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Computer Vision Techniques in Manufacturing
Longfei Zhou , Member, IEEE, Lin Zhang , Senior Member, IEEE, and Nicholas Konz

Abstract—Computer vision (CV) techniques have played an
important role in promoting the informatization, digitization, and
intelligence of industrial manufacturing systems. Considering the
rapid development of CV techniques, we present a comprehensive
review of the state of the art of these techniques and their appli-
cations in manufacturing industries. We survey the most common
methods, including feature detection, recognition, segmentation,
and three-dimensional modeling. A system framework of CV in the
manufacturing environment is proposed, consisting of a lighting
module, a manufacturing system, a sensing module, CV algo-
rithms, a decision-making module, and an actuator. Applications
of CV to different stages of the entire product life cycle are
then explored, including product design, modeling and simula-
tion, planning and scheduling, the production process, inspection
and quality control, assembly, transportation, and disassembly.
Challenges include algorithm implementation, data preprocess-
ing, data labeling, and benchmarks. Future directions include
building benchmarks, developing methods for nonannotated data
processing, developing effective data preprocessing mechanisms,
customizing CV models, and opportunities aroused by 5G.

Index Terms—Assembly, computer vision (CV), deep learning,
inspection, machine intelligence, machine learning, manufactur-
ing, production, robotics, survey.

I. INTRODUCTION

COMPUTER vision (CV) is a central subfield of artifi-
cial intelligence and has been developed very rapidly in

recent years due to the meteoric rise of deep learning. CV tech-
niques have been applied to different manufacturing industries
since the early 1970s, such as food, pharmaceutical, auto-
motive, aerospace, railway, semiconductor, electronic com-
ponent, plastic, rubber, paper, and forestry-related fields [1].
Researchers and practitioners have been asking questions for
decades about how CV techniques can be applied to manu-
facturing industries [2]. Vision-based industrial inspection has
gained the most attention [3].

In the early days, only a few CV methods were practi-
cally used in commercial manufacturing because of limited
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computing capabilities, until the 1990s [4]. Opportunities for
CV in manufacturing can be grouped into three broad cate-
gories: 1) image-based metrology; 2) manufacturing process
interpretability; and 3) material structure analysis [5]. From
the perspective of application scenarios, industrial applications
of CV technologies can be classified into: visual inspection,
part identification, process control, and robotic guidance mech-
anisms [6]. In this survey, our classification framework is
based on different stages of the product life cycle in the entire
manufacturing process.

Existing review papers on this topic usually specialize in
just one of the manufacturing industries, such as the steel
industry. For example, Aldrich et al. [7] reviewed some
available CV-based froth imaging systems supported by CV
technologies. In [8], vision-based defect detection and classi-
fication of steel surfaces were surveyed for steel mill systems.
Wang [9] reviewed the literature of weld pool state sensing,
including conventional sensing, vision sensing, and multi-
sensor information fusion technologies, emphasizing three-
dimensional (3-D) vision sensing approaches. These reviews
have since become outdated because CV techniques have con-
tinued to develop at an increasingly rapid pace in recent years.
Newly proposed technologies regularly encourage the updat-
ing of manufacturing systems. It is necessary to make a new
survey of the state of the art of CV techniques and their appli-
cations in different manufacturing tasks. The reason why we
conduct a literature review rather than a systematic review can
be found in Appendix A.

It is difficult to include all literature related to this topic
because of the sheer size of the research community. As
such, here we make an effort to cover the majority of
important methods proposed in the past few decades and
discuss the latest results. Our literature search was mainly
conducted based on three publication libraries: 1) Scopus1;
2) Google Scholar2; and 3) IEEE Xplore Digital Library3

and also from additional important journals within this scope.
The search range of publication years is from 1970 to
2020. The keywords and inclusion/exclusion criteria of the
search query we applied can be found in Appendix B. In
this article, the methodology of the literature review is as
follows.

1) Reviewing the important CV techniques, including
feature detection, recognition, segmentation, and 3-D
modeling.

2) Discussing the system framework of CV in the man-
ufacturing environment, including a lighting module,

1https://www.scopus.com/
2https://scholar.google.com/
3https://ieeexplore.ieee.org/
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a manufacturing system, a sensing module, CV
algorithms, a decision-making module, and an actuator.

3) Surveying the newest and widely implemented CV
applications for different stages in the entire product
life cycle, including product design, modeling and sim-
ulation, planning and scheduling, production process,
inspection and quality control, assembly, transportation,
and disassembly. In addition, we present a critical anal-
ysis of challenges and an outlook of future directions.

The remainder of this article is organized as follows.
Section II reviews the recent results of important CV tech-
niques, including feature detection, recognition, segmentation,
and 3-D modeling. In Section III, we propose a manufacturing-
oriented CV system framework to present how CV function
can be embedded into complex manufacturing systems. In
Section IV, CV applications for different stages in the entire
product life cycle are surveyed. Section V presents a criti-
cal analysis of challenges and an outlook of future directions.
Finally, conclusions are given in Section VI.

II. COMPUTER VISION TECHNIQUES

The purpose of a CV system is to generate a symbolic
description of what is being imaged in a scene [10]. This
description includes understanding of the scene and then be
applied to guide the next operations of the robot system. There
are multiple kinds of tasks and algorithms in the CV field,
such as detection, recognition, segmentation, and 3-D recon-
struction. In this section, we review the state of the art of
several important CV techniques.

A. Feature Detection

Visual feature detection (e.g., point, edge, and line detec-
tion) is the basis of many other CV algorithms. In some cases,
we are more interested in a specific region of the image, such
as human eyes, license plates, and corner shapes, which are
called keypoint features. In some other cases, we care more
about the edge features of objects in an image. A few CV
algorithms can be applied to identify and match both keypoint
features and edge features among different images. Commonly
used evaluation metrics for feature detection include mean
absolute error (MAE), mean-squared error (MSE), peak signal-
to-noise ratio (PSNR), and structural similarity index measure
(SSIM).

1) Keypoint Detection: There are mainly two types of
keypoint detection methods: 1) local search detection and
2) global search detection. Common local search detection
methods include correlation methods, least squares methods,
and learning-based methods [11]. Local search detection meth-
ods are more suitable for scenes where images are taken
continuously in a high frequency, such as video sequences.
Different from local search methods, global search detection
methods search the entire image and then match features based
on feature appearance. Therefore, global search methods are
more suitable for scenes where there are a lot of movements
or appearance changes [12].

2) Edge Detection: Edges in images often appear at bound-
aries between different objects, resulting in sudden changes in

color and intensity. One method of edge detection is based on
the gradient through the image [13], even though the gradi-
ent is easily affected by noise. Hence, a low-pass filter (e.g.,
Gaussian filter) is needed to filter the image before gradi-
ent calculation. Horizontal and vertical convolution operations
can be used for edge recognition. The zero-crossing method
can also be used for edge detection in which zero points
of a second-order derivative expression are searched to find
edges [14]. Recently, deep-learning methods, especially con-
volutional neural networks (CNNs), have been widely applied
to edge detection [15], [16].

B. Recognition

Recognition is another important task for CV techniques.
From the perspective of target objects, recognition problems
can be grouped into three categories: 1) instance recogni-
tion; 2) class recognition; and 3) general category recognition.
We also discuss action recognition in videos which is the
current challenging problem and future trend for recognition
tasks. Commonly used evaluation metrics for recognition are
accuracy, recall, precision, F1 Score, and ROC/AUC curves.

1) Instance Recognition: In instance recognition, the goal is
to identify a specific known object. Feature matching strategies
can be used for this recognition problem [17]. Other instance
recognition methods include viewpoint-invariant feature-based
strategies [18], and sparse feature matching [19]. A popular
application of instance recognition is face recognition [20].
Some learning-based approaches have also been widely
applied to this problem, such as support vector machines
(SVMs) [21], boosting [22], and neural networks [23].

2) Class Recognition: Different from instance recognition,
class recognition does not have a specific object as the target.
In class recognition problems, the goal is usually to recognize
the presence of an instance of a specific category of objects,
such as cars or pedestrians. Class recognition problems can
be considered as a specific classification problem in which
the input is an image and the output is the classification of
that image.

Throughout the development history of CV, the rise of
CNNs has been one of the most important breakthroughs for
the recent rapid development of CV technologies. In recent
years, numerous CNNs have been proposed and applied in
classification problems, and their models are getting deeper
and deeper. Sorted from earlier to recent works, popular
CNNs include LeNet-5 [24], AlexNet [25], VGG-16 [26],
R-CNN [27], Fast R-CNN [28], inception networks [29],
ResNet-50 [30], Xception [31], and ResNeXt-50 [32]. Before
ResNet-50, most of the proposed CNNs only innovated by
adding an increased number of layers in the network, alongside
any other engineering changes needed for good performance.
The “bottleneck” of this trend was that the model’s accu-
racy gets saturated and then rapidly decreases as the network
became deeper and deeper. The seminal residual network first
inserted shortcut connections in its deep model to deal with
this problem [30]. The object detection neural network Fast R-
CNN trained the deep VGG16 network 9× faster than R-CNN
and 213× faster at test time. Ren et al. proposed the Faster
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R-CNN [33] in which a region proposal network was used
to share full-image convolutional features with the detection
network. For the very deep VGG-16 model, Faster R-CNN had
a frame rate of 5fps with 0.732 mAP accuracy on PASCAL
VOC 2007 and 0.704 mAP accuracy on PASCAL VOC 2012.

3) General Category Recognition: General category recog-
nition is the most challenging recognition problem because we
need to identify not only the locations of different objects in
the image but also what category each object belongs to. In this
task, all different kinds of objects in the image need to be rec-
ognized. Common approaches of general category recognition
include bag-of-words models and part-based models. In bag-
of-words models, the distribution of visual words in the target
image is compared to the training data [34]. In the part-based
models, different parts of an image are considered separately
so as to determine whether and where an object of interest
exists [35]. Recent advances in this task have taken advantage
of deep residual learning [30] and deep neural networks [36].

4) Action Recognition: The current challenging problem
for the recognition task is action recognition. It is not dif-
ficult for humans to recognize actions in videos, but it is
challenging for machines. Accurately recognizing the actions
and behaviors in videos is of great significance for dif-
ferent scenarios, such as pedestrian motion monitoring in
autonomous driving [37], and elderly fall detection [38]. In the
manufacturing industry, identifying the behaviors of workers
in the workshop has also been shown to be a very valuable
approach to ensure production safety [39].

C. Segmentation

As one of the most classic tasks in the CV field, image seg-
mentation aims to label pixels into different groups according
to the objects that each pixel belongs to. Image segmenta-
tion can essentially be considered as a clustering problem.
Early segmentation techniques usually used region division
and merging methods [40]. Later segmentation algorithms
applied indicators of consistency, such as intraregional consis-
tency and interregional dissimilarity [41]. Other segmentation
approaches include mean shift [42], graph-based merging [43],
graph cut-based Markov [44], and level sets [45]. In the
learning-based segmentation algorithms, one commonly used
loss function is dice loss which is based on the dice coefficient.
A dice coefficient can be defined as twice the true positive
divided by the sum of twice the true positive, false positive,
and false negative. Another commonly used loss function for
deep-learning segmentation algorithms is the intersection over
union (IoU).

The latest segmentation algorithms based on machine learn-
ing in recent years include Mask RCNN [46] and dual attention
network [47]. Recently, U-Net has shown good performance
in the segmentation tasks of medical images [48]. There
are some variants of U-Net, such as Attention U-Net [49],
U-Net++ [50], ResUNet++ [51], and TransUNet [52]. The
performance of these algorithms not only depends on the algo-
rithm design but also depends on the datasets. Current chal-
lenges and trends in segmentation include 3-D segmentation
and 4-D segmentation problems. The goal of 3-D segmentation

Fig. 1. Manufacturing-oriented CV system framework.

is to segment 3-D images in three spatial directions, while
4-D segmentation is to segment 4-D data which also includes
the time dimension in addition to spatial dimensions. The 3-D
U-Net has been applied to 3-D segmentation problems in med-
ical imaging [53] and additive manufacturing defects in X-ray
computed tomography (CT) images [54].

D. 3-D Modeling

3-D modeling in CV can be categorized into two problems:
1) stereo correspondence and 2) 3-D reconstruction. Stereo
correspondence is the process of generating a 3-D model of
an object from two or more images of the same object or
scene, while the 3-D reconstruction is to generate a 3-D model
of an object from only one image [55]. It is a challenge to
design a good loss function to evaluate the predicted 3-D point
cloud and ground truth. One option is evaluating how well the
projections of predicted 3-D point clouds cover the ground-
truth object’s silhouette [56].

1) Stereo Correspondence: A common stereo correspon-
dence method is to find matching pixels in multiple images
and map their position in the 2-D images to 3-D positions
in the 3-D model. Popular methods for stereo correspondence
include epipolar geometry [57], sparse correspondence [58],
and dense correspondence [59].

2) 3-D Reconstruction: The earliest approach for 3-D
reconstruction is to predict object shape from visual shad-
ing, which was first proposed by Horn in 1970 [60]. Later,
other “shape from X” methods were proposed, such as shape
from texture [61] and shape from focus [62]. Other 3-D
reconstruction methods include active rangefinding [63], and
model-based reconstruction which has been widely applied
to architectural 3-D modeling [64]. Recently, deep-learning-
based algorithms promoted significant improvement in system
performance of 3-D reconstruction [65], [66].

III. MANUFACTURING-ORIENTED COMPUTER

VISION SYSTEM

In this section, we aim to discuss the role of CV in manu-
facturing systems and the closed loop between manufacturing
environments and CV. The system framework of CV in manu-
facturing environments is proposed as shown in Fig. 1. There
are optical devices (i.e., the lighting module and the sensing
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module), hardware (i.e., the manufacturing system and actua-
tors), software (i.e., the CV system and the decision-making
module), and data (e.g., optical images, feature descriptions,
and decision signals) in this framework.

The lighting module is the light source to provide light-
ing for the manufacturing system so that the sensing module
is able to capture images of the manufacturing system. One
problem is how to design and set a suitable lighting module
to improve the performance of the image sensing process. An
important goal of the lighting module is to provide uniform
illumination for the scene. Using multiple light sources showed
better performance than a single light source for obtaining
uniform illumination on the target scene [67]. To obtain uni-
form near-field irradiance, the angled LED ring array was
applied by simplifying the nonrotational symmetric irradiance
distribution [68].

In most cases, the sensing module of a CV system is one
or multiple cameras, which can be categorized into fixed cam-
eras and mobile cameras. Fixed cameras are usually placed on
production lines, while mobile cameras are usually placed on
robots, such as assembly robots and automated guided vehi-
cles (AGVs). In order to acquire high-quality images even
when there is an obstacle along the camera line of sight on
production lines, an automatic camera placement strategy was
presented [69]. Application of handheld CV devices can avoid
maintaining a consistent camera distance and light source [70].

The CV system takes digital images captured through the
sensing module as inputs and outputs detected features and
descriptions of the images. Those popular CV algorithms
which are discussed in Section II, such as feature detection,
recognition, segmentation, and 3-D modeling algorithms can
be applied here in the CV system.

Detection results of these CV algorithms are then applied
to support the decision-making process. The decision-making
action is actually the execution process of different rules
and strategies in the decision-making module. Typical deci-
sion algorithms include types of priority-based rules [71],
heuristic algorithms [72], and intelligent optimization algo-
rithms [73]. Decision signals generated by the decision-making
module then control the following actions of the actuator. The
action sequence of the actuator reflects interactions between
the actuator and the manufacturing system.

CV techniques have also given significant support to the
development of digital twin technologies in manufacturing
systems [74]. Taking advantage of modeling and simula-
tion technology, the digital twin is playing an increasingly
important role in the informatization and intelligentization of
manufacturing systems. CV techniques are used to give sup-
port to the operation and maintenance of digital twins in
manufacturing environments. Using image processing and CV
technologies, we are able to capture the imaging information
of manufacturing systems in real time (such as the loca-
tions, movements, and defects of production parts) and extract
abstract information of system states based on these images.
The system state information helps to keep the state consis-
tency between the digital twin and the real system. In addition
to CV, there are other kinds of sensors, such as distance sen-
sors, thermal sensors, and motion sensors in the manufacturing

Fig. 2. Statistics of keywords of different manufacturing stages in CV
research papers from 1970 to 2020.

systems. Feedback from all these sensors and actuators is given
to manufacturing and to be used on-demand.

IV. COMPUTER VISION APPLICATIONS IN

MANUFACTURING

From the perspective of the entire product lifecycle, the
manufacturing process can be briefly divided into multiple
stages, including product design, modeling and simulation
(M&S), planning and scheduling, production process, inspec-
tion and quality control, assembly, transportation, and disas-
sembly. There is surely overlap between these stages, such
as the inspection operations in production and assembly, and
assembly operations in production processes. The statistics of
keyword occurrence of different manufacturing stages in CV
research papers in recent decades are shown in Fig. 2. It can be
seen that CV techniques have been widely applied to inspec-
tion, production, and assembly in manufacturing industries. In
this section, we not only survey the state of the art of CV
techniques in all these different applications but also discuss
the challenges in each direction.

A. Product Design, Modeling, and Simulation

As the first stage of the product life cycle, product design
aims to create a new product or a new version of an existing
product. The computer-aided design (CAD) and computer-
aided manufacturing (CAM) techniques have been widely used
in the manufacturing industry for decades [75]. In CAD,
computers are applied to support the creation, modification,
analysis, and optimization of the product design. Product
design results by CAD are usually in the form of 3-D models.
These 3-D models then can be used for product prototyping,
downstream analysis, and other manufacturing processes.

One of the common applications of CV in the product
design is reconstructing 3-D models from 2-D images of exist-
ing products, such as geometric surface generation using range
data [76], solid model generation from scanned data [77], and
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Fig. 3. Results of detection and localization of knots and holes in lumber
[83], including: (a) results through a continuous sequence of CT images and
(b) semitransparent view of the detection results.

3-D pose estimation using 2-D images and spatial information
in CAD models [78].

Another important application of CV in the product design
is the simulation and validation of product designs. M&S are
large topics existing in different stages, especially when dig-
ital models are considered as “digital twins.” In this section,
we group together the product design, M&S because M&S
techniques are mostly used in product design activities so far.
M&S have been widely used in vehicle instrument testing,
such as testing and validation of vehicle instrument clus-
ter design by combining hardware-in-the-loop simulation and
CV [79], [80].

With the rapid development of CAD software, multidisci-
plinary modeling-based product design has become the trend.
Therefore, more and more products have their own 3-D dig-
ital models at earlier stages, which leads to a reduction in
the demand for 3-D model reconstruction of products. How
to find new applications of CV technology in product design
and modeling is an interesting question.

B. Planning and Scheduling

After product design is validated, a production plan is to be
made to identify what to do next, followed by schedules of
when and how to execute the plan [81]. An important appli-
cation of CV in lumber production is aiding the generation of
lumber sawing plans because the internal textures of lumber
affect sawing quality. Internal defects of lumber can be local-
ized by analyzing lumber CT images [82], and these defect
detections can then be used to formulate better sawing strate-
gies [83]. Fig. 3 shows some localization results of knots and
holes through a sequence of lumber CT slices.

Additionally, CV has also been used for production planning
in additive manufacturing and computer numerical control
(CNC), such as nesting irregular 3-D printing parts in the
printing space [84], and generating path plans for golf-club
head welding [85].

However, there are usually various uncertainties in real man-
ufacturing workshops, such as machine breakdowns. A big
challenge is how to update plans and schedules dynamically
according to real-time vision information.

Fig. 4. Scenario of human–robot collaborative assembly where the robot
follows the operator’s hand to offer assistance during a collaborative assembly
operation [94].

C. Production Process

The production process is an important stage in the entire
product life cycle. Although different industries have different
forms of production, the basic process is similar which is trans-
forming raw materials into products through a series of oper-
ations. Applications of CV in production mainly include part
recognition and classification, production process monitoring,
robot guidance, 3-D position measurement, and production
safety monitoring.

1) Production Process Control: CV has been applied to
control different production processes, such as trajectory con-
trol of molten rock for mineral wool production [86], and
height and density measurement of the fibers [87]. In the iron
industry, different features of bubbles, such as sizes, numbers,
velocity, and stability were detected and analyzed based on
froth images in flotation cells [88]. Vision-based tracking tech-
niques can also support overcoming the difficulty of labeling
and tracking steel materials due to high temperatures [89].
In the solar wafer production, the wavelet-based histogram
matching approach in the spatial domain can be applied to
extract pattern features of a multicrystalline solar wafer [90],
and the features can then be used to control the flotation
process [91].

2) Robot Guidance: Robot guidance and control is another
important application of CV in production processes. Popular
approaches include stereo vision and photogrammetry, pro-
jected texture stereo vision, time of flight, structured white
light, structured blue LED light, light coding, laser triangu-
lation, etc. These different approaches can be compared in
terms of accuracy, range, safety, and processing time [92].
Additionally, the fuzzy logic-based controlling method is
widely used in vision modules of robotics [93]. It is a critical
task to build a safe stable collaboration environment between
humans and robots. Virtual 3-D models of robots and real
images of human operators can be combined to avoid col-
lisions between humans and robots [94]. Fig. 4 shows a
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scenario of human–robot collaborative assembly where the
robot follows the operator’s hand to offer assistance.

3) Part Classification: Classification is a basic but impor-
tant application of CV in production generally based on
industrial robotics [95]. Traditional techniques include the
Mahalanobis–Taguchi system and the principle component
feature overlap measure [96]. Basic features (e.g., color and
texture) can be used in product classification, such as wood,
roofing shingles [97], olives [98], and sheet-like products [99].
Recent learning-based methods such as CNN are also widely
applied in product classification.

4) 3-D Position Measurement: CV also shows its capa-
bility in 3-D position measurements of parts, products, and
tools. Early techniques mainly achieved the recognition of
specific parts or features, such as locations of screw holes.
Later methods include some contour-based approaches and
expectation–maximization algorithms [100]. More recently,
laser dynamic triangulation was applied for manufacturing
robots to determine 3-D coordinates of objects [101].

5) Production Safety Control: In workshops, SVM-based
helmet identification can be applied to guarantee workers’
safety [102]. In machining, collisions between tools and
components can be avoided by checking whether the actual
machining set-up is in conformity with the desired CAD
model [103]. One of the challenges in production is how to
quickly and accurately generate control instructions for the
next action of actuators in an uncertain production environ-
ment. A set of possible situations and corresponding actions
can be built, and then the current situation needs to be recog-
nized using vision approaches. Possible applications include
strain control instructions and safety alarms.

D. Inspection

CV has been widely applied to quality control in differ-
ent manufacturing industries. Inspection is essential for quality
control, including measurement, examination, and testing. The
inspection process is to determine whether a part or product
meets the requirements of quality by assessing some features
of the object [104]. Some CV-based inspection results in dif-
ferent manufacturing industries are shown in Fig. 5, including
mechanics, automotive, textile, and 3-D printing.

1) Mechanics: For mechanical machining, CV-based
approaches have been applied to turned surface inspec-
tion [109], defect detection of spring clamps [110], damaged
part detection [111], and remote quality inspection of produc-
tion process [112]. Common inspection methods of automated
assembly machines include blob analysis, optical flow, and
running average [113]. And exceptions of powder spreading
can be localized through segmenting powder bed images using
CNN [105].

2) Automotive: In the automotive industry, CV techniques
have been widely used for surface quality detection [114] and
wheel alignment [115]. Image fusion algorithms (e.g., local
directional blurring) can be applied to specular surface defect
detections at smooth areas, edges, corners, and deep concav-
ities [106]. Multiscale matrix fusion methods can be applied
to detect potential defects from automobile images [116].

Fig. 5. Inspection results in different manufacturing industries based on CV
techniques, including: (a) mechanical manufacturing (original image from a
laser powder bed); (b) mechanical manufacturing (inspection results) [105];
(c) automotive industry (original image of the vehicle surface); (d) automotive
industry (inspection results) [106]; (e) textile industry (region of interest in
an image of textile materials); (f) textile industry (inspection results) [107];
(g) 3-D printing industry (region of interest in a 3-D printing image); and
(h) 3-D printing industry (inspection results) [108].

3) 3-D Printing: CV has also been applied to printing qual-
ity inspection in 3-D printing processes, such as vision-based
self-calibration of printheads [117] and printing error detection
by superimposing virtual 3-D models to real objects [118].
3-D printing defects can also be detected based on multi-
view methods which change the field of view in the printing
progress [108]. Benchmark databases need to be developed in
the future for CV-based 3-D printing applications [119].

4) Other Industries: Other CV-based inspections include
fiber defect detection (e.g., breaks, knots, thickness varia-
tions, and orientation) [107], electronics defect detection [120],
and display defect detection [121]. CV has also been
used for alignment inspection, such as optical component



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: CV TECHNIQUES IN MANUFACTURING 7

alignment [122], tile alignment [123], and raw part alignment
in machining [124]. Besides, the anti-counterfeiting identity
of products can be detected using vision-based matching
algorithms to prevent mistakes [125].

Vision-based inspection systems usually capture large
amounts of data. A critical challenge is how to effectively
manage and utilize the data. Developing novel imaging devices
and algorithms is essential for improving the performance of
industrial inspection systems.

E. Assembly

Assembly, also referred to as progressive assembly, is
an important process in product manufacturing, especially
for discrete manufacturing (e.g., automotive and aviation).
Usually, parts are assembled into semifinished products, and
semifinished products are then assembled into final products.

1) Automatic Assembly: The goal of assembly in man-
ufacturing is to achieve fully automatic assembly which is
generally supported by vision systems. Main CV applications
in the automatic assembly include motor stator assembly [126],
cabin product assembly [127], assembly robotics for packag-
ing [128], and automatic part picking and placing [129]. In
printed circuit board assembly, shape-based recognition can be
used to guide assembling flexible printed circuit cables onto
hard disk drives [130].

2) Assembly Quality Control: Assembly error detection is
also an important application of CV, such as assembly error
prediction through statistical pattern recognition of geometric
positions between mated parts and base parts [131], and fas-
tener feature recognition [132]. In automotive assembly lines,
human errors involved in the bolt securing process can be
identified [133].

3) Other Assembly Applications: Augmented reality (AR)
and CV have been combined for years to build interactive tools
to guide assembly operations, such as human motion recogni-
tion in mechanical assembly operations [134] and the single-
image-based 3-D part assembly which involves challenges of
ambiguity among parts and 3-D pose prediction [135]. Some
results of single-image-based 3-D part assembly through dif-
ferent methods are shown in Fig. 6. There are some open
imaging datasets of assembly processes, such as the dataset
of pixel-level labeled images of hands performing different
assembly tasks [136].

One of the challenges in automatic assembly is how to
achieve safe, flexible, and intelligent human–robot cooperation
in assembly. Latest deep reinforcement learning approaches
are expected to be applied to machine training in various
human–robot cooperation situations.

F. Transportation

Transportation activities in manufacturing can be either
material transportation within a workshop or logistics between
factories.

1) AGV: AGV, consisting of a navigation system, a power
system, and a controlling system, has been widely applied
in delivering materials, parts, and products. Earlier AGVs
usually followed along marked lines on floors, while recent

Fig. 6. Results of the single-image-based 3-D part assembly problem through
different methods [135]. (a) Example of chairs; (b) another example of chairs;
(c) example of tables; (d) another example of tables; (e) example of cabinets;
and (f) another example of cabinets.

AGVs use radio, images, and lasers as their navigation
signals. CV techniques are mainly applied in the naviga-
tion module of AGVs [137], such as path planning [138]
and obstacle detection [139]. Traditional AGV navigation
systems can be classified into two categories: 1) locally guided
navigation (e.g., model-based approaches, downward vision
systems, laser ranging systems, stacking vision, and deep
learning [140]) and 2) remotely guided navigation (e.g., Web-
controlled vehicle systems [141]). SVM-based segmentation
methods have also been used to distinguish the original color
features of path images from their illumination artifacts [142].

2) Logistics: CV has not only been applied to AGVs
but also some large-size industrial autonomous transporta-
tion systems, such as forklift trucks [143] and logistics
trucks [144]. Covariance matrix algorithms can be applied
in detecting and tracking moving objects for logistics
systems [145]. Autonomous driving vehicles have also been
designed for industrial logistics [146].

A big challenge of CV for transportation systems in manu-
facturing is the variation between images, such as shadows
and highlights caused by complex illumination conditions.
More effective denoising and normalization techniques need
to be combined with CV algorithms in navigation modules to
develop more robust transportation systems.

G. Disassembly

As a key step for the effective disposal of end-of-life prod-
ucts, disassembly should be included in the entire product
life cycle. However, automatic product disassembly did not
get much applied in actual manufacturing systems due to
high costs and technical limitations until robotics and CAM
techniques started to be rapidly developed recently [147].
Traditional manual disassembly was a labor-intensive task
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while robotic-based automated disassembly can greatly reduce
costs [148]. According to the degree of automation, disassem-
bly systems can be classified into semiautomatic disassembly
and fully automatic disassembly systems. Vision systems are
important for both disassembly sequence generation and dis-
assembly robot control. It is a challenge to generate an
effective disassembly sequence plan due to complicated con-
straints between components, especially for complex products.
CV techniques can be applied to generate possible product
assembly structures according to product images, support-
ing disassembly sequence generation [149]. CV can also be
used as the visual recognition and navigation system of disas-
sembly robots, such as disassembly robotics for automotive,
electronics [150], and display products [151]. Some features
of screws, such as gray scale, color scale, and depth can
be used in screw detection to support automatic disassem-
bly tasks [152]. Most current automatic disassembly systems
are not fully automated, which means human participation is
needed in the disassembly process. Therefore, how to achieve
effective and safe human–robot interaction in the disassembly
process is an important goal for current automatic disassembly
systems [153].

V. CRITICAL ANALYSIS AND FUTURE DIRECTIONS

A. Critical Analysis

Although CV techniques have been widely applied to almost
every stage in the entire manufacturing process of different
industries, there are still some long-standing issues and new
challenges to be considered to achieve a better place. Based
on the survey, we here give a critical analysis of the state of
the art and challenges in CV applications for manufacturing
industries in terms of implementation, data collection, data
preprocessing, data labeling, and benchmarks.

1) Challenge of Implementation: The rapid development
of CV technologies (e.g., CNNs and deep-learning models)
has brought a lot of the latest exciting results to the commu-
nity. However, the CV algorithms which are currently used in
actual manufacturing systems are still those relatively classic
algorithms, such as SVM and k-nearest neighbors algorithms
(KNNs). The latest achievements of the CV community are
not being quickly applied to the thorny problems facing real
manufacturing environments. One possible reason is that large-
scale companies usually have sufficient resources to implement
the latest research results, but meanwhile, the manufacturing
systems of these large-scale companies are more complicated,
involving different software systems, hardware systems in dif-
ferent departments (e.g., research and development, design,
production, testing, sales, etc.). This complexity brings more
challenges to the application of the latest CV research results
in the actual manufacturing environments. Another possible
reason is that research activities conducted by the CV commu-
nity are usually based on ideal problem models with a large
amount of labeled data, which is different from the issues
in the actual manufacturing systems. This also leads to the
difficulty of applying the latest research results.

2) Challenge of Data Collection: Data are always one
of the most important parts for machine learning and CV

tasks. Even though more data can be obtained with the rapid
development of the Internet of Things (IoT) and sensor tech-
nologies, it is still a challenge to collect high-quality data,
especially for 3-D surfaces and reflecting surfaces in some
complex manufacturing environments with lighting problems.
There are various reasons why data collection is challeng-
ing. One reason is the low-quality lighting problem in some
complex manufacturing scenarios. Another possible reason is
that the surface of the object is reflective resulting in the bias
between the obtained images and the real object.

3) Challenge of Data Preprocessing: As more and more
data sensing devices are deployed in manufacturing systems,
a greater volume of structured and unstructured data (e.g.,
high-resolution images and videos) are collected from man-
ufacturing production sites. However, not all the collected
images and videos are worthy to be sent to CV systems for
further processing. Concerning this demand, the challenge is
the lack of effective data preprocessing mechanisms for a
large amount of original manufacturing data. Some large-scale
companies choose to temporarily store all collected data in
databases for a period of time and delete the early data, such
as the data from three months ago at a regular interval. This
undoubtedly leads to much more expensive data storage and
lower data processing efficiency.

4) Challenge of Data Labeling: Although more and more
high-quality visual data can be collected from the manufac-
turing sites, the collected raw data usually lacks the necessary
labels which are important to supervised learning algorithms.
Manually labeling large amounts of raw data is expensive. The
current challenge is a lack of effective algorithms for handling
nonlabeled data, as well as lacking methods to automatically
label original visual data. In order to apply deep-learning-
based vision technologies to different manufacturing scenarios
where a large amount of image data can be obtained, more
effort needs to be made in this regard. One possibility is recent
self-supervised deep-learning methods that perform automatic
labeling of unlabeled data such as SimCLR [154].

5) Challenge of Benchmarks: There are already some task-
oriented benchmarks, such as COCO,4 the Multiple Object
Tracking Benchmark,5 and the UA-DETRAC Benchmark6 to
compare and evaluate newly proposed algorithms. But it is
difficult to apply these benchmarks to specific manufacturing
cases because these benchmarks are mostly designed for par-
ticular tasks, such as the detection of vehicles and pedestrians.
Hence, more benchmarks for manufacturing applications are
needed to be built for CV techniques to be further continu-
ously applied in manufacturing industries. MVTec is a recent
commonly used dataset for benchmarking anomaly detection
methods with a focus on industrial inspection [155], [156].

B. Future Directions

Based on the above analysis of challenges, some future
directions are proposed here as follows to accelerate the
application of CV techniques in manufacturing industries.

4http://cocodataset.org/
5https://motchallenge.net/
6https://detrac-db.rit.albany.edu/
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1) Benchmarking: One direction is to build benchmark
standard datasets for specific tasks in the manufacturing envi-
ronment to evaluate the performance of different applied CV
algorithms. There are some steps needed to be taken to
build the benchmarks for different CV tasks in manufacturing
systems, such as deciding which CV task and which compa-
nies to be included, collecting and analyzing data, and making
the metrics of performance measurement for CV algorithms
and methods.

2) Big Data Preprocessing: It is also a trend to develop
effective preprocessing mechanisms for specific image data,
including data cleaning, and automatic or semiautomatic data
annotation methods for original image data. It is difficult to
establish fully automated equipment for different fields and
different departments to achieve automated data cleaning and
labeling. One strategy is to use the domain knowledge from
experts in different departments to help with processing data in
different structures and types. Another very important strategy
is to establish the connection between the upstream production
stages and the downstream data processing stage.

3) Nonsupervised Learning: Another direction is to
develop effective methods that can process nonannotated
manufacturing image data, so that deep-learning-based CV
algorithms can be then applied to those manufacturing sce-
narios where a large amount of image data can be obtained.
Possible directions to deal with this issue include newly
developed machine learning approaches, such as one-shot
learning, transfer learning, and semisupervised learning.

4) Task-Oriented Models: It is also important to develop
deep-learning-based CV models (e.g., CNNs) for future spe-
cific image processing tasks in manufacturing to improve the
usefulness of manufacturing data and algorithm efficiency.
This work generally requires significant training computa-
tions of different network structures and parameters to obtain
satisfactory results.

5) 5G-Involved CV: The 5G communication technology,
with its rapid development [157], will serve as one of the
catalysts to provide new opportunities for the application of
CV in manufacturing and bring new development directions
for solving long-standing bottlenecks. How to optimize exist-
ing manufacturing CV systems considering 5G and how to
design new CV applications based on the new 5G architecture
to improve system performance are also interesting directions.

VI. CONCLUSION

Considering the rapid development of CV techniques, we
presented a comprehensive review of several important CV
techniques relevant to manufacturing, as well as their latest
applications in different stages of the product life cycle within
the entire manufacturing process. These surveyed CV tech-
niques include feature detection, recognition, segmentation,
and 3-D modeling. A system framework of CV in the man-
ufacturing environment was proposed consisting of a lighting
module, manufacturing system, sensing module, CV algo-
rithms, decision-making module, and actuator. Applications
of CV in different stages in the product life cycle were then
surveyed, including product design, modeling and simulation,

planning and scheduling, production process, inspection and
quality control, assembly, transportation, and disassembly.
Although CV techniques have been widely applied to almost
every stage in the entire manufacturing process of differ-
ent industries, there are still some long-standing issues and
new challenges that are discussed in the critical analysis.
Future development directions include building benchmarks
for specific manufacturing image processing tasks, developing
effective methods of processing nonannotated data, developing
effective data preprocessing mechanisms (e.g., data cleaning,
and automatic or semiautomatic data annotation methods), and
developing CV models (e.g., CNNs) for specific manufactur-
ing tasks to improve the usefulness of manufacturing data, the
efficiency of CV algorithms, and new opportunities kindled
by 5G.

APPENDIX A
REASON WHY WE CONDUCT LITERATURE REVIEW

RATHER THAN SYSTEMATIC REVIEW

We conduct a literature review because we try to present
a critical analysis of existing research on the particular topic
of CV techniques for manufacturing. Hence, we only include
existing study results, but not any answers to a specific ques-
tion or any new data, experiments, or unpublished material in
any form. A systematic review would indeed focus on provid-
ing an in-depth and detailed review of existing literature on a
specific topic and would address a specific, clearly formulated
question with suitable responses. However, in a systematic
review, some unpublished studies and reports may also be
included. Therefore, a literature review is more suitable for
our goal which is to help researchers stay updated about the
latest research in this field and to identify gaps in the existing
literature.
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Title-Abstract-Keywords (manufacturing OR industr* OR
production OR machining OR inspection OR ‘quality con-
trol’ OR design* OR test* OR ‘modeling and simulation’
OR planning OR scheduling OR assembl* OR alignment
OR disassembl* OR AGV OR transportation) AND Title-
Abstract-Keywords (‘CV’ OR ‘machine vision’ OR ‘robot
vision’ OR ‘CNN’).

REFERENCES

[1] Z. Liu, H. Ukida, K. Niel, and P. Ramuhalli, “Industrial inspection with
open eyes: Advance with machine vision technology,” in Integrated
Imaging and Vision Techniques for Industrial Inspection. London, U.K.:
Springer, 2015, pp. 1–37.

[2] J. K. West, “Machine vision in the real world of manufacturing,”
Comput. Design, vol. 22, no. 5, p. 89, 1983.

[3] G. J. Agin, “Computer vision systems for industrial inspection and
assembly,” Computer, vol. 13, no. 5, pp. 11–20, 1980.

[4] A. Soini, “Machine vision technology take-up in industrial applica-
tions,” in Proc. IEEE 2nd Int. Symp. Image Signal Process. Anal. 23rd
Int. Conf. Inf. Technol. Interfaces (ISPA, 2001, pp. 332–338.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[5] J. A. Noble, “From inspection to process understanding and monitoring:
A view on computer vision in manufacturing,” Image Vis. Comput.,
vol. 13, no. 3, pp. 197–214, 1995.

[6] H. Golnabi and A. Asadpour, “Design and application of industrial
machine vision systems,” Robot. Comput. Integr. Manuf., vol. 23, no. 6,
pp. 630–637, 2007.

[7] C. Aldrich, C. Marais, B. Shean, and J. Cilliers, “Online monitoring
and control of froth flotation systems with machine vision: A review,”
Int. J. Mineral Process., vol. 96, nos. 1–4, pp. 1–13, 2010.

[8] N. Neogi, D. K. Mohanta, and P. K. Dutta, “Review of vision-based
steel surface inspection systems,” EURASIP J. Image Video Process.,
vol. 2014, no. 1, p. 50, 2014.

[9] X. Wang, “Three-dimensional vision-based sensing of GTAW: A
review,” Int. J. Adv. Manuf. Technol., vol. 72, nos. 1–4, pp. 333–345,
2014.

[10] B. K. P. Horn, Robot Vision. Cambridge, MA, USA: MIT Press, 1986.
[11] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint recog-

nition using random ferns,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 3, pp. 448–461, Mar. 2010.

[12] M. Brown and D. G. Lowe, “Automatic panoramic image stitching
using invariant features,” Int. J. Comput. Vis., vol. 74, no. 1, pp. 59–73,
2007.

[13] S. Jain, “Edge detection using fuzzy gradient information,” U.S. Patent
10 740 903, Aug. 11, 2020.

[14] G. Shrivakshan and C. Chandrasekar, “A comparison of various edge
detection techniques used in image processing,” Int. J. Comput. Sci.
Issues, vol. 9, no. 5, p. 269, 2012.

[15] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer convolu-
tional features for edge detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 3000–3009.

[16] C. Jeong, H. S. Yang, and K. Moon, “A novel approach for detect-
ing the horizon using a convolutional neural network and multi-scale
edge detection,” Multidimensional Syst. Signal Process., vol. 30, no. 3,
pp. 1187–1204, 2019.

[17] J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, Toward Category-
Level Object Recognition, vol. 4170. Heidelberg, Germany: Springer,
2007.

[18] J. Sivic and A. Zisserman, “Efficient visual search of videos cast as
text retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 4,
pp. 591–606, Apr. 2009.

[19] K. Lai, L. Bo, X. Ren, and D. Fox, “Sparse distance learning for object
recognition combining RGB and depth information,” in Proc. IEEE Int.
Conf. Robot. Autom. 2011, pp. 4007–4013.

[20] I. Adjabi, A. Ouahabi, A. Benzaoui, and A. Taleb-Ahmed, “Past,
present, and future of face recognition: A review,” Electronics, vol. 9,
no. 8, p. 1188, 2020.

[21] G. Guo, S. Z. Li, and K. Chan, “Face recognition by support vector
machines,” in Proc. IEEE 4th Int. Conf. Autom. Face Gesture Recognit.,
2000, pp. 196–201.

[22] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.
Comput. Vis., vol. 57, no. 2, pp. 137–154, 2004.

[23] Y. Sun, D. Liang, X. Wang, and X. Tang, “DeepID3: Face recognition
with very deep neural networks,” 2015, arXiv:1502.00873.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556.

[27] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580–587.

[28] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1–9.

[29] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-V4,
inception-resnet and the impact of residual connections on learning,”
in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[31] F. Chollet, “XCeption: Deep learning with depthwise separable con-
volutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 1251–1258.

[32] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated resid-
ual transformations for deep neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 1492–1500.

[33] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 91–99.

[34] L. Wu, S. C. H. Hoi, and N. Yu, “Semantics-preserving bag-of-words
models and applications,” IEEE Trans. Image Process., vol. 19, no. 7,
pp. 1908–1920, Jul. 2010.

[35] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645,
Sep. 2010.

[36] Z. Wu, C. Shen, and A. Van Den Hengel, “Wider or deeper: Revisiting
the resnet model for visual recognition,” Pattern Recognit., vol. 90,
pp. 119–133, Jun. 2019.

[37] L. Chen et al., “Survey of pedestrian action recognition techniques
for autonomous driving,” Tsinghua Sci. Technol., vol. 25, no. 4,
pp. 458–470, 2020.

[38] X. Wang, J. Ellul, and G. Azzopardi, “Elderly fall detection systems:
A literature survey,” Front. Robot. AI, vol. 7, p. 71, Jun. 2020.

[39] C.-L. Yang, S.-C. Hsu, Y.-W. Hsu, and Y.-C. Kang, “Human action
recognition on exceptional movement of worker operation,” in Proc.
Int. Conf. Appl. Human Factors Ergon., 2021, pp. 376–383.

[40] S. L. Horowitz and T. Pavlidis, “Picture segmentation by a tree traversal
algorithm,” J. ACM, vol. 23, no. 2, pp. 368–388, 1976.

[41] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[42] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward fea-
ture space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, May 2002.

[43] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181, 2004.

[44] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient ND image
segmentation,” Int. J. Comput. Vis., vol. 70, no. 2, pp. 109–131, 2006.

[45] D. Cremers, M. Rousson, and R. Deriche, “A review of statistical
approaches to level set segmentation: Integrating color, texture, motion
and shape,” Int. J. Comput. Vis., vol. 72, no. 2, pp. 195–215, 2007.

[46] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2961–2969.

[47] J. Fu et al., “Dual attention network for scene segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3146–3154.

[48] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput. Assist. Intervent., 2015, pp. 234–241.

[49] O. Oktay et al., “Attention U-Net: Learning where to look for the
pancreas,” 2018, arXiv:1804.03999.

[50] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++:
A nested U-Net architecture for medical image segmentation,” in
Deep Learning in Medical Image Analysis and Multimodal Learning
for Clinical Decision Support. Cham, Switzerland: Springer, 2018,
pp. 3–11.

[51] D. Jha et al., “ResUNet++: An advanced architecture for medical
image segmentation,” in Proc. IEEE Int. Symp. Multimedia (ISM),
2019, pp. 225–2255.

[52] J. Chen et al., “TransUNet: Transformers make strong encoders for
medical image segmentation,” 2021, arXiv:2102.04306.

[53] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
“3D U-Net: Learning dense volumetric segmentation from sparse anno-
tation,” in Proc. Int. Conf. Med. Image Comput. Comput. Assist.
Intervent., 2016, pp. 424–432.

[54] V. W. H. Wong, M. Ferguson, K. H. Law, Y.-T. T. Lee, and P. Witherell,
“Automatic volumetric segmentation of additive manufacturing defects
with 3D U-Net,” 2021, arXiv:2101.08993.

[55] R. Szeliski, Computer Vision: Algorithms and Applications. New York,
NY, USA: Springer, 2010.
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