
Communication-Efficient Randomized Algorithm for Multi-
Kernel Online Federated Learning
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY 4.0

SUBMISSION DATE / POSTED DATE

28-04-2021 / 30-04-2021

CITATION

Hong, Songnam; Chae, Jeongmin (2021): Communication-Efficient Randomized Algorithm for Multi-Kernel
Online Federated Learning. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.14501814.v1

DOI

10.36227/techrxiv.14501814.v1

https://www.techrxiv.org
https://dx.doi.org/10.36227/techrxiv.14501814.v1

JOURNAL OF LATEX CLASS FILES 1

Communication-Efficient Randomized Algorithm
for Multi-Kernel Online Federated Learning

Songnam Hong, Member, IEEE and Jeongmin Chae, Student Member, IEEE

Abstract—Online federated learning (OFL) is a promising framework to learn a sequence of global functions using distributed
sequential data at local devices. In this framework, we first introduce a single kernel-based OFL (termed S-KOFL) by incorporating the
random-feature (RF) approximation, online gradient descent (OGD), and federated averaging (FedAvg) properly. However, it is
nontrivial to develop a communication-efficient method with multiple kernels. One can construct a multi-kernel method (termed
vM-KOFL) by following the extension principle in the centralized counterpart. This vanilla method is not practical as the communication
overhead grows linearly with the size of a kernel dictionary. Moreover, this problem is not addressed via the existing
communication-efficient techniques in federated learning such as quantization or sparsification. Our major contribution is to propose a
novel randomized algorithm (named eM-KOFL), which can enjoy the advantage of multiple kernels while having a similar
communication overhead with S-KOFL. It is theoretically proved that eM-KOFL yields the same asymptotic performance as vM-KOFL,
i.e., both methods achieve an optimal sublinear regret bound. Mimicking the key principle of eM-KOFL efficiently, pM-KOFL is
presented. Via numerical tests with real datasets, we demonstrate that pM-KOFL can yield the same performances as vM-KOFL and
eM-KOFL on various online learning tasks while having the same communication overhead as S-KOFL. These suggest the practicality
of the proposed pM-KOFL.

Index Terms—Federated learning, online learning, kernel-based learning, reproducing kernel Hilbert space (RKHS).

F

1 INTRODUCTION

Federated learning has emerged as a promising decentralized
machine learning framework, in which distributed nodes (e.g.,
mobile phones, wearable devices, etc.) train a global function
collaboratively under the coordination of a server without sharing
raw data placed at edge nodes [1], [2]. Specifically, federated
learning optimizes a global model by repeating the two operations:
i) local model optimizations at edge nodes; ii) global model update
(e.g., model averaging) at the server [3]. This distributed learning
framework has myriad of applications: activities of mobile phone
users, predicting a low blood sugar, heart attack risk from wearable
devices, or detecting burglaries within smart homes [4], [5], [6].

In many real-world applications, function learning tasks are
expected to be performed in an online fashion. For instance, online
learning is required when data is generated as a function of time
(e.g., time-series predictions) [7], [8] and when a large number
of data makes it hard to carry out data analytic in batch form
[9]. Focusing on a centralized network, this challenging problem
has been efficiently addressed via online multiple kernel learning
(OMKL) [10], [11], [12]. OMKL learns a sequence of functions
(or models) using streaming data, which can predict the label
of a newly incoming data in real time. Using multiple kernels,
OMKL can yield a superior accuracy and enjoy a great flexibility
compared with a single kernel-based online learning [11], [12].
Despite its effectiveness, OMKL is restricted to the centralized
network only and an extension to a decentralized network (e.g.,
federated learning) has not been investigated yet.

• S. Hong is with the Department of Electronic Engineering, Hanyang
University, Seoul, 04763, Korea. (E-mail: snhong@hanyang.ac.kr)
E-mail: snhong@hanyang.ac.kr

• J. Chae is with the Department of Electrical Engineering, University of
Southern California, CA, 90089, USA.
E-mail: chaej@usc.edu

Motivated by the success of OMKL, we in this paper consider
new kernel-based OFL (KOFL) framework. In this framework,
the goal is to learn a sequence of global (or common) functions
f(x; m̂t) with a model parameter m̂t using streaming data
across a large number of distributed nodes. Especially, our learned
function f(x; m̂t) belongs to a reproducing Hilbert kernel space
(RKHS)H [13], i.e., f(x; m̂t) ∈ H. Specifically, at every time t,
each node k ∈ {1, 2, ...,K} estimates a local model m̂[k,t+1] us-
ing the current global m̂t and an incoming data (xk,t, yk,t). Then,
it sends m̂[k,t+1] to the server. This transmission is called uplink.
Leveraging the aggregated local models, the server constructs an
updated global model as

m̂t+1 = h
(
m̂[1,t+1], ..., m̂[K,t+1]

)
, (1)

and broadcasts it to the K edge nodes. The mapping h should be
carefully designed according to the structures of model parame-
ters. One representative example is averaging (FedAvg) [3]. Given
the global model, every node k can estimate the label of a newly
incoming data xk,t+1 such as

ŷk,t+1 = f(xk,t+1; m̂t+1). (2)

In KOFL framework, numerous methods can be constructed
according to underlying optimization and learning algorithms. We
first introduce a single kernel-based method (termed S-KOFL)
by properly incorporating the random-feature (RF) approximation
[14], online gradient descent (OGD) [15], and the famous FedAvg
[3]. This method is closely related to a conventional federated
learning especially using stochastic gradient descent (SGD) [16].
In S-KOFL, each node k optimizes the parameter of a kernel
function (denoted by ŵ[k,t])) via OGD using a local streaming
data. Using the similarities of OGD and SGD, the other operations
exactly follow the conventional FedAvg [3], [16]. The primary
challenge in federated learning is the high communication cost

JOURNAL OF LATEX CLASS FILES 2

to exchanged model information between edge nodes and the
server. Lossy compression of local models is a practical solution to
reduce the communication overhead, which can be performed via
sparsification or quantization [17], [18], [19], [20]. It is remarkable
that S-KOFL can be further enhanced in terms of communication
overhead, by taking the above techniques immediately.

As manifested in [11], [12], [21], [22], a single kernel-based
learning (including S-KOFL) yields a poor performance since it is
demanding to choose a proper single kernel. Thus, it is necessary
to construct an efficient multi-kernel based method for KOFL
framework. We emphasize that it poses a new challenging prob-
lem, which has not been caused in existing federated frameworks
as well as the centralized counterpart. One natural extension of S-
KOFL into multiple kernels just follows the extension principle in
the centralized network [11], [12]. This vanilla method is referred
to as vM-KOFL. In this method, every node should transmit
the P number of local parameters to the server and vice versa,
where P denotes the size of a kernel dictionary. Consequently,
the downlink/uplink communication overhead is equal to P ×M ,
whereas that of S-KOFL is M . To attain a higher learning accu-
racy, vM-KOFL requires a sufficiently large number of kernels and
hence, the communication overhead is indeed trouble. In addition,
the existing overhead-reduction techniques (e.g., sparsification or
quantization) [17], [18], [19], [20] can only reduce the term M as
M ′ � M , whereas the term P is unchanged. Thus, vM-KOFL
can achieve an improved learning accuracy over S-KOFL at the
cost of an additional communication overhead. A natural question
arises: under KOFL framework, can we enjoy the advantage of
multiple kernels while maintaining the communication overhead
of S-KOFL?

In this paper, we contribute to the above open problem. A novel
randomized method (named eM-KOFL) is proposed. Enjoying the
merit of multiple kernels probabilistically, eM-KOFL can yield the
same performance as vM-KOFL. Moreover, the communication
overhead of eM-KOFL is irrespective of the size of a kernel
dictionary P and thus, to achieve a higher learning accuracy, a
sufficiently large number of kernels can be exploited for free. Our
major contributions are summarized as follows.

• We present a delayed-Exp strategy, from which the
server constructs a sequence of probability mass func-
tions (PMFs) q̃t = (q̃[t,1], ..., q̃[t,P]), t = 1, 2, ..., T ,
in a distributed and online fashion. At every time t,
the server chooses one kernel index out of P kernels
randomly according to the PMF q̃t. The proposed strategy
guarantees that the selected kernel converges to the best
kernel in hindsight with high probability. As in vM-KOFL,
therefore, the proposed eM-KOFL can operate as S-KOFL
with the best kernel in hindsight.

• Leveraging a martingale argument, we theoretically prove
that eM-KOFL yields the same asymptotic performance
as vM-KOFL, namely, it achieves a sublinear regret
bound O(

√
T) compared with the best kernel function in

hindsight. This analysis also implies that eM-KOFL can
asymptotically achieve the same learning accuracy as the
centralized OMKL in [11], [12] without sharing raw data
(i.e., preserving an edge-node privacy).

• Regarding the communication overheads (per node), S-
KOFL and vM-KOFL respectively have M and P ×M
for both downlink and uplink. Since eM-KOFL can be
viewed as S-KOFL potentially with different kernels, the

communication overheads are reduced as M + 1 and
P +M for downlink and uplink, respectively. We further
reduce the uplink communication overhead of eM-KOFL
by mimicking the delayed-Exp strategy in an efficient way.
The resulting method is named pM-KOFL, which has the
communication overheads M+1 ≈M for both downlink
and uplink.

• Via numerical tests on real datasets, we demonstrate the
effectiveness of the proposed methods on online regression
and time-series prediction tasks. Notably, pM-KOFL can
yield the almost same performance as vM-KOFL and eM-
KOFL. This gives the positive answer to the question,
i.e., pM-KOFL can fully enjoy the advantage of multiple
kernels while keeping the communication overhead of S-
KOFL.

The remainder of this paper is organized as follows. In
Section 2, we formally define the problem setting of KOFL
framework. In Section 3, a vanilla multi-kernel method (termed
vM-KOFL) is constructed as a baseline approach and its drawback
is identified. In Section 4, we propose a randomized method
(named eM-KOFL) and its communication-efficient variant pM-
KOFL. We provide theoretical analyses for the proposed methods
in Section 5. Some numerical experiments on real datasets are con-
ducted to demonstrate the effectiveness of the proposed methods
for online regression and time-series prediction tasks. We conclude
this paper in Section 7.

Notations: Bold lowercase letters denote the column vectors.
For any vector x, xT denotes the transpose of x and ‖x‖ denote
the `2-norm of x. Also, E[·] represents the expectation over an
associated probability distribution. To simplify the notations, we
let [n]

∆
= {1, ..., n} for any positive integer n. Also, k, t, and i

will be used to stand for the indices of node, time, and kernel,
respectively, The number of nodes, kernels in a kernel dictionary,
and total incoming data are denoted as K , P , and T , respectively.

2 PRELIMINARIES

We introduce an online federated learning (OFL) and then define
our kernel-based OFL (KOFL) framework.

2.1 Online federated learning (OFL)
The objective of OFL is to learn a sequence of global (or common)
functions using sequential data (e.g., time-series data) across a
large number of distributed edge nodes. In detail, at every time
t, the server distributes the latest global model m̂t (i.e., the
parameter of a global function f(x; m̂t)) to the decentralized
K nodes. Then, each node k receives the global model m̂t and
an incoming data (xk,t, yk,t), where xk,t ∈ X ⊆ RN and
yk,t ∈ Y ⊆ R represent the feature and the label, respectively.
Using them, each node k updates its local model, which is denoted
as m̂[k,t+1] ∈ RM for k ∈ [K]. Every node k sends m̂[k,t+1]

back to the server, from which the server constructs an updated
global model as

m̂t+1 = h(m̂[1,t+1], ...m̂[K,t+1]). (3)

The mapping h should be carefully designed according to the
structure of a learned function. In the existing federated learning
frameworks, one representative mapping is to average the aggre-
gated local models, called FedAvg [3], [16]. Our learned global
function at time t is given as f(x; m̂t+1), from which each node

JOURNAL OF LATEX CLASS FILES 3

k can estimate the label of a newly incoming data xk,t+1 in real
time.

2.2 KOFL framework

We briefly describe a kernel-based function learning and then
by incorporating it into OFL, we define our kernel-based OFL
(KOFL) framework reproducing kernel Hilbert space (RKHS) H,
defined as H = {f : f(x) =

∑
t αtκ(x,xt)}, where κ(x,xt) :

X × X → Y is a symmetric positive semidefinite basis function
(called kernel) [23]. The major drawback of the above learning
technique is that the dimension of a parameter to be optimized
grows linearly with the number of incoming data. Thus, it is not
applicable for online learning with continuous streaming data.
This problem has been circumvented in [24] by presenting the
random-feature (RF) approximation, in which a kernel is well-
approximated with a fixed and small number of random features.
The RF-based kernel function is represented with a parameter
ŵ ∈ RM as

f(x; ŵ) = ŵTz(x) ∈ H, (4)

where a feature mapping z(x), which relies on a kernel κ, is
defined as

z(x) =

1√
d

[sinvT
1x, . . . , sinvT

dx, cosvT
1x, . . . , cosvT

dx]T, (5)

and where {vi : i ∈ [d]} denotes an independent and identically
distributed (i.i.d.) samples from the Fourier transform of a given
kernel function κ(·, ·). Via the RF approximation, the hyper-
parameter M = 2d can be chosen independently from the number
of incoming data.

The accuracy of the above RF-based kernel learning fully
relies on a predetermined kernel κ, which can be chosen manually
either by a task-specific priori knowledge or by some inten-
sive cross-validation process. As shown in [11], [12], [22], a
multiple kernel learning, using a preselected set of P kernels
K = {κ1, κ2, ..., κP } (called a kernel dictionary), is more
powerful as it can enlarge a function space for optimization. In
this case, the RF-based multi-kernel function is represented as

f(x; {q̂i, ŵi}) =
P∑
i=1

q̂iŵ
T
i zi(x), (6)

where q̂[i ∈ [0, 1] denotes the combination weight (or reliability)
of the associated kernel function f(x; ŵi) = ŵT

i zi(x) ∈ Hi.
Now we are ready to define KOFL framework formally. It is

a class of OFL, which seeks a sequence of kernel functions in the
form of (6). An algorithm (or method) for KOFL framework is
evaluated in terms of a learning accuracy and a communication
overhead:

• Learning accuracy: As in centralized OMKL [11], [12],
the learning accuracy of an algorithm is measured by the
cumulative regret over T time slots:

regretT =
T∑
t=1

T∑
k=1

L(f(xk,t; m̂t), yk,t)

− min
1≤i≤P

min
wi

T∑
t=1

K∑
k=1

L(wT
i zi(xk,t), yk,t),

where L(·, ·) denotes a loss (or cost) function. This metric
compares the cumulative loss of our algorithm to the
cumulative loss of the static optimal function from the
best kernel.

• Communication overhead (per node): It is measured by
the number of transmissions between each node and the
server (i.e., the dimensions of shared parameters).

3 VANILLA METHODS

In this section, we present two vanilla methods for KOFL frame-
work, which can be constructed by properly combining some
existing techniques. A single kernel-based method (termed S-
KOFL) is first introduced, which is constructed by incorporating
the RF approximation [14], online gradient descent (OGD) [15],
and FedAvg [3]. In addition, harnessing the idea of multi-kernel
extension in the centralized counterpart [11], [12], a vanilla
multi-kernel KOFL (termed vM-KOFL) is constructed. Our key
observation is that such extension causes a heavy communication
overhead compared with S-KOFL, and the existing overhead-
reduction techniques in federated learning cannot address such
problem. This is the motivation of our work.

3.1 S-KOFL
In S-KOFL, the goal is to seek a sequence of RF-based kernel
functions f(x; ŵ1), ..., f(x; ŵT) defined in (4), such as

f(x; ŵt) = ŵT
t z(x) ∈ H, (7)

where z(x) is given in (5) according to a preselected single kernel
κ. To optimize the above global models ŵt ∈ RM , t = 1, ..., T in
an online fashion, S-KOFL operates with the following two steps.

Local model update: At time t, every node k receives the
current global model ŵt form the server and an incoming data
(xk,t, yk,t). Using them, it updates the local model via OGD [15]:

ŵ[k,t+1] = ŵt − η`∇L
(
ŵT
t z(xk,t), yk,t

)
, (8)

with a step size ηl > 0 and the initial value ŵ1 = 0, where
∇L

(
ŵT
t z(xk,t), yk,t

)
is the gradient at the point ŵt. Then, each

node k sends the updated local model ŵ[k,t+1] ∈ RM back to the
server.

Global model update: The server updates a global model from
the aggregated models {ŵ[k,t+1] : k ∈ [K]} via FedAvg [16]:

ŵt+1 =
1

K

K∑
k=1

ŵ[k,t+1]. (9)

Then, it distributes the updated global model ŵt+1 ∈ RM to
the K nodes. In S-KOFL, the uplink/downlink communication
overhead is equal to M .

3.2 vM-KOFL
In vM-KOFL, a global learned function at time t is represented as

f(x; {ŵ[t,i], q̂[t,i]}) =
P∑
i=1

q̂[t,i]ŵ
T
[t,i]zi(x), (10)

where the global model is defined as m̂t = {ŵ[t,i], q̂[t,i] : i ∈
[P]}. Then, vM-KOFL consists of the following two operations
(see Algorithm 1).

JOURNAL OF LATEX CLASS FILES 4

Local model update: Given the global model {ŵ[t,i] : i ∈ [P]}
and an incoming data (xk,t, yk,t), each node k updates its local
parameters {ŵ[k,t+1,i]} via OGD:

ŵ[k,t+1,i] = ŵ[t,i] − η`∇L
(
ŵT

[t,i]zi(xk,t), yk,t
)
, (11)

for ∀i ∈ [P], where ηl > 0 is a step size and the initial value is
ŵ[1,i] = 0 for ∀i ∈ [P]. Also, it computes the reliabilities of the
P kernels with respect to its own local data:

ˆ̀
[k,t+1,i] = exp

[
−ηg

t∑
τ=1

L
(
ŵT

[τ,i]zi(xk,τ), yk,τ
)]
, (12)

with the initial values ˆ̀
[k,1,i] = 1 for ∀i ∈ [P]. Then, it sends the

updated local model {ŵ[k,t+1,i], ˆ̀
[k,t+1,i] : i ∈ [P]} back to the

server.

Global model update: The server receives the updated local
models {ŵ[k,t+1,i], ˆ̀

[k,t+1,i] : i ∈ [P], k ∈ [K]} from the K
nodes. First, the parameters of the P kernel functions are obtained
via FedAvg:

ŵ[t+1,i] =
1

K

K∑
k=1

ŵ[k,t+1,i], ∀i ∈ [P]. (13)

Then, the weights for combining the P kernel functions, which is
determined on the basis of the entire losses of the K nodes, are
computed as

q̂[t+1,i] =

∏K
k=1

ˆ̀
[k,t+1,i]∑P

i=1

∏K
k=1

ˆ̀
[k,t+1,i]

. (14)

The above method to compute the combining weights is known
as Exp strategy [25]. Finally, the server broadcasts the updated
global model {ŵ[t+1,i], q̂[t+1,i] : i ∈ [P]} to the K nodes. In
vM-KOFL, the uplink/downlink communication overhead is equal
to P (M + 1).
Remark 1. We observe that vM-KOFL can enjoy the merit of

multiple kernels at the expense of communication overheads.
Especially, the uplink/downlink communication overhead of
vM-KOFL grows linearly with the size of a kernel dictionary
P . Definitely, as in S-KOFL, the communication-reduction
techniques in federated learning (e.g., quantization or spar-
sification) [17], [18], [20], [26] can be applied to vM-KOFL.
We remark that these method can only reduce the overhead
term M as M ′ � M , whereas the term P is unchanged.
This poses a new demanding problem on the construction
of a communication-efficient multi-kernel method for KOFL
framework. We contribute to this subject in the next section.

4 PROPOSED METHODS

In this section, we propose a novel randomized method (named
eM-KOFL), which can enjoy the advantage of multiple kernels
while having a similar communication overhead as S-KOFL. It
is emphasized that the uplink/downlink communication overhead
of eM-KOFL is irrespective of P and thus, to achieve a higher
learning accuracy, a sufficiently large number of kernels can
be chosen without the burden of the communication overhead.
The key idea of eM-KOFL is as follows. At every time t, one
kernel out of P kernels is randomly selected according to a
carefully designed probability mass function (PMF). Then, local
functions in the chosen kernel are updated globally, whereas the

Algorithm 1 Vanilla Method (vM-KOFL)
1: Input: K edge nodes, a set of preselected P kernels {κp :
p ∈ [P]}, and hyper-parameters (ηl, ηg).

2: Output: A sequence of global functions: t ∈ [T + 1]

f(x; {q̂[t,i], ŵ[t,i] : i ∈ [P]}), t = 1, ..., T.

3: Initialization: ŵ[1,i] = 0 for ∀i ∈ [P]. Each node has an
identical random features zi(·) for ∀i ∈ [P].

4: Iteration: t = 1, ..., T
� For every node k ∈ [K]

• Receive a streaming data (xk,t, yk,t).
• Construct zi(xk,t), ∀i ∈ [P] via (5).
• Update the parameters {ŵ[k,t+1,i] : i ∈ [P]} via (11).
• Compute the reliabilities {ˆ̀[k,t+1,i] : i ∈ [P]} via

(12).
• Send the updated local model {ŵ[k,t+1,i], ˆ̀

[k,t+1,i] :
i ∈ [P]} to the server.

� At the server

• Update the global parameter w[t+1,i] via (13).
• Obtain the reliabilities {q̂[t+1,i] : i ∈ [P]} via (14).
• Send the updated global model {w[t+1,i], q̂[t+1,i] : i ∈

[P]} to the K nodes.

♦ S-KOFL follows the above procedures with a predetermined
single kernel κ (i.e., P = 1).

Algorithm 2 Proposed Method (eM-KOFL)
1: Input: K edge nodes, a set of preselected P kernels {κi :
i ∈ [P]}, and hyper-parameters (ηl, ηg).

2: Output: A sequence of common functions: t ∈ [T + 1]

f(x; {q̃[t,i], w̃[t,i] : i ∈ [P]}), t = 1, ..., T.

3: Initialization: w̃[1,i] = 0 for ∀i ∈ [P]. Each node has an
identical random features zi(·) for ∀i ∈ [P].

4: Iteration: t = 1, ..., T
� For every node k ∈ [K]

• Receive a streaming data (xk,t, yk,t).
• Construct zi(xk,t), ∀i ∈ [P] via (5).
• Update the local parameters {g̃[k,t+1,i] : i ∈ [P]} via

(17).
• Compute the reliabilities {˜̀[k,t+1,i] : i ∈ [P]} via

(12).
• Send the updated local model w̃[k,t+1] = g̃[k,t+1,p̃t+1]

and {˜̀[k,t+2,p] : i ∈ [P]} to the server.

� At the server

• Update the global parameter wt+1 via (20).
• Randomly choose p̃t+2 according to the PMF in (21).
• Send the updated global model {w̃t+1, p̃t+2} to the K

nodes.

JOURNAL OF LATEX CLASS FILES 5

Fig. 1. Description of the proposed pM-KOFL.

other functions are updated locally only. This enables that the
communication overhead does not grow with P . Furthermore, it
is proved that our PMF, which is constructed by the proposed
delayed-Exp strategy, can guarantee that as t proceeds, the best
kernel in hindsight is selected with high probability. This will be
analytically verified in Section 5. The communication overheads
of eM-KOFL are equal to M + 1 and M + P ≤ 2M for
downlink and uplink respectively. We further reduce the uplink
communication overhead of eM-KOFL from M + P to M + 1,
by mimicking the delayed-Exp strategy in an efficient way. This
variant of eM-KOFL is named pM-KOFL. The communication
overheads of S-KOFL, vM-KOFL, eM-KOFL, and pM-KOFL are
summarized in Table I.

4.1 eM-KOFL

In the proposed eM-KOFL, a global learned function at time t is
fully determined by the parameters {p̃t, w̃t}, i.e.,

f(x; {w̃t, p̃t}) = w̃T
t zp̃t(x) ∈ Hp̃t , (15)

where the global model is defined as m̂ = {p̃t, w̃t}. We note
that {p̃t, w̃t} are random variables and thus, eM-KOFL is a ran-
domized algorithm. Thus, unlike S-KOFL, the associated RKHS
in eM-KOFL can change over the time. The proposed eM-KOFL
consists of the following two operations (see Algorithm 2):

Local model update: Every node k has its own local information
{g̃[k,t,i] : i ∈ [P]}, which is not shared with the server. Also,
at time t, it receives the global model (p̃t+1, w̃t) from the server.
Leveraging p̃t (received at time t−1) and w̃t, each node k updates
the parameters of the P kernel functions as

w̃[k,t,i] =

{
g̃[k,t,i], if i 6= p̃t
w̃t, if i = p̃t,

(16)

for ∀i ∈ [P]. Note that the kernel function belonging to Hp̂t is
only updated globally. Using them, each node k updates its local
information via OGD:

g̃[k,t+1,i] = w̃[k,t,i] − η`∇L
(
w̃T

[k,t,i]zi(xk,t), yk,t
)
, (17)

for ∀i ∈ [P], where η` > 0 is a step size. Also, from the received
parameter p̂t+1, it updates the local model to be conveyed to the
server:

w̃[k,t+1] = g̃[k,t+1,p̃t+1]. (18)

Likewise vM-KOFL, the accumulated losses (or reliabilities) of
the P kernels are computed as

˜̀
[k,t+2,i] = exp

[
−ηg

t∑
τ=1

L
(
w̃T

[k,τ,i]zi(xk,τ), yk,τ
)]
, (19)

where ˜̀
[k,1,i] = ˜̀

[k,2,i] = 1 for ∀i ∈ [P]. Obviously, ˆ̀
[k,t+2,i]

can be different from ˜̀
[k,t+2,i] in (19). Finally, every node k sends

the updated local model w̃[k,t+1] and {˜̀[k,t+2,i] : i ∈ [P]} to the
server. The corresponding communication overhead in the uplink
is equal to M + P . Since P is generally much less than M
(e.g., P = 11 and M = 100 in our experiments), the uplink
communication overhead can be less than 2M .
Global model update: At time t, the server receives the updated
local models {w̃[k,t+1] : k ∈ [K]} and {˜̀[k,t+2,i] : i ∈ [P], k ∈
[K]} from the K nodes. As in S-KOFL, it updates the global
parameter via FedAvg:

w̃t+1 =
1

K

K∑
k=1

w̃[k,t+1]. (20)

Next, the server chooses a kernel index p̃t+2 by taking the
reliabilities of the P kernels into account. Specifically, p̃t+2 ∈ [P]
is chosen according to the following PMF:

q̃[t+2,i] =

∏K
k=1

˜̀
[k,t+2,i]∑P

i=1

∏K
k=1

˜̀
[k,t+2,i]

, ∀i ∈ [P]. (21)

The proposed method above is called Delayed-Exp strategy. Un-
like the conventional Exp strategy [25], our strategy employs the
one-time delayed information, i.e., q̂[t+2,i] is determined on the
bases of incoming data up to time t, whereas in Exp strategy,
it is determined up to time t + 1. Finally, the server distributes
the updated global model {w̃t+1, p̃t+2} to the K nodes. The
downlink communication overhead of eM-KOFL is equal to
M+1. We emphasize that unlike vM-KOFL, the uplink/downlink
communication overhead of eM-KOFL does not grow with P .

JOURNAL OF LATEX CLASS FILES 6

TABLE 1
Comparisons of communication overhead

for various KOFL methods

Methods Number of transmissions
Uplink Downlink

S-KOFL M M
M-KOFL P (M + 1) ≈ PM P (M + 1) ≈ PM
eM-KOFL M + P ≤ 2M M + 1 ≈ M
pM-KOFL M + 1 ≈ M M + 1 ≈ M

4.2 pM-KOFL
We propose pM-KOFL as the communication-efficient variant of
eM-KOFL, where the corresponding uplink/downlink communica-
tion overhead is equal to M + 1. Since pM-KOFL almost follows
the procedures of eM-KOFL with some modifications, we only
highlight such differences. The full descriptions of pM-KOFL are
illustrated in Fig. 1.

In pM-KOFL, every node k transmits a candidate kernel index
p̄[k,t+2], rather than sending the accumulated losses {˜̀[k,t+2,i] :
i ∈ [P]} in eM-KOFL. The corresponding communication over-
head can be reduced from P to 1. To be specific, the candidate
index p̄[k,t+2] is chosen according to the following local PMF:

q̄[k,t+2,i] =
(˜̀

[k,t+2,i])
K∑P

i=1(˜̀
[k,t+2,i])K

, ∀i ∈ [P], (22)

where ˜̀
[k,t+2,i] is defined in (19). Then, the server chooses a

kernel index p̄t+2 from the aggregated candidates {p̄[k,t+2] : k ∈
[K]} randomly and uniformly. By integrating the randomness at
the K nodes and the server, it can be interpreted that p̄t+2 in
pM-KOFL is chosen according to the following PMF:

q̄[t+2,i] =
1

K

K∑
k=1

q̄[k,t+2,i], (23)

for ∀i ∈ [P]. Then, {q̄[t+2,i]} can be considered as the proxy
of the true PMF {q̂[t+2,i]} in (21). Definitely pM-KOFL can
approach the performance of eM-KOFL, provided that q̄[t+2,i] is
sufficiently close to q̃[t+2,i]. In Section 6, it will be demonstrated
that the proxy in (23) is quite accurate so that pM-KOFL yields
the same performance as eM-KOFL. This leads us to conclude
that pM-KOFL can almost achieve the performance of vM-KOFL
while having the same communication overhead as S-KOFL.

5 REGRET ANALYSIS

In this section, we theoretically prove that eM-KOFL attains the
same asymptotic performance as vM-KOFL. Namely, both meth-
ods achieves a sublinear regret bound, i.e., regretT ≤ O(

√
T).

Our analysis also reveals that eM-KOFL yields the same per-
formance of the centralized counterpart [11], [12] asymptotically
without sharing raw data (i.e., preserving an edge-node privacy).
Thus, eM-KOFL is asymptotically optimal. Before stating our
main theorems, we introduce some useful notations and assump-
tions. For any fixed kernel κi, let f(x;w[?,i]) = wT

[?,i]zi(x)
denote the best RF-based function belonging to RKHS Hi, i.e.,

w[?,i]
∆
= arg min

w

T∑
t=1

K∑
k=1

L
(
wTzi(xk,t), yk,t

)
. (24)

For our analysis, we make the following assumptions, which are
usually assumed for the analysis of online convex optimization
and online learning [11], [12], [15], [25]:

Assumption 1. For any fixed zi(xt) and yt, the loss function
L(wTzi(xt), yt) is convex with respect to w, and is bounded
as L(wTzi(xt), yt) ∈ [0, 1].

Assumption 2. For any fixed kernel κi, the optimal parameter
w[?,i] is assumed to be bounded, i.e., ‖w[?,i]‖2 ≤ C .

Assumption 3. The loss function is L-Lipschitz continuous, i.e.,
‖∇L(wTzi(xt), yt)‖2 ≤ L for any i ∈ ∀[P].

Under Assumption 1 - Assumption 3, the main results of this
section are derived as follows.

Theorem 1. Given any set of P kernels {κi, i ∈ [P]}, the vanilla
method (vM-KOFL) in Algorithm 1 achieves the following
regret bound:

regretT =
T∑
t=1

K∑
k=1

L
(

P∑
i=1

q̂[t,i]ŵ
T
[t,i]zi(xk,t), yk,t

)

− min
1≤i≤P

T∑
t=1

K∑
k=1

L
(
wT

[?,i]zi(xk,t), yk,t
)

≤ KC

2η`
+
η`LKT

2
+

logP

ηg
+
ηgK

2T

2
.

Proof: The proof is provided in Section 5.1.

Theorem 2. Given any set of P kernels {κi, i ∈ [P]}, the
proposed eM-KOFL in Algorithm 2 achieves the following
regret bound with probability 1− δ:

regretT =
T∑
t=1

K∑
k=1

L
(
w̃T
t zp̃t(xk,t), yk,t

)
− min

1≤i≤P

T∑
t=1

K∑
k=1

L
(
wT

[?,i]zi(xk,t), yk,t
)

≤ KC

2η`
+
η`KLT

2
+

2 logP

ηg
+
ηgK

2T

2
+K

√
log δ−1

2
.

Note that {p̃t, w̃t}, t = 1, ..., T are random sequences.

Proof: The proof is provided in Section 5.2.
Setting η` = ηg = O(1/

√
T) in Theorem 1, the vanilla vM-

KOFL achieves a sublinear regret bound O(
√
T). Likewise, with

η` = ηg = O(1/
√
T) in Theorem 2, the proposed eM-KOFL

achieves the same sublinear regret bound with high probability.
Thus, in the asymptotic case, eM-KOFL can yield the same
performance as vM-KOFL while having the 1

P downlink/uplink
communication overhead.

Remark 2. Definitely pM-KOFL can approach the performance
of eM-KOFL, provided that q̄[t,i] in (23) is sufficiently close
to the true PMF q̂[t,i] in (21). In an asymptotic analysis, it is
easily proved that pM-KOFL can achieve a sublinear regret
bound as in eM-KOFL, if the following condition holds:

T∑
t=1

P∑
i=1

|q̄[t,i] − q̃[t,i]| ≤ O(
√
T). (25)

Unfortunately, it is not possible to theoretically prove if pM-
KOFL satisfies the above condition for any decentralized
dataset. Via numerical tests, we have confirmed that the above
condition easily holds for our real datasets in Section 6.
The corresponding result is shown in Fig. 2, where y-axis

JOURNAL OF LATEX CLASS FILES 7

represents P(p̂t = p̄t) (which can clearly capture the left-
hand side of (25)).

5.1 Proof of Theorem 1

We provide the proof of Theorem 1. Following the notations in
Section 3.2, let {ŵ[t,i] : i ∈ [P]} and {q̂[t,i] : i ∈ [P]} denote
the global parameters of a learned function at time t. Using these
notations, we derive the two key lemmas.

Lemma 1. For any kernel κi and any step size ηl > 0, S-KOFL in
Section 3.1 achieves the following regret bound:

T∑
t=1

K∑
k=1

L
(
ŵT

[t,i]zi(xk,t), yk,t
)

−
T∑
t=1

K∑
k=1

L
(
ŵT

[?,i]zi(xk,t), yk,t
)

≤ KC

2η`
+
η`LKT

2
.

Proof: Fix a kernel κi for any i ∈ [P]. From OGD update
in (8) and FedAvg in (9), the global model is updated as

ŵ[t+1,i] = ŵ[t,i] −
η`
K

K∑
k=1

∇[k,t,i], (26)

where for ease of exposition, we let

∇[k,t,i]
∆
= ∇L(ŵT

[t,i]zi(xk,t), yk,t). (27)

From (26), we have:

‖ŵ[t+1,i] −w[?,i]‖2

= ‖ŵ[t,i] −w[?,i]‖2 + η2
`

∥∥∥∥∥ 1

K

K∑
k=1

∇[k,t,i]

∥∥∥∥∥
2

− 2
η`
K

K∑
k=1

∇T
[k,t,i](ŵ[t,i] −w[?,i]). (28)

Using the convexity of a loss function, we can get:

K∑
k=1

L
(
ŵT

[t,i]zi(xk,t), yk,t
)
− L

(
ŵT

[?,i]zi(xk,t), yk,t
)

≤
K∑
k=1

∇T
[k,t,i](ŵ[t,i] −w[?,i]). (29)

From (28) and (29), we derive the following upper bound:

K∑
k=1

L
(
ŵT

[t,i]zi(xk,t), yk,t
)
− L

(
wT

[?,i]zi(xk,t), yk,t
)

≤ K
‖ŵ[t,i] −w[?,i]‖2 − ‖ŵ[t+1,i] −w[?,i]‖2

2η`

+
η`
2K

∥∥∥∥∥
K∑
k=1

∇[k,t,i]

∥∥∥∥∥
2

(a)

≤ K
‖ŵ[t,i] −w[?,i]‖2 − ‖ŵ[t+1,i] −w[?,i]‖2

2η`

+
η`
2K

[
K∑
k=1

∥∥∇[k,t,i]

∥∥]2

, (30)

where (a) is from the Cauchy-Schwartz inequality. Using the
telescoping sum over t = 1, 2, .., T , we can get:

T∑
t=1

K∑
k=1

L
(
ŵT

[t,i]zi(xk,t), yk,t
)
− L

(
ŵT

[?,i]zi(xk,t), yk,t
)

≤ K
‖ŵ[1,i] −w[?,i]‖2 − ‖ŵ[T+1,i] −w[?,i]‖2

2η`

+
η`
2K

T∑
t=1

[
K∑
k=1

∥∥∇[k,t,i]

∥∥]2

(a)

≤ KC

2η`
+
η`LKT

2
, (31)

where (a) follows ŵ[1,i] = 0, Assumption 2, and Assumption 3.
This completes the proof.

Lemma 2. For any learning rate ηg > 0, Exp strategy guarantees
the following regret bound:

T∑
t=1

K∑
k=1

L
(

P∑
i=1

q̂[t,i]ŵ
T
[t,i]zi(xk,t), yk,t

)

− min
1≤i≤P

T∑
t=1

K∑
k=1

L
(
wT

[t,i]zi(xk,t), yk,t
)

≤ logP

ηg
+
ηgK

2T

2
.

Proof: The proof is completed from [12, Lemma 2].
Note that Lemma 1 holds for any kernel κi. Thus, combining

Lemma 1 and Lemma 2, we complete the proof of Theorem 1.

5.2 Proof of Theorem 2

We provide the proof of Theorem 2. In this proof, we follow the
notations in Section 4.1. For example, let {w̃[k,t,i] : i ∈ [P]}
denote the local parameters at the node k. Also, let w̃t and p̃t
denote the global parameters. Using them, we provide the the key
lemmas for the main proof.

Lemma 3. For any kernel i ∈ [P] and step size ηl > 0, the local
kernel functions of eM-KOFL can achieve the following regret
bound:

T∑
t=1

K∑
k=1

L
(
w̃T

[k,t,i]zi(xk,t), yk,t
)

−
T∑
t=1

K∑
k=1

L
(
wT

[?,i]zi(xk,t), yk,t
)

≤ KC

2ηl
+
ηlKLT

2
.

Proof: Given the global parameters p̃t ∈ [P] and w̃t, and
from (17), the local parameters are updated via OGD as

g̃[k,t+1,i] = w̃[k,t,i] − η`∇L(w̃T
[k,t,i]zi(xk,t), yk,t), (32)

for ∀i ∈ [P], where

w̃[k,t,i] =

{
g̃[k,t,i] if i 6= p̃t
w̃t = 1

K

∑K
k=1 g̃[k,t,i] if i = p̃t.

(33)

JOURNAL OF LATEX CLASS FILES 8

Then, from (32), we have that for any k ∈ [K]:

‖g̃[k,t+1,i] −w[?,i]‖2

= ‖w̃[k,t,i] − η`∇L(w̃T
[k,t,i]zi(xk,t), yk,t)−w[?,i]‖2

= ‖w̃[k,t,i] −w[?,i]‖2 + η2
`‖∇L(w̃T

[k,t,i]zi(xk,t), yk,t)‖2

− 2η`∇L(w̃T
[k,t,i]zi(xk,t), yk,t)

T(w̃[k,t,i] −w[?,i]). (34)

Foe ease of exposition, throughout the proof, we let

∇[k,t,i]
∆
= ∇L(w̃T

[k,t,i]zi(xk,t), yk,t). (35)

According to the two cases in (33), we can get:
i) When w̃[k,t,i] = g̃[k,t,i] (i.e., i 6= p̃t), from (17), we have:

‖g̃[k,t+1,i] −w[?,i]‖2 = ‖g̃[k,t,i] −w[?,i]‖2

+ η2
`‖∇[k,t,i]‖2 − 2η`∇T

[k,t,i](w̃[k,t,i] −w[?,i]). (36)

ii) when w̃[k,t,i] = 1
K

∑K
k=1 g̃[k,t,i] (i.e., i = p̃t), from (17),

we have:∑
k∈[K]

∥∥g̃[k,t+1,i] −w[?,i]

∥∥2
=

K∑
k=1

∥∥w̃[k,t,i] − η`∇[k,t,i] −w[?,i]

∥∥2

=
K∑
k=1

∥∥w̃[k,t,i] −w[?,i]

∥∥2
+ η2

l

K∑
k=1

∥∥∇[k,t,i]

∥∥2

− 2η`∇T
[k,t,i](w̃[k,t,i] −w[?,i])

(a)

≤
K∑
k=1

∥∥g̃[k,t,i] −w[?,i]

∥∥2
+ η2

l

K∑
k=1

∥∥∇[k,t,i]

∥∥2

− 2η`∇T
[k,t,i](w̃[k,t,i] −w[?,i]), (37)

where (a) is due to the fact that for any k ∈ [K], we have:

‖w̃[k,t,i] −w[?,i]‖2 =

∥∥∥∥∥ 1

K

K∑
k=1

g̃[k,t,i] −w[?,i]

∥∥∥∥∥
2

(a)

≤ 1

K2

[
K∑
k=1

‖g̃[k,t,i] −w[?,i]‖
]2

(b)

≤ 1

K

K∑
k=1

‖g̃[k,t,i] −w[?,i]‖2,

where (a) and (b) are from the triangle inequality and Cauchy-
Schwartz inequality. Also, from the convexity of a loss function,
we obtain that for any k ∈ V :

L
(
w̃T

[k,t,i]zi(xk,t), yt
)
− L

(
wT

[?,p]zi(xk,t), yt
)

≤ ∇T
[k,t,i](w̃[k,t,i] −w[?,i]). (38)

Plugging (38) into (36) and (37) separately, and combining the
two cases, we can get

K∑
k=1

L
(
w̃T

[k,t,i]zi(xk,t), yt
)
− L

(
wT

[?,i]zi(xk,t), yt
)

≤
K∑
k=1

‖g̃[k,t,i] −w[?,i]‖2 − ‖g̃[k,t+1,i] −w[?,i]‖2

2η`

+
η`
2

K∑
k=1

‖∇[k,t,i]‖2. (39)

Summing (39) over t = 1, ..., T , we obtain that for any fixed
i ∈ [P],

T∑
t=1

K∑
k=1

L
(
w̃T

[k,t,i]zi(xk,t), yt
)
− L

(
wT

[?,i]zp(xk,t), yt
)

(a)

≤
K∑
k=1

‖g̃[k,1,i] −w[?,i]‖2

2η`
+
η`
2

T∑
t=1

K∑
k=1

‖∇[k,t,i]‖2

(b)

≤ KC

2η`
+
η`KLT

2
, (40)

where (a) is due to the telescoping sum and (b) is from g̃[k,1,i] =
0, Assumption 2 and Assumption 3. This completes the proof.

Lemma 4. For any learning rate ηg > 0, the proposed delayed-Exp
strategy guarantees the following regret bound:

T∑
t=1

K∑
k=1

P∑
i=1

q̃[t,i]L
(
w̃T

[k,t,i]zi(xk,t), yk,t
)

− min
1≤i≤P

T∑
t=1

K∑
k=1

L
(
w̃T

[k,t,i]zi(xk,t), yk,t
)

≤ 2 logP

ηg
+
ηgK

2T

2
.

Proof: For ease of exposition, we define:

f̃[k,t,i](x)
∆
= w̃T

[k,t,i]zi(x). (41)

The proof will be completed using the upper and lower bounds on
ζ , which is defined as

ζ
∆
=
T∑
t=1

log

[
P∑
i=1

q̃[t,i] exp

(
−ηg

K∑
k=1

t∑
τ=t−1

L(f̃[k,τ,i](xk,τ), yk,τ)

)]
.

We first derive the upper bound on ζ:

ζ
(a)
=

T∑
t=1

logE
[

exp

(
−ηg

K∑
k=1

t∑
τ=t−1

L(f̃[k,τ,It](xk,τ), yk,τ)

)]
(b)

≤ −ηg
T∑
t=1

K∑
k=1

E
[
L(f̃[k,t,It](xk,t), yk,t)

]
− ηg

T∑
t=1

K∑
k=1

E
[
L(f̃[k,t−1,It](xk,t−1), yk,t−1)

]
+
η2
gK

2T

2
,

(42)

where the expectation in (a) over the random variable It ∼
(q̂t,1, ..., q̂t,P) and (b) follows the Hoeffding’s inequality with the
bounded random variable.

We next derive the lower bound on ζ . First, we define:

¯̀
[k,t,i] = exp

[
−ηg

t−1∑
τ=1

L
(
w̃T

[k,τ,i]zi(xk,τ), yk,τ
)]
, (43)

Also, recall that

˜̀
[k,t,i] = exp

[
−ηg

t−2∑
τ=1

L
(
w̃T

[k,τ,i]zi(xk,τ), yk,τ
)]
. (44)

Obviously, we have:

¯̀
[k,t,i] = ˜̀

[k,t+1,i] and ¯̀
[k,t,i] ≤ ˜̀

[k,t,i]. (45)

JOURNAL OF LATEX CLASS FILES 9

Then, using the above definitions, we have:

ζ =
T∑
t=1

log

[∑P
i=1

¯̀
[k,t+1,i]∑P

i=1
˜̀
[k,t,i]

]

=
T∑
t=1

log

[∑P
i=1

¯̀
[k,t+1,i]∑P

i=1
¯̀
[k,t,i]

]
+

T∑
t=1

log

[∑P
i=1

¯̀
[k,t,i]∑P

i=1
˜̀
[k,t,i]

]
(a)
=

T∑
t=1

log

[∑P
i=1

¯̀
[k,t+1,i]∑P

i=1
¯̀
[k,t,i]

]
+

T∑
t=1

log

[∑P
i=1

˜̀
[k,t+1,i]∑P

i=1
˜̀
[k,t,i]

]
(b)
= log

[
P∑
i=1

¯̀
[k,T+1,i]

]
− log

[
P∑
i=1

¯̀
[k,1,i]

]

+ log

[
P∑
i=1

˜̀
[k,T+1,i]

]
− log

[
P∑
i=1

˜̀
[k,1,i]

]
(c)

≥ 2 log

[
P∑
i=1

¯̀
[k,T+1,i]

]
− 2 logP

(d)

≥ 2 log

[
max

1≤p≤P
¯̀
[k,T+1,p]

]
− 2 logP

= −2ηg min
1≤i≤P

T∑
t=1

K∑
k=1

L
(
w̃T

[k,t,i]zi(xk,t), yk,t
)
− 2 logP

(46)

where (a) follows the relation in (45), (b) is from the telescoping
sum, (c) is due to the fact that

∑P
i=1

˜̀
[k,T+1,i] ≥

∑P
i=1

¯̀
[k,T+1,i],

and (d) is from the fact that the accumulated loss is non-negative.
From the lower and upper bounds, we can get:

− 2ηg min
1≤i≤P

T∑
t=1

K∑
k=1

L
(
w̃T

[k,t,i]zi(xk,t), yk,t
)
− 2 logP

≤ −ηg
T∑
t=1

K∑
k=1

E
[
L(f̃[k,t,It](xk,t), yk,t)

]
− ηg

T∑
t=1

K∑
k=1

E
[
L(f̃[k,t−1,It](xk,t−1), yk,t−1)

]
+
η2
gK

2T

2
.

Rearranging the above term, we finally obtain:
T∑
t=1

K∑
k=1

E
[
L(f̃[k,t,It](xk,t), yk,t)

]
− min

1≤i≤P

T∑
t=1

K∑
k=1

L
(
w̃T

[k,t,i]zi(xk,t), yk,t
)

≤ 2 logP

ηg
+
ηgK

2T

2
,

where we used the fact that
T∑
t=1

K∑
k=1

E
[
L(f̃[k,t−1,It](xk,t−1), yk,t−1)

]
≥ min

1≤i≤P

T∑
t=1

K∑
k=1

L
(
w̃T

[k,t,i]zi(xk,t), yk,t
)
.

This completes the proof.
We remark that Lemma 3 and Lemma 4 hold for any real-

izations of our randomized algorithm. We next prove that our
randomized algorithm, choosing one kernel at every time instead
of the combination of all P kernels, only leads to a bounded loss
compared with using the combination of the P kernels.

Lemma 5. For some δ > 0, the proposed randomized algorithm
achieves the following regret bound with at least probability
1− δ:

T∑
t=1

K∑
k=1

L
(
w̃T
t zp̃t(xk,t), yk,t

)
−

T∑
t=1

K∑
k=1

P∑
i=1

q̃[t,i]L
(
w̃T

[k,t,i]zi(xk,t), yk,t
)

≤ K

√
log(δ−1)

2
T .

Proof: We first define w̄[k,t,i] as

w̄[k,t,i] =
1

K

K∑
k=1

g̃[k,t,i],∀i ∈ [P]. (47)

Note that w̄[k,t,i] = ŵ[k,t,i] only when i = p̂t. Then, we define a
random variable Xt:

Xk,t = L
(
w̃T
t zp̃t(xk,t), yk,t

)
−

P∑
i=1

q̃[t,i]L
(
w̄T

[k,t,i]zp(xk,t), yk,t
)
. (48)

Note that q̃[t,i] is obtained as a consequence of random vari-
ables p̃1, ..., p̃t−1. Also, p̃t is chosen according to the PMF
(q̃[t,1], ..., q̃[t,P]). Let Ft = σ(p̃1, p̃2, ..., p̃t) be the smallest
sigma algebra such that (p̃1, p̃2, ..., p̃t) is measurable. Then,
{Ft : t = 1, ..., T} is filtration and Xk,t is Ft-measurable. Note
that the condition onFt−1, q̃[t,i] is fixed and p̃t and w̃t are random
variables. Using this fact, we have:

E[Xk,t|Ft−1] = 0,

because

E
[
L
(
w̃T
t zp̃t(xk,t), yk,t

) ∣∣∣Ft−1

]
=

P∑
i=1

q̃[t,i]L
(
w̄T

[k,t,i]zi(xk,t), yk,t
)
.

Hence, {Xk,t : t ∈ [T]} is a martingale difference sequence and
Xk,t ∈ [Bt, Bt + ct] is bounded, where Bt is a random variable
and Ft−1 measurable, and ct = 1, where

Bt
∆
= −

P∑
i=1

q̃[t,i]L(w̄T
[k,t,i]zp(xk,t), yk,t). (49)

From Azuma-Hoeffding’s inequality, the following bound holds
for some δ > 0 with at least probability 1− δ:

T∑
t=1

Xk,t ≤
√

log δ−1

2
T . (50)

Since this is true for any k ∈ V , we have:

T∑
t=1

K∑
k=1

Xk,t ≤ K
√

log δ−1

2
T . (51)

JOURNAL OF LATEX CLASS FILES 10

Also, we have
K∑
k=1

P∑
i=1

q̃[t,i]L(w̄T
[k,t,i]zp(xk,t), yk,t)

(a)
=

K∑
k=1

P∑
i=1

q̃[t,i]L
(

1

K

K∑
k=1

w̃T
[k,t,i]zp(xk,t), yk,t

)
(b)

≤
K∑
k=1

P∑
i=1

L(w̃T
[k,t,i]zp(xk,t), yk,t), (52)

where (a) is from the definitions of w̃[k,t,i] and w̄[k,t,i] and (b)
is due to the convexity of loss function (i.e., Assumption 1).
Combining (48), (51), and (52), the proof is completed.

Combining Lemma 3, Lemma 4 and Lemma 5, we can
complete the proof of Theorem 2.

6 EXPERIMENTAL RESULTS

In this section, we demonstrate the superiority of the proposed
eM-KOFL and pM-KOFL via experiments with real datasets on
online regression and time-series prediction tasks. As benchmark
methods, the two vanilla methods as S-KOFL and vM-KOFL
are considered. We believe that they are reasonable baseline
methods because they are constructed by leveraging the best-
known federated learning and multi-kernel learning approaches.
Also, to the best of our knowledge, no other method for KOFL
framework can be found. In our experiments, we consider a
communication network consisting of K = 20 decentralized
nodes and a regularized least-square loss function, i.e.,

L(wTzi(x), y) =
[
wTzi(x)− y

]2
+ λ‖w‖2. (53)

The learning accuracy at time t is measured by the cumulative
mean-square-error (MSE) as

MSE(t) =
1

tK

t∑
τ=1

K∑
k=1

(ŷk,τ − yk,τ)2, (54)

where ŷk,τ and yk,τ denote a predicted label and a true label,
respectively. Due to the randomness of the above methods caused
by the RF approximation, the average MSE performances over 50
trials are evaluated. Also, the following hyper-parameters are used

ηl = 0.5, ηg = 0.5, λ = 0.01, and M = 100. (55)

The above parameters can be further elaborated. However, as
noticed in [12], such hyper-parameter optimization is still an open
problem even in a simpler centralized network. In our experiments,
thus, one pair of the hyper-parameters in (55) are used for all test
datasets. We build the kernel dictionary consisting of 11 Gaussian
kernels (i.e., P = 11), each of which is defined with the following
basis kernels

κi(x,x
′) = exp

(
−‖x− x′‖2

σ2
i

)
, (56)

with the parameters (or bandwidths)

σi = 10(i−6)/2, i = 1, 2, ..., 11. (57)

Finally, the real datasets for our experiments on online regressions
and time-series predictions are described in Section 6.1 and 6.2,
respectively. They are also summarized in Table 2.
Performance evaluations: We first verify that pM-KOFL can
operate as equivalently as eM-KOFL, i.e., the true PMF in

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
q

u
iv

al
en

ce
 p

ro
b
.

o
f

eM
-K

O
F

L
 a

n
d
 p

M
-K

O
F

L

Twitter data

eM-KOFL and pM-KOFL start to choose the same kernel index

Fig. 2. Comparisons of the proposed eM-KOFL and pM-KOFL in terms
of a chosen kernel index. The y-axis measures P(p̂t = p̄t) empirically
using Twitter data.

(21) can be well-approximated by the proxy PMF in (23). The
corresponding numerical result is illustrated in Fig. 2, where
P(p̂t = p̄t) is computed empirically with 100 samples. Recall
that p̂t and p̄t indicate the best kernel indices at time t randomly
chosen by the true PMF (in eM-KOFL) and the proxy PMF (in
pM-KOFL), respectively. It is clearly shown that after a certain
time (called a mixing time), pM-KOFL and eM-KOFL operate
at the same way with high probability. Furthermore, the mixing
time is extremely fast. For this reason, pM-KOFL can yield the
almost same performance as eM-KFOL with not-so-large number
of incoming data (e.g., T is finite). Next, we demonstrate the
effectiveness of the proposed methods on various online learning
tasks. Fig. 3 shows the MSE performances on online regression
tasks with real datasets in Section 6.1. We identify that multi-
kernel based methods as vM-KOFL, eM-KFOL, and pM-KOFL
yield more stable performances than the single kernel methods.
In contrast, S-KOFL can provide an attractive performance only
when a proper single kernel is preselected. Otherwise, S-KOFL
deteriorates the learning accuracy considerably. This situation
can be happened in real-world applications and thus, S-KOFL
is not recommended in practice. Notably, both eM-KOFL and
pM-KOFL attain the almost same performance as vM-KOFL for
all real datasets, where the performance of vM-KOFL can be
regarded as the best performance (lower bound) under KOFL
framework. Namely, they can fully enjoy the advantage of multiple
kernels as in vM-KOFL while having a similar communication
overhead with S-KOFL. One can expect that without increasing
the communication overheads, pM-KOFL (or eM-KOFL) yields
an outstanding performance for any real-world application using
a sufficiently large number of kernels. This surprising result could
not been attained from the vanilla vM-KOFL. The exactly same
results have been observed in Fig. 4 on time-series prediction
tasks. This verifies that the proposed pM-KOFL and eM-KOFL
can give stable performances on various online learning tasks.
These numerical results suggest the practicality of the proposed
methods.

6.1 Online Regression Tasks
In the experiments of online regression tasks, the following
popular real datasets from UCI Machine Learning Repository are

JOURNAL OF LATEX CLASS FILES 11

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time index

10
-3

10
-2

10
-1

10
0

M
S

E
vM-KOFL

eM-KOFL

pM-KOFL

S-KOFL (=1)

S-KOFL (=100)

S-KOFL (=0.01)

Solid lines: Proposed methods

Dashed lines: Vanilla methods

(a) Twitter data

0 100 200 300 400 500 600

Time index

10
-1

10
0

M
S

E

vM-KOFL

eM-KOFL

pM-KOFL

S-KOFL (=1)

S-KOFL (=100)

S-KOFL (=0.01)

Solid lines: Proposed methods

Dashed lines: Vanilla methods

(b) Conductivity data

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time index

10
-3

10
-2

10
-1

10
0

M
S

E

vM-KOFL

eM-KOFL

pM-KOFL

S-KOFL (=1)

S-KOFL (=100)

S-KOFL (=0.01)

Solid lines: Proposed methods

Dashed lines: Vanilla methods

(c) Air quality data

Fig. 3. Comparisons of MSE performances of various algorithms on
online regressions tasks.

considered:

0 100 200 300 400 500 600 700 800 900 1000

Time index

10
-3

10
-2

10
-1

10
0

M
S

E

vM-KOFL

eM-KOFL

pM-KOFL

S-KOFL (=1)

S-KOFL (=100)

S-KOFL (=0.01)

Solid lines: Proposed methods

Dashed lines: Vanilla methods

(a) Parking occupancy data

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time index

10
-3

10
-2

10
-1

10
0

M
S

E

vM-KOFL

eM-KOFL

pM-KOFL

S-KOFL (=1)

S-KOFL (=100)

S-KOFL (=0.01)

Solid lines: Proposed methods

Dashed lines: Vanilla methods

(b) Power consumption data

0 50 100 150 200 250 300

Time index

10
-2

10
-1

10
0

M
S

E

vM-KOFL

eM-KOFL

pM-KOFL

S-KOFL (=1)

S-KOFL (=100)

S-KOFL (=0.01)

Solid lines: Proposed methods

Dashed lines: Vanilla methods

(c) Traffic data

Fig. 4. Comparisons of MSE performances of various algorithms on
time-series prediction tasks.

• Twitter [27]: Data contains buzz events from Twitter,
where each attribute is used to predict the popularity of
a topic. Higher value indicates more popularity.

JOURNAL OF LATEX CLASS FILES 12

TABLE 2
Summary of Real Datasets for Experiments

Datasets # of features # of data feature type
Online regression tasks

Twitter 77 98704 real & integer
Conductivity 81 11000 real

Tom’s hardware 96 9725 real& integer
Air quality 13 38563 real

Time-series prediction tasks
Power consumption 5 100000 real
Parking occupancy 5 21500 real

Traffic 5 6500 real

• Conductivity [28]: Data contains samples of extracted
from superconductors, where each feature represents crit-
ical information to construct superconductor such as den-
sity and mass of atoms. The goal is to predict the critical
temperature to create superconductor.

• Air quality [29]: Data includes samples, of which features
include hourly response from an array of chemical sensors
embedded in a city of Italy. The task is to predict the
concentration of polluting chemicals in the air.

6.2 Time-series Prediction Tasks

We consider time-series prediction tasks which estimate the future
values in online fashion. As in the centralized counterpart [12], the
famous time-series prediction method called Autogressive (AR)
model is considered. An AR(s) model predicts the future value
yt assuming the linear dependency on its s values, i.e.,

yt =
s∑
i=1

γiyt−i + nt, (58)

where γi denotes the weight for yt−i and nt denotes a Gaussian
noise at time t. Based on this, the RF-based kernelized AR(s)
model, which can explore a nonlinear dependency, is introduced
in [12]:

yt = ft(xt) + nt, (59)

where xt = [yt−1, ..., yt−s]
T. The proposed pM-KOFL aims

at learning ft(·) with a parameterized model f(x; {p̄t, w̄t}) =
w̄tzp̄t(x). The other methods can be defined similarly. Then,
the proposed and benchmark methods are tested with the follow-
ing univariate time-series datasets from UCI Machine Learning
Repository:

• Power consumption [30]: Data contains samples, each
of which represents the active energy consumed every
minute (in watt per hour) in the household by electrical
equipment.

• Parking occupancy [31]: Data contains samples obtained
from the parking lot in Birmingham, each of which indi-
cates the car park occupancy rate.

• Traffic [32]: Data contains the time-series traffic data ob-
tained from Minneapolis Department of Transportation in
US. Data is collected from hourly interstate 94 Westbound
traffic volume for MN DoT ATR station 301, roughly
midway between Minneapolis and St Paul, MN.

7 CONCLUSION

We proposed a novel randomized algorithm (named eM-KOFL)
for kernel-based online federated learning (KOFL) framework.
It was theoretically proved that eM-KOFL can achieve the
same asymptotic performance as the vanilla multi-kernel method
(termed vM-KOFL), while having a lower communication over-
head. Also, our analysis revealed that eM-KOFL yields the same
asymptotic performance as the centralized counterpart without
sharing raw data (i.e., preserving an edge-node privacy). Focusing
on a practical aspect, we presented the communication-efficient
variant of eM-KOFL by mimicking the delayed-Exp strategy in
an efficient way. The proposed method is named pM-KOFL. Via
experiments with real datasets, we demonstrated the effectiveness
of the proposed eM-KOFL and pM-KOFL on various online
learning tasks. In particular, pM-KOFL can yield the almost same
performance as vM-KOFL while having the 1/P uplink/downlink
communication overhead, where P denote the size of a kernel
dictionary. These suggest the practicality of pM-KOFL. One
interesting future work is to extend pM-KOFL into a wireless
KOFL framework (or over-the-air KOFL framework). Another in-
teresting extension is to build the so-called collaborative KOFL by
integrating collaborating learning with KOFL so as to enable edge
nodes to engage in KOFL framework without directly connecting
the server.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT)
(NRF-2020R1A2C1099836).

REFERENCES

[1] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[2] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” arXiv preprint
arXiv:1912.04977, 2019.

[3] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[4] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones.” in
Esann, vol. 3, 2013, p. 3.

[5] A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-
based systems for health monitoring and prognosis,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 40, no. 1, pp. 1–12, 2009.

[6] P. Rashidi and D. J. Cook, “Keeping the resident in the loop: Adapting
the smart home to the user,” IEEE Transactions on systems, man, and
cybernetics-part A: systems and humans, vol. 39, no. 5, pp. 949–959,
2009.

[7] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online prediction of
time series data with kernels,” IEEE Transactions on Signal Processing,
vol. 57, no. 3, pp. 1058–1067, 2008.

[8] S. Shen, H. Jiang, and T. Zhang, “Stock market forecasting using machine
learning algorithms,” Department of Electrical Engineering, Stanford
University, Stanford, CA, pp. 1–5, 2012.

[9] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” IEEE transactions on signal processing, vol. 52, no. 8, pp.
2165–2176, 2004.

[10] J. Shawe-Taylor, N. Cristianini et al., Kernel methods for pattern analy-
sis. Cambridge university press, 2004.

[11] Y. Shen, T. Chen, and G. B. Giannakis, “Random feature-based online
multi-kernel learning in environments with unknown dynamics,” The
Journal of Machine Learning Research, vol. 20, no. 1, pp. 773–808,
2019.

JOURNAL OF LATEX CLASS FILES 13

[12] S. Hong and J. Chae, “Active learning with multiple kernels,” accepted
to IEEE Transactions on neural networks and learning systems. [Online]
arXiv preprint arXiv:2005.03188, 2020.

[13] B. Scholkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2001.

[14] A. Rahimi and B. Recht, “Random features for large-scale kernel ma-
chines,” in Advances in neural information processing systems, 2008, pp.
1177–1184.

[15] E. Hazan et al., “Introduction to online convex optimization,” Founda-
tions and Trends® in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[16] H. Yuan and T. Ma, “Federated accelerated stochastic gradient descent,”
arXiv preprint arXiv:2006.08950, 2020.

[17] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in Neural Information Processing Systems, vol. 30, pp. 1709–
1720, 2017.

[18] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” in NeurIPS, 2018.

[19] D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat, N. Konstantinov, and
C. Renggli, “The convergence of sparsified gradient methods,” arXiv
preprint arXiv:1809.10505, 2018.

[20] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signsgd: Compressed optimisation for non-convex problems,” in Inter-
national Conference on Machine Learning. PMLR, 2018, pp. 560–569.

[21] M. Gönen and E. Alpaydın, “Multiple kernel learning algorithms,” The
Journal of Machine Learning Research, vol. 12, pp. 2211–2268, 2011.

[22] J. Chae and S. Hong, “Distributed online learning with multiple kernels,”
arXiv preprint arXiv:2102.12733, 2021.

[23] M. J. Wainwright, High-dimensional statistics: A non-asymptotic view-
point. Cambridge University Press, 2019, vol. 48.

[24] A. Rahimi and B. Recht, “Random features for large-scale kernel ma-
chines,” Advances in neural information processing systems, vol. 20, pp.
1177–1184, 2007.

[25] S. Bubeck, “Introduction to online optimization,” Lecture Notes, vol. 2,
2011.

[26] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu, “A
distributed synchronous sgd algorithm with global top-k sparsification for
low bandwidth networks,” in 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2019, pp. 2238–
2247.

[27] E. G. François Kawala, Ahlame Douzal-Chouakria and E. Dimert,
“Prédictions d’activité dans les réseaux sociaux en ligne,” 4i‘eme
Conférence sur les Modéles et l’Analyse des Réseaux: Approches
Mathématiques et Informatiques, 2013.

[28] K.Hamidieh, “A data-driven statistical model for predicting the critical
temperature of a superconductor,” Computational Materials Science, pp.
346–354.

[29] M. P. L. M. Saverio De Vito, Ettore Massera and G. D. Francia, “On
field calibration of an electronic nose for benzene estimation in an urban
pollution monitoring scenario.” Sensors and Actuators B: Chemical, vol.
129, no. 2, pp. 750–757, 2008.

[30] “Georges hebrail. uci machine learning repository, url
https://archive.ics.uci.edu/ml/datasets/.”

[31] D. H. S. A. Camero, J. Toutouh and E. Alba, “Evolutionary deep
learning for car park occupancy prediction in smart cities,” International
Conference on Learning and Intelligent Optimization, 2019.

[32] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

