle described above, introducing more complexity. Due to this heterogeneity, at- 95 
tempts to replace M with substitutes such as the number of trainable parameters [23] is problematic [8]. It 96 
might seem disheartening that even the basic building block of a model’s carbon footprint is not easy to cal- 97 
culate. However, using the software tools mentioned above, it is easy and inexpensive to measure I and use it 98 
in calculations to determine the total life cycle carbon footprint of the model.  99 
There are several ways to optimize the carbon footprint of inference. PT and PUE can be optimized by choos- 100 
ing highly efficient data centers and/or hardware. Hardware optimized for matrix operations can reduce energy 101 
use. For deep learning applications, a GPU is 10 times more efficient than a CPU. A TPU is 4 to 8 times more 102 
efficient than a GPU [6]. The energy cost of memory (DRAM) access and storage is non-negligible but diffi- 103 
cult to model ( [16], [7], [22], [9]), so it is not easy to say what exact impact it has and how to minimize it. 104 
Selecting a good M is a bit more complex. A good choice of M can reduce energy use without significant 105 
sacrifices to performance (cf. [23], [12], [17]), lowering computation effort by factors 5-10 ([2] , [5]) or even 106 
40 for CNNs [23]. One rule of thumb is to reduce model size. Recommended techniques for size reduction are 107 
pruning, adding sparsity, quantization, or knowledge distillation ( [2], [25]). The latter trains a smaller model 108 
with random data classified by a larger model trained for the actual problem (cf. [26]). 109 
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3.2. Training 110 
Energy use for training depends on the time and number of processors [2]. It is driven by three factors: The 111 
energy cost of a single inference (I), the size of the training data set (D) and the number of epochs (E) used to 112 
optimize the model weights. There is also significant overhead for the loss function and backpropagation step 113 
that is expressed as a constant 𝜃 (see section 4.3 for a possible estimate). 114 

𝑇 ∝ 𝐸 ∙ 𝐷 ∙ 𝐼 ∙ 𝜃 115 

 116 
The formula implicitly considers the PUE and type of processor via I but ignores static power consumption. 117 
Theoreticaly, training energy can be reduced by transfer learning (cf. [2], [3], [6], or [27]). However, our 118 
empirical analysis adds some caveats (section 4.1). 119 

3.3. Model Architecture Search 120 
Different model architectures can be used for the same task with different accuracies. At the Model Architec- 121 
ture Search (MAS) [2] stage, many different architectures are trained, and the best solution is selected for final 122 
training. Today, the optimization criterion is primarily performance but there is no reason why energy con- 123 
sumption cannot be included in the search.  124 
The cost at this stage (CT) is proportional to two factors (cf. [3]): The cost of training T and the number of 125 
times the hyperparameters are tuned (H). Some of T’s components, i.e., I, E, and D (see above), might vary 126 
for each tuning step resulting in different values of T for each step in the tuning.  127 
 128 

𝐶𝑇 ∝ 𝑇 ∙ 129 

 130 
Trying many different variants (H) multiplies the energy use, so good search strategies are important. The 131 
worst approach is to use grid search which systematically compares many very similar architectures with little 132 
improvement making even random search preferable [6]. Also, starting with a good architecture (e.g., when 133 
applying transfer learning) can cut down or even eliminate MAS [2].  134 

3.4.  Life cycle Energy Use and Carbon Footprint 135 
The total life cycle energy use depends on the energy cost of all three life cycle phases (CT, T, I and the 136 
expected number of inference calls e): 137 
 138 

𝐸 = 𝐶𝑇 + 𝑇 + 𝐼 ∙ 𝑒 139 

. 140 
The conversion of energy use into Co2eq is done by multiplying the energy cost with the carbon emission 141 
factor (EF): 142 
 143 

𝐶𝑂 𝑒𝑞 = 𝐸 ∙ 𝐸𝐹 144 

 145 
EF is a critical factor for the carbon footprint that can vary greatly depending on the source of the energy used. 146 
Even in North America, EF ranged from 20g CO2eq/kWh (Quebec) to 736.6g CO2eq/kWh (Iowa) in 2019 [6]. 147 
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Optimizing location and scheduled execution time can reduce energy use by up to 80% according to Xu [28]. 148 
Therefore, choosing the right location “is likely the easiest path for ML practitioners to reduce CO2eq” [2]. 149 
Using the inputs from the prior steps, the framework can provide a reasonable estimate of a deep learning 150 
model’s carbon footprint. It ignores some aspects like static energy consumption and excludes the impact of 151 
the original hardware production from its scope (cf. [16]). Also, compared to some other existing models, it 152 
sacrifices accuracy for the sake of ease of use. 153 

4. Empirical Evaluation and Carbon Footprints of Different Models 154 

The framework shown in the previous section is based on statements taken from the literature. We have con- 155 
ducted a series of experiments to test the underlying assumptions. Clearly, these experiments cannot serve as 156 
definite proof, but they add some further arguments for or against some aspects of statements in the literature. 157 
Especially the findings regarding pretrained models suggest a reexamination of that topic. The code (Keras/Py- 158 
thon) was tested on a PC with a GeForce RTX 2080 Ti GPU and 32 GB RAM. For emission calculations, the 159 
energy mix of Germany was assumed.  160 

4.1. Training Set Size, Epochs, and the Use of Pretrained Models 161 
While training set size and the number of epochs are related to model accuracy, they also drive carbon foot- 162 
print. In an experiment, the number of training samples linearly increased the carbon footprint of the model 163 
used. The same happend when the number of epochs was increased for two models of different sizes (for 164 
which we tested 100 and 50 layers of size 25). 165 
A solution to reduce the number of epochs as well as training set size is to use pre-trained models (cf. [2], [3], 166 
[6], [27]). In the example experiment conducted by Walsh et al, using a pretrained model was almost 15 times 167 
as energy efficient as training a model with the same architecture from scratch. The example used was the 168 
Xception model repurposed for classification on the “cats vs dogs” data set [27]. While we could confirm the 169 
lowered energy use (the 0.337 kWh in our case is in the same region as the 0.32 kWh in the paper), we would 170 
like to point out a critical problem with this example. Since Xception is already capable of distinguishing dogs 171 
and cats (even different breeds)1, there is little point in doing a retraining. Instead, we chose another domain 172 
(MNIST) and used Xception as a pretrained model2. The new model (6 epochs) requires only 0.451 kWh, a 173 
lot less than full Xception. However, a smaller, dedicated MNIST model with even better accuracy requires 174 
even less energy (0.005 kWh). Using transfer learning for problems of lesser complexity can actually increase 175 
carbon footprint, not even accounting for the inference phase. 176 

4.2. Impact of Model Size 177 
While the connection between model size and energy use is not straightforward, larger models generally need 178 
more energy than smaller models, especially if the model properties are mostly the same otherwise. Our ex- 179 
periments are in line with this statement (Figure 2). In the experiments, layer size varied between 25 and 100 180 
nodes and the number of layers ranged from 10 to 170. The models were trained for 10 epochs with 100’000 181 
samples. Except for an odd dent at the end, the growth seems almost linear. 182 

 
1 https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a 
2 Slightly adapting the cats_v_dogs code used for the TLR experiment 
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 183 
Figure 2. Influence of model size on energy consumption 184 

As stated before, however, the literature advises against using the number of trainable parameters in the model 185 
as a carbon driver. In fact, when we compare wide and narrow models with the same number of trainable 186 
parameters, there is a great divergence in energy use due to the way training works at the lowest levels (Figure 187 
3). The energy consumption of deep nets is a lot higher than that of wide nets of the same size. However, one 188 
should not draw the conclusion that wide networks are preferable to deep ones. In fact, Zhou et al have shown 189 
that depth is far better at increasing expressive power of a neural network than width [29]. 190 
   191 

 192 
Figure 3. Energy Footprint of varying shapes (10 epochs, 100k samples with 100 values) 193 

Certain papers (e.g. [9] or [23]) stress the different behavior of specific layer types such as convolutional 194 
layers. To get a rough impression of the impact of layer type, two groups of models were compared. One is a 195 
series of wide models with dense layers, the other is a series of similarly-shaped convolutional layers (where 196 
the “width” is represented by the number of filters). Figure 4 compares the models by trainable parameters. 197 
As can be seen, purely convolutional models with the same number of trainable parameters consume a lot 198 
more energy.  199 
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 200 
Figure 4. Energy consumption of different layer types 201 

4.3. Training vs Inference 202 
One final experiment we conducted was to find out what the overhead of training vs basic inference is and 203 
whether it is a constant value that can be used in the formula in section 3.2. In the experiment we compared 204 
pure inference on the training set to actual training on the same set for models of various layer sizes and depths. 205 
When expressed as a percentage of the total training emissions, the overhead appears to asymptotically ap- 206 
proach a value of about 80%. Figure 5 shows this overhead for the experiments from above as well as the 207 
same models trained with 10000 samples. 208 

 209 

Figure 5. Overhead percentage 210 

5. Conclusions 211 

In this paper, we have examined theoretical frameworks and empirical studies to predict the carbon footprint 212 
of machine learning models. We ran our own experiments to test some of the statements in the literature.  213 
Consolidated model: We created a consolidated model that describes the factors that influence the carbon 214 
footprint at each life cycle stage of a machine learning model. This model helps understand the benefit of 215 
various rule of thumbs to reduce carbon footprint (e.g., transfer learning or model distillation). However, it is 216 
not suitable for an exact prediction. The experiments have confirmed that there are no simple metrics and 217 
formulas that work correctly. 218 
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Experimental confirmation of literature: Many of the statements found in the literature could be confirmed 219 
by our experiments. Epochs and training set size are of vital importance. Trainable parameters are a basic 220 
indicator but only if comparing models that share many properties such as general shape and type of layers. 221 
However, we find that the arguments for transfer learning can be challenged and need further investigation. 222 
Carbon footprint is a problem but often not a huge problem: While there are high-end models that use a 223 
lot of energy during architecture search and training, the typical use case will not have a significant impact in 224 
that regard. If the model is successful and sees a lot of use, the inference phase is more important than the 225 
initial phases. Thus, it would seem to be a good practice to optimize the inference stage once a good model is 226 
achieved. Since a single inference is not very expensive, tests can be run to understand the cost and to test 227 
reduction methods. Nevertheless, even though most models are not a problem at the moment, any concept that 228 
relies on an increasing carbon footprint for improvement (“red AI” [3]) needs close monitoring and corrective 229 
steps. 230 
We hope that this paper enables ML practitioners as well as managers to choose the right decisions during the 231 
design and deployment of their models. Further, it should encourage more research into prediction models and 232 
reduction techniques for AI’s carbon footprint.    233 
 234 
 235 
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