
pre
pri

nt

Clone Detection in Test Code:
An Empirical Evaluation

Brent van Bladel
University of Antwerp, Belgium

Serge Demeyer
University of Antwerp, Belgium
Flanders Make vzw, Belgium

Abstract—Duplicated test code (a.k.a. test code clones) has
a negative impact on test comprehension and maintenance.
Moreover, the typical structure of unit test code induces struc-
tural similarity, increasing the amount of duplication. Yet, most
research on software clones and clone detection tools is focused
on production code, often ignoring test code. In this paper we fill
this gap by comparing four different clone detection tools (NiCad,
CPD, iClones, TCORE) against the test code of three open-source
projects. Our analysis confirms the prevalence of test code clones,
as we observed between 23% and 29% test code duplication. We
also show that most of the tools suffer from false negatives (NiCad
= 83%, CPD = 84%, iClones = 21%, TCORE = 65%), which
leaves ample room for improvement. These results indicate that
further research on test clone detection is warranted.

Index Terms—software clones; unit-tests; code clone detection

I. INTRODUCTION

The recent popularity of agile software development has
increased the emphasis on software testing for developers.
In particular, test-driven development [1], and continuous
integration [2], [3] require an effective test suite, which is
executed early and often [4]. With each increment of the
production code, the test code needs to be updated, extended,
and maintained as well. Therefore, it is a recommended practice
to continuously monitor the quality of the test suite [5], [6].

However, as agile teams aim to fix bugs and cover new
features with the test suite, less time is spent on maintaining
or refactoring the test code. This gives rise to the concept of
“test smells”: sub-optimal design choices in the implementation
of test code [7], [8]. Duplicate tests (a.k.a. test clones) are one
of the common symptoms, as the quickest way for a developer
to test a new feature is to copy, paste, and modify an existing
test [9]. Even if the developer does create a new test from
scratch, the consistent structure of unit test code (the setup-
stimulate-verify-teardown (S-S-V-T) cycle [10]) can still cause
clones accidentally. A recent case study on a large project from
industry found that 49% of the entire test code are clones [11].
This is significantly higher than the average of 7% to 23% for
production code [12].

This high amount of duplicated test code can be problematic,
as test smells (such as test code duplication) have been shown to
have a strong and negative impact on program comprehension
and maintenance [13]. Yet, research on test code duplication is
limited, as most code cloning research focuses on production
code.

In this paper, we perform an exploratory study on duplicated
test code by running four clone detection tools (NiCad, CPD,
iClones, and TCORE) on three open-source test suites. We
classify and analyse a total of 2,544 detected clones, and
compare the effectiveness of these tools. As such, we make
the following contributions:

1) We show that test code in our dataset contains 23% to
29% duplication, which is higher than the average of 7%
to 23% for production code.

2) We provide anecdotal evidence that clones in test code
inherently differ from clones in production code.

3) We demonstrate that code clone detection tools suffer from
many false negatives when run on test code, indicating
that further research towards clone detection on test code
is warranted.

4) We provide insights on test code clone detection in the
form of lessons learned, in which we provide actionable
advice on how to improve clone detection on test code.

5) Our dataset is publicly available, serving as a clone
benchmark for test code.

The remainder of this paper is organised as follows. Section II
provides the required theoretical background while Section III
lists the related work. Section IV describes the experimental
set-up, which naturally leads to Section V reporting the results.
Section VI enumerates the threats to validity, and Section VII
concludes the paper.

II. BACKGROUND

Code clone. When two fragments of code from the source
code are either exactly the same or similar to each other, we
call them a code clone. A code clone is also synonymous with
a software clone or duplicated code, as these terms can be
used interchangeably.

Clone fragment. A fragment of code that is duplicated is
called a clone fragment. Therefore, a code clone consists of
two or more such clone fragments. When we consider a code
clone that consists of exactly two clone fragments, we use the
term clone pair. Most code clone detection tools report their
results in terms of clone pairs.

Clone class. When a clone fragment is duplicated more than
two times, we get a set of clone fragments called a clone
class. Note that each combination of clone fragments in this
set will also form a clone pair. One way to visualize the
differences between these terms is to consider a graph: if every
clone fragment is a node in a graph, then every edge between

pre
pri

nt

PREPRINT – Accepted for SANER 2020

two nodes is a clone pair, and a fully connected graph is a
clone class. A clone class therefore consists of a set of clone
fragments that all form clone pairs between themselves.

Clone types (1, 2, 3, 4). Code clones can be differentiated
based on their degree of similarity. First, code clones can be
divided into syntactic clones and semantic clones. Syntactic
clones are code clones that are syntactically similar, and are
further divided in three types: type-1, type-2, and type-3 clones.
Type-1 clones are exactly the same, only allowing differences
in comments, whitespaces, and indentation. Type-2 clones are a
little less strict than type-1 clones as they also allow differences
in variable names and literal values. Finally, type-3 clones are
even less strict than type-2 clones. They also allow for lines of
code in the clone fragment to be added or removed. Note that
it is not required for these types of clones to be functionally
similar, although the syntactic similarity usually does result
in similar semantics (e.g. both clone fragments of a type-1
clone are functionally identical). Semantic clones on the other
hand are code clones that are semantically similar without
necessarily being syntactically similar, and are often called
type-4 clones.

III. RELATED WORK

A lot of research has already been performed on software
clones. In 2007, Koschke performed a survey on the literature
on software clones [12], which was followed in 2009 by him
and his colleagues (Roy et al.) with an extensive comparison
and evaluation of all code clone detection techniques and
tools [14]. Since then, a lot of research has been performed to
further investigate the prevalence, characteristics, impact, and
detection methods of software clones. However, most of this
research focuses on production code [12], [14], [15].

In 2012, Bavota et al. performed two empirical studies to-
wards the effects of test smells, including test code duplication.
Their results show that most test smells have a strong negative
impact on the comprehensibility and maintainability of both
the test code and the production code [13].

In 2015, Tsantalis et al. performed a large-scale empirical
study using nine open-source projects. For their analysis, they
used four different clone detection tools: CCFinder, Deckard,
CloneDR, and NiCad. The focus of their study was on the
refactorability of code clones in general, not specifically on
test code duplication. However, they did briefly look at the
difference between clones in test code and clones in production
code. They found that in general test code contained more code
clones than production code [16].

More recently, in 2018, Hasanain et al. performed an
industrial case study that aims at better understanding code
clones in test code. They used NiCad to detect clones on a
large test suite provided by Ericsson. They found that 49% (in
terms of LOC) of the entire test code are clones [11].

In this work, we build further on the research performed by
Hasanain et al. [11]. We extend their work by investigating
a different dataset of open-source test code using additional
clone detection tools.

IV. EXPERIMENTAL SETUP

In this section we provide a detailed description of the
process we followed to reach our results. First we go over
the tools and data we used, followed by the steps we took to
perform our comparison.

A. Clone Detection Tools

There are many different code clone detection tools available,
which can be divided in a few approaches. The three most
common ones are (i) text-based, (ii) token-based, and (iii) tree-
based. (i) Text-based approaches use the raw source code
for comparison in the clone detection process, sometimes
with a minimal amount of normalization (such as removal
of empty lines and extra whitespaces). (ii) Token-based
approaches begin by transforming the source code into a
sequence of lexical tokens, which is then scanned for duplicated
subsequences of tokens. (iii) Tree-based approaches use a parser
to convert the source code into abstract syntax trees, which can
then be scanned for duplicated subtrees using tree matching
algorithms [14].

Clone detection techniques that do not fall under one of these
three approaches have been proposed as well. For example, it
has been shown that program dependency graphs (PDGs) and
program slicing can be used to detect code clones [17], [18].
Other techniques include static analysis of memory states at
each procedure exit point [19], or applying random testing to
detect similar function output [20]. However, the latter two
techniques cannot be applied to test code.

In order to select the tools for our comparison, we used the
following criteria:

• Availability: To allow for our comparison to be easily
reproduced, we selected tools which are publicly available
for download. For example, CloneDR [21] was considered,
but since this tool is not publicly available, we decided
not to include it in our study.

• Configuration: To allow an accurate comparison between
tools, we selected tools that are easily configurable
in a similar manner (see Section IV-C). For example,
Deckard [22] was considered, but we were unable to run
it succesfully with the desired configuration.

• Output: To allow an automatic analysis of the results, we
selected tools that have a structured output format. For
example, CCFinder [23] was considered, but its output
was not easily converted to our reference format (see
Section IV-D).

• Approach: To allow for a more broad analysis, we selected
tools with different approaches: one text-based, one token-
based, one token- and tree-based hybrid, and one tree-
and PDG-based hybrid.

Using these criteria, we selected the following clone detec-
tion tools:

• NiCad uses a text-based approach that performs clone
detection in 3 stages. First it splits the input source into
fragments of a certain granularity (e.g. blocks, functions).
It then normalizes these fragments to a standard textual

— 2 —

pre
pri

nt

PREPRINT – Accepted for SANER 2020

TABLE I
DATASET DESCRIPTIVE STATISTICS.

Name Files Tests LOC
Apache Common’s Math 360 2,782 32,483
Google Guave 109 1,229 10,929
Java Design Patterns 133 313 3,747

This table only lists the JUnit test code of the respective projects.

form. Finally, the normalized fragments are linewise com-
pared using an optimized longest common subsequence
algorithm to detect clones [24], [25].

• PMD’s CPD adopts a token-based approach based on the
Karp–Rabin string matching algorithm on a frequency
table of tokens in order to detect clones [14].

• iClones uses a token- and tree-based hybrid approach.
First, it generates the abstract syntax tree of the source
code and serializes it into a token sequence. Then it applies
a suffix tree detection algorithm on this sequence in order
to find clones [26], [27].

• TCORE uses a tree- and PDG-based hybrid approach,
which focuses specifically on test code. First, it generates
the abstract syntax tree of the source code. Then, it uses
symbolic execution to create a PDG-like tree for each
assert statement. Finally, it uses a tree matching algorithm
on these trees to find clones [28].

B. Dataset

For our comparison, we selected three open-source Java
projects: the Apache Commons Math library (from now on
referred to as Apache), the Google Guava library (Google),
and the Java Design Patterns library (Patterns). These projects
were selected because they are popular and commonly used
open-source Java projects with extensive test suites. All three
projects make use of a continuous integration (CI) server that
runs the test suite after each commit. At the time of analysis,
all projects pass their CI build.

We use the test suite of these projects as the dataset for
our comparison. Table I shows an overview of the test suite
sizes of each project in terms of files, test cases, and lines
of code (LOC). Note that the LOC metric does not include
comments or blank lines. The Apache dataset is the largest of
the three with 32k LOC, the Patterns dataset is the smallest
with 3k LOC. We selected the projects specifically to have this
difference in size to allow for more generalized results. The
Google dataset, with 10k LOC, serves as a middleground.

C. Clone Detection

The configuration of a clone detector can have a large
impact on the number and quality of clones detected by the
tool. For each tool we opt for the default configuration for
most parameters, as we assume that the default configuration
would be best suited for a general purpose. There are only
three parameters which we change: granularity, minimum clone
length, and the output format.

In this research, we use a function level granularity, meaning
that each clone fragment will consist of a function containing
the cloned code. This makes it easier to match the same clone

detected by multiple tools, since the start and end of the clone
is then strictly defined by the start and end of the function.
This has the added benefit that a cloned function corresponds
to a cloned JUnit test case. NiCad has the option to select the
granularity, which we set to function level. Both iClones and
CPD default to a statement level granularity, which cannot be
changed. TCORE defaults to an assert level granularity, which
cannot be changed either. Therefore, we expand the clones
detected by these tools to a function level granularity during
postprocessing (see Section IV-D).

Because the size of a test can be significantly smaller than
the size of functions in production code, and since we detect
clones at a function (or test) level granularity, we choose to
decrease the minimum clone length. By default, this minimum
length is set to 10 lines of code for NiCad or 100 tokens for
iClones and CPD. In our previous research, we found that
half of the default (5 LOC or 50 tokens) is the best option
for code clone detection in test code, as this allows for the
smaller duplicated tests to be detected without generating many
false positives [28]. Therefore, we set the minimum clone size
parameter for NiCad, iClones, and CPD to half their default.
Since TCORE detects duplicated assert statements, there is no
minimum size to be set.

All four tools have the option to export the detected clones
to an XML file. We choose this option as the structured XML
output allows for easy and automated handling of the data.
However, because there are differences in the XML structure
used by the different tools, we perform a post-processing step to
unify them into one reference XML format (see Section IV-D).

D. Postprocessing

After running the four clone detection tools on the three
datasets, we have a set of 12 XML files with clones. To allow
for easy analysis, we unify the XML files for each dataset
into one file. These unified files are structured according to
our reference format, as shown in Figure 1. As a result, we
have an XML file per dataset containing all detected clones.
To achieve this, we created a Python script that performs a
series of postprocessing steps. Since the output differs between
tools, these postprocessing steps are different for each tool.

NiCad’s XML output is the closest to the reference format.
It contains an XML element for each clone pair, with two child
elements for the two fragments of the clone pair. These child
elements contain attributes for the file, startline, and endline of
the fragment. Since we configured NiCad to detect clones on a
function level granularity, the startline and endline correspond
to the start and end of the function containing the clone. The
only postprocessing step we had to perform was removing
extra elements and attributes (such as systeminfo, id, . . .).

CPD’s XML output differs significantly from the reference
format. It contains the actual source code of the clone fragments,
which causes syntax errors in the XML (for example when
the < operator appears in a fragment). Therefore, in the first
step of postprocessing, we remove all the code fragments. We
also rename the elements and attributes to match those of
the reference XML format. Since CPD detects clone classes,

— 3 —

pre
pri

nt

PREPRINT – Accepted for SANER 2020

< c l o n e t y p e ="T2 " i c l o n e s =" F a l s e " pmd=" F a l s e " n i c a d =" True " t c o r e =" True ">
< s o u r c e f i l e =" J a v a D e s i g n P a t t e r n s / F i l e S e l e c t o r P r e s e n t e r T e s t . j a v a " s t a r t l i n e ="95" e n d l i n e ="104" > </ sou rce >
< s o u r c e f i l e =" J a v a D e s i g n P a t t e r n s / F i l e S e l e c t o r P r e s e n t e r T e s t . j a v a " s t a r t l i n e ="110" e n d l i n e ="119" > </ sou rce >

</ c lone >

Fig. 1. Example of a clone in the reference XML format.

we expand these to clone pairs. This can be easily done
by generating all combinations of clone fragments within
each class. The next step is to expand the clones to a
function level, since CPD does not consider function boundaries.
Clone fragments that appear inside functions can be simply
expanded up to the corresponding function by changing the
startline / endline to match the start / end of the function. Clone
fragments that span multiple functions need to be split into
multiple function clones. Finally, we filter out all clone pairs
that contain a fragment smaller than 5 lines of code.

iClones’s postprocessing is the same as that of CPD, since
it also detects clone classes and does not consider function
boundaries. We start by renaming the elements and attributes.
Next, we expand the detected clone classes to clone pairs.
Then, we expand the clones to a function level in the same
way as CPD’s postprocessing. Finally, we filter out all clone
pairs that contain a fragment smaller than 5 lines of code.

TCORE’s XML output is similar to that of NiCad, and thus
does not require much change either. However, because TCORE
detects clones on an assert level granularity, we have to perform
some postprocessing steps to expand the detected clones to
function clones. First, we filter out all duplicate clone pairs.
These are caused when an assert statement is located within a
loop, since TCORE symbolic execution iterates the loop and
encounters the same assert statement multiple times. Then, we
filter out all clone pairs that occur within one function (i.e.
test). These are caused when a test contains multiple similar
assert statements. The next step is to expand the clones to
a function level by changing the startline / endline to match
the start / end of the test containing the assert. Finally, since
TCORE does not have a minimum size parameter, we filter
out all clone pairs that contain a fragment smaller than 5 lines
of code.

After transforming all XML files to the same format, we
merge them into one. Since all XML files now have the
same structure and all clones the same granularity, we can
easily detect where tools overlap and where they differ. We
add four boolean attributes to each clone, one for each tool
indicating whether or not the tool was able to detect the clone.
Figure 1 shows an example of a clone in our reference XML
format. Note that the type attribute seen in the example is not
added yet during postprocessing, but after classification (see
Section IV-E).

E. Classification

After postprocessing, we performed type classification on
all detected clones. This classification was performed manually

by the first author, and reviewed afterwards for correctness. In
order to guarantee consistent classification and to remove any
room for interpretation, a specific set of rules was followed to
determine the type of the clone. Since we expanded all clones
to a function level, these rules apply to matched functions /
tests. In case multiple rules are satisfied, the rule that applies
to the most lines of code is chosen. For example, a type-3
clone can contain multiple type-1 and type-2 clones. Also note
that, since a type-4 clone considers the functionallity of the
entire test case, it will always apply to the most lines of code,
even if the entire body of the test case is a type-3 clone.

• Type 1: Both tests contain a continuous sequence of at least
5 lines of code that are exactly the same, not considering
differences in comments, whitespaces, and indentation.

• Type 2: Both tests contain a continuous sequence of at
least 5 lines of code that only differ in variable names and
literal values, not considering differences in comments,
whitespaces, and indentation.

• Type 3: Both tests contain a number of sequences that only
differ in variable names and literal values, not considering
differences in comments, whitespaces, and indentation.

• Type 4: Both tests are functionally the same for a different
unit under test, independent of the syntax of either test.
In other words, both tests verify the same property for
a different class or function from the production code,
independent of the syntax of either test.

Our dataset of classified clones, together with all scripts
used in this work, are publicly available and shared on figshare:
https://doi.org/10.6084/m9.figshare.c.4710692.v1.

F. Research Questions

Our comparison is driven by two research questions. In
this section, we motivate why we investigate these research
questions and explain the approach we use to answer them.

RQ1: What are the characteristics of code clones in test
code?
Motivation: The quickest way for a developer to test a new
feature is to copy, paste and modify an existing test [9]. We
assume that because of this, in combination with the consistent
structure of test code [10], a large amount of test code is
duplicated. A recent case study on a large project from industry
found that 49% of the entire test code are clones [11], which
is significantly higher than the average of 7% to 23% for
production code [12].

With this research question, we further investigate whether
test code indeed contains a larger number of code clones than
the average production code. Moreover, we investigate whether

— 4 —

https://doi.org/10.6084/m9.figshare.c.4710692.v1

pre
pri

nt

PREPRINT – Accepted for SANER 2020

the clones in test code inherently differ from those in production
code.
Approach: To answer this research question, we calculate the
clone density for each of the test suites in our dataset. Clone
density (also known as clone percentage [21]) is defined as

clone density =
fc ∗ 100
ftot

where fc denotes the number of cloned functions, and ftot
refers to the total number of functions in the test suite. In
other words, the percentage of functions (i.e. tests) that appear
in at least one clone fragment. Since we detect clones on a
function level granularity, each clone fragment contains exactly
one function. Therefore fc is equal to the number of unique
clone fragments. Once we have the clone density for each test
suite, we can make a fair comparison with the averages found
in production code.

We then inspect the clones found in the test suites to check
whether they show traits that are specific to test code, and thus
inherently differ from clones in production code. We illustrate
these differences with a few representative examples.

RQ2: How do clone detection tools perform on test code?
Motivation: In order to assess and improve clone detection
tools and techniques, clone benchmarks have been created
that consist of open-source software projects together with
a set of reference clones that appear in those projects. For
example, Bellon’s benchmark is the most used by the research
community [29]. However, these benchmarks focus only on
production code and do not contain test code [15]. As a result,
clone detection tools and techniques are not being evaluated on
test code, which might impact their effectiveness in detecting
test code duplication.

With this research question, we investigate how code clone
detection tools perform on test code. Moreover, we make our
dataset publicly available, serving as a clone benchmark for
test code.
Approach: To answer this research question, we calculate the
precision and recall for each of the tools. Precision is defined
as

precision =
cTP ∗ 100

call

where cTP denotes the number of true positive clones found
by the tool and call the total number of clones found by the
tool. Recall is defined as

recall =
call ∗ 100

ctot

where call denotes the total number of clones found by the tool
and ctot the total number of clones in the dataset. However,
since we do not know the total number of clones in the dataset,
we approximate the recall by using all clones detected by the
four tools as ctot. This approximation is usually called the
relative recall. Once we have these metrics, we can use them
to compare the tools and evaluate their performance.

We then analyse the types of clones found by each tool. By
calculating both the distibution of types and the relative recall
per type for each tool, we can gain a better understanding of

the impact that different clone detection techniques have on
the types of clones that are detected.

V. RESULTS AND DISCUSSION

In this section, we present our results and answer our research
questions.

RQ1: What are the characteristics of code clones in test
code?

Table II provides an overview of all clones detected by
the four tools in each dataset. The left side of the table
presents the number of clone pairs. We can already see that
the number of clone pairs scales with the size of the dataset,
with the larger Apache dataset containing 2,064 clone pairs,
the medium Google dataset containing 406 clone pairs, and
the small Patterns dataset containing only 74 clone pairs. In
total, this results in 2,544 detected clone pairs.

The right side of Table II presents the number of individual
clone fragments. We can use these, combined with the total
number of functions from Table I, to calculate the clone density
(i.e. the percentage of functions that are clone fragments). Since
the number of clone pairs scales with the size of the dataset,
the clone density is mostly the same for the different datasets,
with the Apache dataset having a clone density of 29.1%, the
Google dataset 23.2%, and the Patterns dataset 25.5%. As we
can see, the clone density in our datasets of test code lies
between 23% to 29%, which is higher than the average of 7%
to 23% for production code.

An interesting observation can be made when comparing
the number of clone pairs with the number of clone fragments.
Because a clone pair consists of two clone fragments, we
would assume that in general the number of clone fragments is
greater than that of clone pairs. However, we can see that the
Apache and Google datasets contain significantly fewer clone
fragments than clone pairs, especially for type-2 and type-3
clones. This indicates that there are many large clone classes
(e.g., sets of clone fragments that all form clone pairs between
themselves). In other words, many tests are duplicated multiple
times, each time only slightly modified.

The phenomenon of many large type-2 clone classes in
test code is caused by the typical structure of unit tests.
Figure 2 shows an example from the Apache dataset of such
a typical type-2 clone in test code. As we can see, both tests
are completely the same with exception of the input and the
expected output of the unit under test. Since it is common
practice to test multiple input values for each tested function,
this kind of clone occurs a significant number of times in test
code. For example, the specific clone fragments from Figure 2
are part of a clone class containing 10 such clone fragments,
each exactly the same except for the input and expected output.
These large clone classes inflate the number of clone pairs
detected: consider the clone class a fully connected graph with
10 nodes (i.e. clone fragments), then each edge is a clone pair.
And since the number of edges in a fully connected graph can
be calculated as n(n−1)

2 , this set of 10 clone fragments already
causes 45 clone pairs. We can also see that these type-2 clones

— 5 —

pre
pri

nt

PREPRINT – Accepted for SANER 2020

TABLE II
OVERVIEW OF DATASETS.

Clone Type Clone Pairs Clone Fragments (Clone Density)
Apache Google Patterns Apache Google Patterns

Type 1 48 24 4 55 (1.9%) 40 (3.2%) 5 (1.5%)
Type 2 708 310 36 373 (13.4%) 181 (14.7%) 40 (12.7%)
Type 3 954 32 13 214 (7.6%) 25 (2.0%) 15 (4.7%)
Type 4 354 40 21 170 (6.1%) 40 (3.2%) 20 (6.3%)
Total 2064 406 74 812 (29.1%) 286 (23.2%) 80 (25.5%)

p u b l i c vo id t e s t F o r m a t () {
B i g F r a c t i o n c = new B i g F r a c t i o n (1 , 2) ;
S t r i n g e x p e c t e d = "1 / 2 " ;
S t r i n g a c t u a l = p r o p e r F o r m a t . f o r m a t (c) ;
A s s e r t . a s s e r t E q u a l s (expec t ed , a c t u a l) ;
a c t u a l = imprope rForma t . f o r m a t (c) ;
A s s e r t . a s s e r t E q u a l s (expec t ed , a c t u a l) ;

}

p u b l i c vo id t e s t F o r m a t Z e r o () {
B i g F r a c t i o n c = new B i g F r a c t i o n (0 , 1) ;
S t r i n g e x p e c t e d = "0 / 1 " ;
S t r i n g a c t u a l = p r o p e r F o r m a t . f o r m a t (c) ;
A s s e r t . a s s e r t E q u a l s (expec t ed , a c t u a l) ;
a c t u a l = imprope rForma t . f o r m a t (c) ;
A s s e r t . a s s e r t E q u a l s (expec t ed , a c t u a l) ;

}

Fig. 2. Example of a typical type-2 clone in test code, from the Apache
dataset.

are the most common clone type in test code, contributing to
around half of the clone density for each of the projects.

When observing the number of type-3 clone pairs detected,
we notice that the Apache dataset contains 954 such pairs. No-
ticeably, the Google and Patterns dataset contain a significantly
smaller proportion of type-3 clones. After inspection of these
clones, we found that this oddity is caused by the nature of
production code in the Apache Common’s Math Library. This
math library contains many implementations of mathematical
algorithms, such as integration or interpolation, which are run
on complex datastuctures, such as matrices or functions. The
setup of these datastructures generally spans multiple lines.
Thus, if the same algorithm is being tested with different inputs,
these different inputs create a gap of several lines in the clone,
resulting in a type-3 clone. This is also confirmed by the much
lower number of type-3 clone fragments in the Apache dataset,
which again indicate many large clone classes. We conclude
that the large number of type-3 clones in the Apache dataset
is also caused by the typical structure of unit tests.

Finally, we observe a non-negligible number of type-4
clones (or semantic clones). These semantic clones in test
code inherently differ from those in production code since
the semantics of a unit test differs from that of a function in
production code. Specifically, we consider a test code clone
pair as type-4 if both tests are functionally the same for a
different unit under test, independent of the syntax of either
test. In other words, both tests exercise a similar interface
from different parts of a component library. These type-4
clones occur when the production code contains semantic
clones which are tested with the same input values. Figure 3

p u b l i c vo id t e s t C o p y _ t o S t r i n g B u i l d e r _ f r o m R e a d a b l e () t h row s
IOExcep t i on {

S t r i n g B u i l d e r b u i l d e r = new S t r i n g B u i l d e r () ;
l ong c o p i e d = CharS t reams . copy (wrapAsGener i cReadab le (new

S t r i n g R e a d e r (ASCII)) , b u i l d e r) ;
a s s e r t E q u a l s (ASCII , b u i l d e r . t o S t r i n g ()) ;
a s s e r t E q u a l s (ASCII . l e n g t h () , c o p i e d) ;
S t r i n g B u i l d e r b u i l d e r 2 = new S t r i n g B u i l d e r () ;
c o p i e d = CharS t reams . copy (wrapAsGener i cReadab le (new

S t r i n g R e a d e r (I18N)) , b u i l d e r 2) ;
a s s e r t E q u a l s (I18N , b u i l d e r 2 . t o S t r i n g ()) ;
a s s e r t E q u a l s (I18N . l e n g t h () , c o p i e d) ;

}

p u b l i c vo id t e s t C o p y _ t o W r i t e r _ f r o m R e a d a b l e () t h row s
IOExcep t i on {

S t r i n g W r i t e r w r i t e r = new S t r i n g W r i t e r () ;
l ong c o p i e d = CharS t reams . copy (wrapAsGener i cReadab le (new

S t r i n g R e a d e r (ASCII)) , w r i t e r) ;
a s s e r t E q u a l s (ASCII , w r i t e r . t o S t r i n g ()) ;
a s s e r t E q u a l s (ASCII . l e n g t h () , c o p i e d) ;
S t r i n g W r i t e r w r i t e r 2 = new S t r i n g W r i t e r () ;
c o p i e d = CharS t reams . copy (wrapAsGener i cReadab le (new

S t r i n g R e a d e r (I18N)) , w r i t e r 2) ;
a s s e r t E q u a l s (I18N , w r i t e r 2 . t o S t r i n g ()) ;
a s s e r t E q u a l s (I18N . l e n g t h () , c o p i e d) ;

}

Fig. 3. Example of a type-4 clone in test code, from the Google dataset.

shows an example from the Google dataset of such a typical
type-4 clone in test code. As we can see, the units under test
StringBuilder and StringWriter are semantic clones
from the production code as they contain the same functionality
with a different implementation. When testing these units, both
tests are semantically the same (i.e. verify the same properties)
for different units. Note that, syntactically, these test can be
considered type-3 clones, and are detected as such by most
tools. However, when a clone pair satisfies the definition of
multiple types, we classify as the type that applies to the most
lines of code, which in this case is type 4.�

�

�

�

The typical structure of unit tests gives rise to many type-2
and type-3 clones. Many tests are duplicated multiple times,
each time slightly modified to cover different configurations
of input-output values. There is a non-negligible number
of type-4 clones as well, caused by tests exercising a
component library with similar interfaces.
=⇒ Clones in test code are inherently different from

clones in production code.

RQ2: How do clone detection tools perform on test code?
Table III provides an overview of the performance of the

different clone detection tools. The left side of the table presents
the precision of each tool per dataset. We can see that CPD

— 6 —

pre
pri

nt

PREPRINT – Accepted for SANER 2020

TABLE III
OVERVIEW OF CLONE DETECTOR PERFORMANCE.

Tool Precision Relative Recall
Apache Google Patterns Apache Google Patterns

NiCad 100% 99% 100% 14.1% 27.8% 22.9%
CPD 100% 100% 100% 11.1% 30.5% 44.5%
iClones 98% 99% 100% 86.5% 47.5% 29.7%
TCORE 97% 95% 100% 30.8% 50.2% 36.4%

TABLE IV
CLONE PAIR CLASSIFICATION AND RELATIVE RECALL PER CLONE DETECTOR.

Clone Type Clone Pairs (Distribution) Relative Recall
NiCad CPD iClones TCORE NiCad CPD iClones TCORE

Type 1 69 (16.3%) 55 (14.1%) 48 (2.3%) 59 (6.7%) 90.7% 72.3% 63.1% 77.6%
Type 2 162 (38.3%) 171 (44.0%) 651 (32.5%) 529 (60.9%) 15.3% 16.2% 61.7% 50.1%
Type 3 41 (9.7%) 4 (1.0%) 935 (46.7%) 120 (13.8%) 4.1% 0.4% 93.5% 12.0%
Type 4 149 (35.3%) 158 (40.7%) 348 (17.3%) 136 (15.6%) 35.9% 38.0% 83.8% 32.7%
Total 422 (100%) 388 (100%) 2001 (100%) 868 (100%) 16.5% 15.2% 78.6% 34.1%

has a precision of 100% for every datasets, meaning that it
did not produce any false positives (e.g., incorrectly marking
fragments of code as clones). NiCad has an almost perfect
precision, with only a negligible number of false positives on
the Google dataset. Both iClones and TCORE score slightly
lower on precision, specifically for the larger datasets.�
�

�
�

With the lowest precision being 95%, we conclude that clone
detection tools perform excellent on test code in terms of
precision.

It is interesting to note that the number of false positives
is low, even though we configured the tools to detect smaller
clones. More specifically, we used a minimum clone size of
5 LOC in contrast to the default 10 LOC. A lower minimum
clone size naturally leads to an increased number of false
positives, yet we notice that on our datasets of test code this
is not the case. In fact, of all 1178 detected clone fragments,
474 (40.2%) are smaller than 10 LOC.�
�

�
�

We deduce that test code contains smaller clones than
production code. Therefore, general purpose tools should
be configured accordingly when applied on test code.

The right side of Table III presents the relative recall of each
tool per dataset. We can see that in general the relative recall
is much lower than the precision. This is to be expected, since
tool makers always have to consider the trade-off between
precision and recall as an increase in recall generally also
means an increase in false positives. The fact that all tools
opt for a higher precision in exchange for a lower recall is
favourable, as it is more important to detect a few qualitative
clones rather than many false positives.

When observing the relative recall per dataset, we can see
that the results differ between the datasets. The clones from
the Apache dataset are mostly detected by iClones, with a
relative recall of 86.5%, while other tools only detect up to
30% of the clones. Yet on the Google and Patterns datasets the
relative recall of all tools varies between 22% and 50%. This
indicates that the kind of code clones in the Apache dataset

differs from the Google and Patterns datasets, and that some
tools are better at detecting certain kinds of clones.

The percentage of false negatives (e.g., percentage of clones
not found by a tool) can be easily calculated by taking the
difference of the total (100%) and the relative recall. We can
see that each tool suffers at least 50% in false negatives for the
Google and Patterns datasets. The fact that the individual tools
are only able to detect up to half of the clones detected by all
tools shows that there is little overlap in the clones detected
by the different tools. This further confirms that different tools
are better at detecting certain kinds of clones.

The large number of false negatives combined with the
earlier observation of large clone classes is worrisome. A test
engineer wants to detect all copies of a certain code fragment
when searching for test smells to assess which tests are copied
most frequently and thus are the best refactoring candidates.
Moreover, when tests are refactored, a test engineer wants to
identify all tests that will be affected by the refactoring. In
both cases, false negatives impair the refactoring process.�
�

�
�

Clone detection tools currently suffer from many false
negatives, which negatively impacts test refactoring. Further
research towards clone detection on test code is warranted.

Table IV provides a detailed look at the clones detected by
each tool. The left side of the table presents the number of
clone pairs detected per type. It also shows the distribution
of the detected clones over the types. This is also visualized
in Figure V to provide an easier overview. We can see that
the tree-based clone detection tools find the largest number
of clone pairs, with iClones detecting 2001 clone pairs and
TCORE detecting 868 clone pairs. The text- and token-based
approaches find less clones, with NiCad detecting 422 clone
pairs and CPD detecting 388 clones pairs.

The difference between the two approaches is mainly caused
by type-2 and type-3 clones, which the tree-based tools are able
to detect more easily. However, when looking at the distribution
of detected code clones over the different types, we can see
that the text- and token-based approaches primarily find type-2

— 7 —

pre
pri

nt

PREPRINT – Accepted for SANER 2020

0

500

1000

1500

2000

NiCad CPD iClones TCORE

Type 1
Type 2
Type 3
Type 4

Fig. 4. Clone pairs detected by each tool per type.

clones, with around 40% of their detected clones being of type
2. Interestingly, they detect type-4 clones almost as often, with
only slightly less than 40% of detected clones being of type 4.
While the tree-based approaches generally detect more clones
of every type, the distribution of these clones over the types
is not the same. On the one hand, iClones detects primarily
type-3 code clones, while the other types are proportionally all
detected less than the text- and token-based approaches. On
the other hand, TCORE detects primarily type-2 code clones,
again with the other types all detected proportionally less than
the text- and token-based approaches.

The right side of Table IV presents the relative recall for
each type. While the relative recall of the different code
clone detection tools on each dataset was already discussed
previously, it is interesting to investigate the relative recall
per type. NiCad’s text-based approach performs the best for
type-1 clones, with a relative recall of 90%. The tree-based
approaches outperform the others for type-2 clones, with their
relative recall over 50% compared to the 15% of the text- and
token-based approaches. When it comes to detecting type-3 and
type-4 clones, iClones clearly performs the best, with its relative
recall being 93% and 83% respectively. All other approaches
detect significantly less clones of these types, which causes
iClones to have the highest overall relative recall (78.6%). The
other tools on the other hand suffer from many false negatives:
NiCad 83%, CPD 84%, and TCORE 65%. However, while it
seems that iClones is the best option, it still suffers around
40% of false negatives for type-1 and type-2 clones.

�

�

�

�

Different clone detection tools detect different kinds of
clones. Practitioners should combine multiple tools to
achieve a more complete clone analysis. And when re-
stricting to a single tool, make the choice based on the type
of clones they are searching for, and not simply the tool
that has the best overall precision or recall.

VI. THREATS TO VALIDITY

A. Internal Validity

The manual classification of the discovered clones is a
threat to internal validity. It is possible to make mistakes
when performing manual classification on a large set of data.
Moreover, there is room for interpretation when classifying
code clones. To minimize this threat, we followed a strict set
of rules during classification. Moreover, our dataset is publicly
available to allow for review by the community.

A second threat to internal validity is the comparison of the
different tools. We use relative recall as a metric during this
comparison, since it is not feasible to calculate the actual recall.
It is highly likely that there are more clones in the dataset
than we detected, which would result in the actual recall being
less than the reported relative recall. However, if there are
additional clones in the dataset, none of the four tools used in
our comparison detected them. Thus, recall of each tools would
be lowered by the same amount. We can therefore safely use
relative recall to compare clone detection tools. Moreover, the
fact that actual recall is less than the relative recall strengthens
our conclusions.

B. External Validity

In our evaluation, we ran four clone detection tools on three
datasets. A threat to external validity is that the tools and the
datasets we used in our evalution are not representative of all
clone detection tools and test suites. To minimize this threat,
we chose four tools that each implement a different clone
detection algorithm and three datasets that vary in size and
type. Future research can be performed to further confirm our
findings, by adding more datasets and clone detection tools to
our evaluation.

VII. CONCLUSION

In this paper, we report on an exploratory study concerning
duplicated test code by running four clone detection tools
(NiCad, CPD, iClones, and TCORE) on three open-source test
suites (Apache, Google, and Patterns). In total, the four tools
detect 2544 clone pairs in our dataset. This amounts to a clone
density of 23% to 29%, which is higher than the average of
7% to 23% for production code.

We show that test code contains many large clone classes,
especially of type 2 and type 3. In other words, many tests
are duplicated multiple times, each time only slightly modified.
Moreover, type-2 clones are the most common clone type in
test code, contributing to around half of the clone density for
each of the projects. This is caused by the typical structure
of unit tests, which indicates that test clones are inherently
different from production clones.

We demonstrate that code clone detection tools suffer from
many false negatives when applied on test code. Even the
tool that performs best on our dataset by achieving a relative
recall of 78.6% still missed around 40% of type-1 and type-2
clones. Further research towards clone detection on test code is
warranted in order to reliable apply them during test refactoring.

— 8 —

pre
pri

nt

PREPRINT – Accepted for SANER 2020

We also show that today practitioners can improve their
clone detection process by (a) configuring their tools with a
smaller minimum clone size, (b) using multiple tools to achieve
a more complete clone analysis, and (c) choosing these tools
depending on the type of clones they are interested in.

We made our dataset and all scripts publicly available. We
hope that other researchers build upon this work by replicating
this study with additional clone detection tools, and further
extend the dataset. We also encourage clone detection tool
makers to use it as a clone benchmark for test code.

VIII. ACKNOWLEDGMENTS

This work is supported by (a) the ITEA TESTOMAT Project
(number 16032), sponsored by VINNOVA – Sweden’s innovation
agency; (b) Flanders Make vzw, the strategic research centre for the
manufacturing industry.

REFERENCES

[1] K. Beck, Test-driven Development: By Example, ser. Kent Beck signature
book. Addison-Wesley, 2003.

[2] G. Booch, Object Oriented Design: With Applications. Benjamin/Cum-
mings Pub., 1991.

[3] M. Fowler and M. Foemmel, “Continuous integration,” Thoughtworks,
Tech. Rep., 2006.

[4] J. D. McGregor, “Test early, test often,” Journal of Object Technology,
vol. 6, no. 4, pp. 7–14, May 2007, (column). [Online]. Available:
http://dx.doi.org/10.5381/jot.2007.6.4.c1

[5] P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley, 2007.

[6] L. Crispin and J. Gregory, Agile Testing: A Practical Guide for Testers and
Agile Teams. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2009.

[7] G. Meszaros, xUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, 2007.

[8] V. Garousi and B. Kucuk, “Smells in software test code: A survey of
knowledge in industry and academia,” Journal of Systems and Software,
vol. 138, pp. 52 – 81, 2018.

[9] H. Li, A. Lindberg, A. Schumacher, and S. Thompson, “Improving your
test code with wrangler,” School of Computing, University of Kent, Tech.
Rep., 2009.

[10] B. Van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger, “On the
detection of test smells: A metrics-based approach for general fixture
and eager test,” IEEE Transactions on Software Engineering, vol. 33,
no. 12, pp. 800–817, 2007.

[11] W. Hasanain, Y. Labiche, and S. Eldh, “An analysis of complex industrial
test code using clone analysis,” in 2018 IEEE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 2018, pp.
482–489.

[12] R. Koschke, “Survey of research on software clones,” in Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[13] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance,” in 2012 28th IEEE International Conference
on Software Maintenance (ICSM). IEEE, 2012, pp. 56–65.

[14] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of computer programming, vol. 74, no. 7, pp. 470–495, 2009.

[15] C. K. Roy and J. R. Cordy, “Benchmarks for software clone detection:
A ten-year retrospective,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2018, pp. 26–37.

[16] N. Tsantalis, D. Mazinanian, and G. P. Krishnan, “Assessing the
refactorability of software clones,” IEEE Transactions on Software
Engineering, vol. 41, no. 11, pp. 1055–1090, 2015.

[17] R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in International static analysis symposium. Springer,
2001, pp. 40–56.

[18] J. Krinke, “Identifying similar code with program dependence graphs,”
in Reverse Engineering, 2001. Proceedings. Eighth Working Conference
on. IEEE, 2001, pp. 301–309.

[19] H. Kim, Y. Jung, S. Kim, and K. Yi, “MeCC: memory comparison-based
clone detector,” in Proceedings of the 33rd International Conference on
Software Engineering. ACM, 2011, pp. 301–310.

[20] L. Jiang and Z. Su, “Automatic mining of functionally equivalent
code fragments via random testing,” in Proceedings of the eighteenth
international symposium on Software testing and analysis. ACM, 2009,
pp. 81–92.

[21] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). IEEE,
1998, pp. 368–377.

[22] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 96–105.

[23] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[24] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in 2008 16th iEEE international conference on program comprehension.
IEEE, 2008, pp. 172–181.

[25] J. R. Cordy and C. K. Roy, “The NiCad clone detector,” in 2011 IEEE
19th International Conference on Program Comprehension. IEEE, 2011,
pp. 219–220.

[26] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in 2006 13th Working Conference on Reverse
Engineering. IEEE, 2006, pp. 253–262.

[27] N. Göde and R. Koschke, “Incremental clone detection,” in 2009 13th
European Conference on Software Maintenance and Reengineering.
IEEE, 2009, pp. 219–228.

[28] B. van Bladel and S. Demeyer, “A novel approach for detecting type-iv
clones in test code,” in 2019 IEEE 13th International Workshop on
Software Clones (IWSC). IEEE, 2019, pp. 8–12.

[29] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison
and evaluation of clone detection tools,” IEEE Transactions on software
engineering, vol. 33, no. 9, pp. 577–591, 2007.

— 9 —

http://dx.doi.org/10.5381/jot.2007.6.4.c1

	Introduction
	Background
	Related Work
	Experimental Setup
	Clone Detection Tools
	Dataset
	Clone Detection
	Postprocessing
	Classification
	Research Questions

	Results and Discussion
	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	Acknowledgments
	References

