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Abstract

Reconfigurable intelligent surface (RIS) has recently drawn intensive attention due to its potential of simultaneously realizing high

spectral and energy efficiency in a sustainable way. This paper focuses on the design of efficient transmission methods to maximize

the uplink sum throughput in a RIS-aided multi-user multi-input multi-output (MU-MIMO) system. To provide an insightful basis,

the channel capacity of RIS-aided MU-MIMO is theoretically analyzed. Then, the conventional transmission schemes based on

orthogonal multiple access are presented as the baseline. From the information-theoretic perspective, we propose two novel schemes,

i.e., joint transmission based on the semidefinite relaxation of quadratic optimization problems and opportunistic transmission relying

on the best user selection. The superiority of the proposed schemes over the conventional ones in terms of achievable rates is justified

through simulation results.

I. Introduction

Motivated by the big commercial success of the fourth generation a.k.a 3GPP LTE-Adavnced [1]–[3] and the fifth generation

(5G) technology [4]–[14], both the academia and industry have already shifted their focus towards the sixth generation (6G) [15]–

[18] and enthusiastically initiated many pioneering research programs although 5G is still on its way to being deployed across the

world. To support disruptive use cases beyond 2030, such as holographic communications, extended reality, artificial intelligence

[19]–[28], Tactile Internet, Internet of Things [29]–[35], multi-sense experience, metaverse, digital twin, and block-chain [36],

6G needs to meet more stringent performance requirements than its predecessor, e.g., a peak data rate of 1 terabits-per-second

(Tbps), a missive connection density of 107 devices per km2, and high-accuracy positioning, sensing [37]–[39], identification

and tracking [40]–[42]. Traditionally, three major approaches, i.e., (1) Deploying Dense and Heterogeneous Networks, (2)

Installing Massive Antennas for Extreme Spectral Efficiency, and (3) Enlarging Bandwidth can effectively improve coverage

and capacity. Nevertheless, these approaches incur high capital and operational expenditures, unaffordable energy consumption,

and severe network interference. Given these limitations, further evolving along the old track is hard to fully achieve stringent

6G requirements. Therefore, it is highly desirable to develop a revolutionary technology to realize sustainable capacity and

performance growth with affordable cost, low complexity, and efficient energy consumption.

Along with other 6G-potential technologies, such as terahertz communications [43]–[45] and cell-free massive MIMO [46]–

[51], a disruptive technique referred to as reconfigurable intelligent surface (RIS) has recently attracted intensive attention from

academia and industry due to its potential to simultaneously meet the aforementioned demands [52]–[55]. Through smartly

adjusting the reflection coefficients of a large number of reconfigurable elements over a planar meta-surface [56], an on-demand

propagation environment is achieved for signal amplification or interference suppression, so as to improve the performance of
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wireless communications. Since the reflecting elements are nearly passive, low-cost, and lightweight, the RIS is a green and

cost-efficient technology. It enables sustainable capacity and performance growth for legacy 5G networks and the forthcoming

6G system [16], [18].

Prior works on RIS-aided communications mostly focus on point-to-point communications that consider a base station (BS), a

surface, and a single user. Depending on the number of antennas, the research works span from single-input single-output (SISO)

to multi-input multi-output (MIMO). Nevertheless, a practical wireless system needs to accommodate many users simultaneously,

imposing the necessity of studying multi-user MIMO (MU-MIMO). There has been a few recent works on this topic. The authors

of [57] developed a novel technique for passive beamforming and information transfer in RIS-aided MU-MIMO systems. In [58],

a trade-off between energy and spectral efficiency in MU-MIMO uplink communications aided by a discrete-phase-shift RIS is

discussed. The design of linear or nonlinear receivers for MU-MIMO systems aided by multiple RISs is studied in [59]. Zheng et

al. aimed to unveil the full potential of multi-RIS assisted wireless networks by studying a double-RIS multi-user communication

system with cooperative passive beamforming in [60]. The work [61] jointly optimizes the uplink transmit beamforming and the

phase-shift matrix to maximize the system energy efficiency under partial channel state information (CSI). In [62], the effect

of double RISs in improving the spectral efficiency of an MU-MIMO network operating in millimeter wave is investigated.

Joint beamforming and modulation design for embedding extra data into carrier signals from the BS to the RIS in a downlink

MU-MIMO network is proposed in [63]. The work [64] presents a novel symbiotic radio system on the basis of RIS-aided

MU-MIMO to enhance the primary transmission and simultaneously transmit its own information by back-scattering modulation.

In addition, some other works such as [65], [66] focus on one of the fundamental challenges, namely the acquisition of cascaded

channel information, in RIS-assisted MU-MIMO systems.

This paper focuses on designing efficient transmission for a RIS-aided MU-MIMO system with the aim of maximizing its uplink

sum throughput. To provide an insightful basis, an information-theoretic analysis in terms of the sum capacity is theoretically

conducted. The conventional orthogonal multiple access (OMA) schemes, including time-division multiple access (TDMA) and

frequency-division multiple access (FDMA), are presented as the baseline. Then, we propose two novel schemes, i.e., joint

transmission (JT) based on the semidefinite relaxation of quadratic optimization problems and opportunistic transmission (OT)

relying on the best user selection. The superiority of the proposed schemes over OMA in terms of achievable sum rate is justified

through Monte-Carlo simulation.

The rest of the paper is organized as follows: Section II introduces the system model. Section III analyzes the channel capacity.

In Section IV, the proposed JT and OT schemes are elaborated in comparison with the OMA schemes. Simulation setup and

numerical results are demonstrated in Section V. Finally, Section VI concludes this paper.

II. SystemModel

Consider a RIS-aided multi-user MIMO communications system, which comprises an Nb-antenna BS, K single-antenna user

equipment (UE), and a surface with Ns reconfigurable elements [67]. MU-MIMO is an asymmetric system, where the downlink

from a BS to several UEs is referred to as Gaussian MIMO broadcast channel, while the uplink from multiple UEs to the BS

is called Gaussian MIMO multiple access channel. This paper merely focuses on the uplink transmission while its analysis and

development also provide some meaningful insights on the downlink transmission.

As demonstrated in Fig.1, multiple UEs simultaneously send its respective signal towards the BS over the same time-frequency

resource. For the sake of analysis, we do not consider linear beamforming [68]–[74] over the antenna array and assume the BS
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is equipped with a single antenna. The BS acquires the uplink instantaneous CSI through estimating the pilot signals during

the uplink training period. To facilitate the theoretical analysis, the BS is assumed to perfectly know the CSI of all involved

channels, as prior works [57]- [64]. Moreover, we do not consider the impact of channel aging or outdated channel information

in fast-fading environments [75]–[83], and assume narrowband communications, where the channels follow frequency-flat block

fading. A wideband channel suffering from frequency selectivity can be transformed into a set of narrowband channels through

orthogonal frequency-division multiplexing (OFDM) [84]–[90], making the assumption of flat fading reasonable.

The RIS is equipped with a smart controller that adaptively adjusts the phase shift of each reflecting element according to

the knowledge of CSI. Mathematically, a typical element n ∈ {1, 2, . . . ,Ns} is modeled by a reflection coefficient ϵn = ane jθn ,

where θn ∈ [0, 2π) denotes an induced phase shift, and an ∈ [0, 1] stands for amplitude attenuation. Although the practical

RIS implementation supports a finite number of discrete phase shifts, only a few phase-control bits (e.g., 2 bits as illustrated

in [53]) are sufficient for achieving near-optimal performance as continuous phase shifts. Without loss of generality, we use

continuous phase shifts hereinafter for simplicity. As mentioned by [67], an = 1, ∀n is the optimal setting that maximizes the

signal strength and simplifies the implementation. Therefore, the RIS optimization focuses on a diagonal phase-shift matrix

defined as Φ = diag{e jθ1 , . . . , e jθNs }.

We use sk ∈ C to denote the information symbol from user k, satisfying E[|sk |
2] ⩽ Pk, where Pk denotes the power constraint

of user k. All information symbols form a transmitted vector s ∈ CK×1 = [s1, s2, . . . , sK]T . Let D ∈ CNb×K denote the channel

matrix from K users to Nb receive antennae at the BS, and dk ∈ C
Nb×1 denotes the spatial signature of user k impinged on the BS

antenna array, we have D = [d1,d2, . . . ,dK]. Let G ∈ CNs×K denote the channel matrix from K users to Ns reflecting elements,

we have G =
[
g1, g2, . . . , gK

]
, where gk ∈ C

Ns×1 represents the spatial signature of user k impinged over the RIS. Similarly, we

write F ∈ CNb×Ns to denote the channel matrix from the RIS to the BS. Without losing generality, any entry within these channel

vectors or matrices is modeled as a circularly symmetric complex Gaussian random variable denoted by X ∼ CN(µ, σ2
c), where

µ denotes the mean, and σ2
c is the average channel (power) gain.

The overall system can be modelled as

y =
(
FΦG + D

)
s + n, (1)

where y = [y1, y2, . . . , yNb ]T stands for the received vector, and n ∈ CN(0, σ2
nINb ) is independent and identically distributed (i.i.d.)

additive white Gaussian noise (AWGN) with zero mean and variance σ2
n. Decomposing (1), the signal model can be rewritten

as an alternative form

y =
K∑

k=1

(
FΦgk + dk

)
sk + n. (2)

III. Capacity Analysis

In a point-to-point system, the channel capacity provides a measure of the performance limit: reliable communications with

an arbitrarily small error probability can be achieved at any rate R < C, whereas reliable communications are impossible when

R > C. For a multi-user system consisting of a BS and K UEs, the concept is extended to a similar performance metric called

a capacity region [91]. It is characterized by a K-dimensional space C ∈ RK
+ , where R+ denotes the set of non-negative real-

valued numbers, and C is the set of all K-tuples (R1,R2, . . . ,RK) such that a generic user k can reliably communicate at rate Rk
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Fig. 1. Schematic diagram of the uplink transmission of a RIS-aided MU-MIMO system consisting of a BS, a RIS, and K users.

simultaneously with others. Due to the shared transmission resource, there is a trade-off: if one desires a higher rate, some of

other users have to lower their rates. From this capacity region, a performance metric can be derived, i.e., the sum capacity

Csum = max
(R1,R2,...,RK )∈C

 K∑
k=1

Rk

 , (3)

indicating the maximum total throughput that can be achieved.

The achievable rate of a typical user is limited by the single-user bound, which is the capacity of the point-to-point link with

the other users absent from the system. From (2), we have

Rk < log
[
1 +
∥FΦgk + dk∥

2 Pk

σ2
n

]
, ∀ k. (4)

In addition, any combination of user rates are constrained by∑
k∈S

Rk < log det
[
INb +

∑
k∈S ∥FΦgk + dk∥

2 Pk

σ2
n

]
,

∀S ∈
{
1, 2, . . . ,K

}
. (5)

For the ease of notation, we write hk =

(
FΦgk + dk

)
to denote the effective channel from user k to the BS with the aid of the

RIS. The capacity region is now a K-dimensional polyhedron, which can be mathematically described by

C =

(R1, . . . ,RK) ∈ RK
+

∣∣∣∣∣∣∣∣∣∣∣
∑
k∈S

Rk< log det
[
INb+

∑
k∈S ∥hk∥

2 Pk

σ2
n

]
∀S ∈

{
1, 2, . . . ,K

}
 . (6)
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The sum capacity of a RIS-aided MU-MIMO system can be given by

Csum = log det
INb +

∑K
k=1 ∥FΦgk + dk∥

2 Pk

σ2
n

 . (7)

It is not difficult to derive that the instantaneous channel gain of multiple users is equivalent to an overall channel gain, namely
K∑

k=1

∥FΦgk + dk∥
2 = ∥FΦG + D∥2 . (8)

If all users have the same power constraint, i.e., Pk = Pu, ∀k, the sum capacity in (7) is rewritten as

Csum = log det
[
INb +

∥FΦG + D∥2 Pu

σ2
n

]
. (9)

IV. Sum-RateMaximization Design

The aim of this paper is to design efficient transmission for the maximization of the sum rate in the uplink RIS-aided MU-MIMO

systems. From (9), the sum capacity is a function of Φ, resulting in the following optimization formula

max
Φ

∥FΦG + D∥2

s.t. θn ∈ [0, 2π), ∀n = 1, . . . ,Ns,

(10)

which is mathematically intractable.

Fortunately, it is observed that the BS-RIS link generally has a strong line-of-sight (LOS) path since both nodes are stationary,

and their deployment locations are deliberately selected without any blockage in-between. In contrast to randomly distributed,

moving UEs, the BS-RIS channel exhibits high correlation and sparsity. Furthermore, if the BS applies a correlated antenna array,

e.g., with a small inter-element spacing of half wavelength, the channel can be modelled as the product of the channel vector of

the reference antenna and the steering vector of the array [68]. Therefore, the BS-RIS link can be represented by the channel

vector f ∈ C1×Ns between the reference antenna and the RIS. Accordingly, the direct channel is degraded from D to d ∈ C1×K .

As a result, (10) is simplified to
max
Φ

∥fΦG + d∥2

s.t. θn ∈ [0, 2π), ∀n = 1, . . . ,Ns.

(11)

The objective function in (11) becomes solvable since it is quadratically constrained quadratic program (QCQP) optimization

[92], based on which joint transmission is proposed. In addition, opportunistic transmission relying on the best user selection

is also provided. For comparison, this section first presents the behaviours of the conventional OMA schemes including TDMA

and FDMA in RIS-aided MU-MIMO systems.

A. Orthogonal Multiple Access

1) TDMA-RIS: It is a simple scheme by dividing the signaling dimension along the time axis into K orthogonal slots. Using the

round-robin scheduling, each user cyclically accesses to its assigned slot. A general user k transmits sk at the kth slot while other

users keep silent. According to [93], a RIS element made by positive-intrinsic-negative (PIN) diodes has a maximal switching

frequency of 5 MHz, much faster than the shifting of time slots typically on the order of millisecond (ms). It implies that the

phase-shift matrix can be adjusted per slot, denoted by Φk = diag{e jθ1[k], . . . , e jθNs [k]}, k = 1, . . . ,K with the time-selective phase

shift θn[k]. The received signal vector for user k is given by

yk =

(
fΦkgk + dk

)
sk + n, (12)
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where dk is the kth element of d. The phase of each reflected signal should be tuned to align with the phase of the LOS signal

for coherent combining at the receiver. Thus, it is not hard to derive that the optimal phase-shift matrix equals

Φ⋆k = diag
{
e j(arg(dk)−arg(diag(f)gk))

}
, (13)

where arg(·) stands for the phase of a complex scalar or vector. It results in a per-user rate of

Rk =
1
K

log

1 +
∣∣∣∣∣∣∣

Ns∑
n=1

| fn||gn,k | + |dk |

∣∣∣∣∣∣∣
2

Pu

σ2
n

 , (14)

where fn denotes the channel coefficient between the BS and reflecting element n, and gn,k denotes the channel coefficient between

reflecting element n and user k. Thereby, the sum rate of the TDMA-RIS system can be computed by

Ctdma =

K∑
k=1

1
K

log

1 +
Pu

∣∣∣∣∑Ns
n=1 | fn||gn,k | + |dk |

∣∣∣∣2
σ2

n

 , (15)

where the factor 1/K is due to the orthogonal partitioning of the time resource.

2) FDMA-RIS: The system bandwidth is split into K orthogonal subchannels, and each user occupies a subchannel over the

entire time. Unlike the time-selective phase shifting in TDMA, the RIS is not frequency-selective due to the hardware limitation. It

implies that the surface can be optimized at most for a particular user, whereas other users suffer from phase-unaligned reflection.

If the RIS aids the signal transmission of a dedicated user k̂, the optimal phase-shift matrix Φ⋆
k̂

can be obtained from (13). Its

achievable sum rate is calculated by

C f dma =

K∑
k=1

1
K

log

1 +
Pu

∣∣∣∣fΦ⋆k̂ gk + dk

∣∣∣∣2
σ2

n


=

1
K

log

1 +
Pu

∣∣∣∣∑Ns
n=1 | fn||gn,k̂ | + |dk̂ |

∣∣∣∣2
σ2

n

 (16)

+
∑
k,k̂

1
K

log

1 +
Pu

∣∣∣∣fΦ⋆k̂ gk + dk

∣∣∣∣2
σ2

n

 .
Tuning the RIS to optimize different users yields different performance. The best user that maximizes the sum rate can be

determined by exhaustively selecting each user as the target:

k̂ = arg max
k∈{1,2,...,K}

C f dma. (17)

In addition to the exhaustive search, the simplest way is to randomly select a user.

B. Joint Transmission

From the information-theoretic perspective, OMA is inefficient because each user utilizes only a fraction of the available

time-frequency resource. With this regard, we propose a joint-transmission scheme for a RIS-aided MU-MIMO system, where

all users transmit their signals simultaneously over the same time-frequency resource.
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Unlike OMA, where the RIS is tuned for a particular user, the phase-shift matrix in JT needs to be optimized based on the CSI

of all users. Define q =
[
q1, q2, . . . , qNs

]H with qn = e jθn , n = 1, . . . ,Ns and χ = diag(f)G ∈ CNs×K , we have fΦG = qHχ ∈ C1×K .

Thus, the objective function in (11) is transferred to ∥fΦG + d∥2 =
∥∥∥qHχ + d

∥∥∥2
, resulting in

max
q

qHχχHq + qHχdH + dχHq + ∥d∥2

s.t. |qn|
2 = 1, ∀n = 1, . . . ,Ns,

(18)

which is a non-convex QCQP problem [92]. Introducing an auxiliary variable t, (18) can be homogenized as

max
q

∥∥∥tqHχ + d
∥∥∥2

= max
q

t2qHχχHq + tqHχdH + tdχHq + ∥d∥2,
(19)

Defining

C =

χχH χdH

dχH ∥d∥2

 , v =

qt
 , (20)

(19) equals to
max

v
vHCv

s.t. |qn|
2 = 1, ∀n = 1, . . . ,Ns

|t|2 = 1.

(21)

Let V = vvH , we have vHCv = Tr(CV), where Tr(·) denotes the trace of a matrix. As a result, (21) is reformulated as

max
V

Tr (CV)

s.t. Vn,n = 1, ∀n = 1, . . . ,Ns

V ≻ 1

, (22)

where Vn,n means the nth diagonal element of V, and ≻ stands for a positive semi-definite matrix. The optimization formula

is transformed to a semi-definite program, whose globally optimal solution V⋆ can be efficiently solved by available numerical

algorithms such as CVX in MATLAB [94].

Conduct the eigenvalue decomposition V⋆ = UΣUH , where U is a unitary matrix and Σ is a diagonal matrix, both with the

size (Ns + 1) × (Ns + 1). A sub-optimal solution for the optimization problem is given by

v̄ = UΣ1/2r, (23)

where r is a Gaussian random vector generated according to r ∈ CN(0, INs+1). Finally, the solution to the optimization problem

can be determined as

Φ⋆JT = diag

e
j arg

([
v̄

v̄Ns+1

]
1:Ns

) , (24)

where [·]1:Ns denotes a sub-vector extracting the first Ns elements, and v̄Ns+1 is the last element of v̄.

Thus, the sum capacity of JT is computed as

CJT = log

1 +
∥∥∥∥fΦ⋆JT G + d

∥∥∥∥2
Pu

σ2
n

 , (25)
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where the factor 1/K in (15) and (16) is avoided due to the full exploitation of the time-frequency resource in JT. Ideally, the

applied phase-shift matrix can optimally optimize the reflection for all users simultaneously, providing an upper performance

bound of JT as

CU pper = log

1 +
∑K

k=1

∣∣∣∣∑Ns
n=1 | fn||gn,k | + |dk |

∣∣∣∣2Pu

σ2
n

 . (26)

The joint transmission for RIS-aided MU-MIMO systems is depicted also in Algorithm 1.

Algorithm 1: Joint RIS Transmission

Initialization: q←
[
q1, q2, . . . , qNs

]H with qn = e jθn ;

v←
[
qT , t

]T
with |t| = 1;

V← vvH;

foreach Transmission Block do

Estimate f, d, and G;

χ← diag(f)G;

C←

χχH χdH

dχH ∥d∥2

;
Solve (22) using CVX;

Decompose V⋆ = UΣUH;

v̄← UΣ1/2r, where r ∈ CN(0, INs+1);

Adjust RIS with Φ⋆JT = diag

e
j arg

([
v̄

v̄Ns+1

]
1:Ns

);

All users jointly transmit;

end

Algorithm 2: Opportunistic RIS Transmission

foreach Transmission Block do

Estimate f, d, and G;

foreach User k do

Φ⋆k ← e j(arg(dk)−arg(diag(f)gk));

R⋆k ← log
[
1 + ∥fΦgk+dk∥

2Pu

σ2
n

]
;

end

k⋆ ← arg maxk=1,...,K
(
R⋆k

)
;

k⋆ transmits while k , k⋆ turn off;

end
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C. Opportunistic Transmission

If multiple users fade independently, the probability that one of the users experiences strong channel quality is substantially

higher than that of a single user. Therefore, the sum capacity can be improved by exploiting the effect of multi-user diversity. By

assigning the shared transmission resource only to the best user, the total throughput of the system is maximized. The more users

the system can schedule, the stronger channel the best user probably has. Based on this observation, we propose an opportunistic

scheme for the RIS-aided MU-MIMO system.

Accordingly, the single-user bound is rewritten as

Rk < log
[
1 +
∥fΦgk + dk∥

2 Pu

σ2
n

]
, ∀ k. (27)

The optimal phase-shift matrix is given by

Φ⋆k = diag
{
e j(arg(dk)−arg(diag(f)gk))

}
. (28)

Substituting (28) into (27) yields the maximal achievable rate of user k, denoted by R⋆k . The philosophy of the opportunistic

transmission is to determine the best user with the largest rate, mathematically,

k⋆ = arg max
k∈{1,...,K}

(
R⋆k

)
, (29)

and then assigning the shared transmission resource merely to k⋆. Other users turn off while the best user transmits its signal.

The sum capacity of OT is computed by

COT = max
k∈{1,...,K}

log

1 +
∥∥∥fΦ⋆k gk + dk

∥∥∥2
Pu

σ2
n




= max
k∈{1,...,K}

log

1 +
∣∣∣∣∑Ns

n=1 | fn||gn,k | + |dk |

∣∣∣∣2Pu

σ2
n


 . (30)

V. Numerical results

Monte-Carlo simulations are conducted to evaluate the performance of joint and opportunistic transmission in an RIS-aided

MU-MIMO system. This section first elaborates the simulation parameters and then provides some representative numerical

results in terms of the sum throughput. Without loss of generality, we established a simulation scenario as shown in Fig.2. The

BS is located at the original point of the coordinate system, while the RIS with Ns = 200 reconfigurable elements is deployed in

the middle of the cell edge. Cell-center users distribute randomly over a square area with the side length of X2 = 300 m, while

cell-edge users distribute randomly over another square area from X1 = 250 m to X3 = 500 m. The power constraint of the UE is

assumed to be Pu = 1.0W over a signal bandwidth of 1MHz. The noise power density is −174dBm/Hz with the noise figure 9dB.

The large-scale fading is distance-dependent, computed by σ2
c = 10

L+S
10 , where L denotes the path loss, and S ∼ N(0, σ2

sd) is the

Log-Normal shadowing with a standard derivation σsd = 8dB. The COST-Hata model (refer to [48]) is employed to determine

L using the break points of 10m and 50m, the carrier frequency of fc = 1.9GHz, the BS/RIS height of 15m, and the UE height

of 1.65m. Due to the line of sight, the path loss of the BS-RIS channel can be calculated by L0/d−α, where L0 = −30 dB is the

path loss at the reference distance of 1 m, the path-loss exponent α = 2, and the Rician factor Γ = 5.

Our simulation provides a comprehensive comparison among different schemes, including: 1) the conventional direct com-

munications (DC) where the UEs directly access to the BS without the aid of RIS; 2) FDMA that randomly selects a user
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Fig. 2. Simulation setup of a multi-user RIS system, where the cell coverage is comprised of a cell-center area and a cell-edge area.
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Fig. 3. Performance comparison of different transmission schemes in the uplink of a RIS-aided multi-user system: (a) CDFs in terms of the sum rate with two

users, and (b) CDFs in terms of the sum rate with twelve users.

for optimizing the RIS coefficients; 3) FDMA-US means exhaustive search to determine the best user for optimizing the RIS

coefficients; 4) TDMA; 5) random phase shift (RPS) where the phase shifts of the RIS elements are randomly set; 6) JT; 7) The

upper bound of the JT, see (26); and 8) OT.

Cumulative distribution function (CDF) of the sum rate is employed as the performance metric. To provide some insights,

we first compare the CDFs of different schemes with the minimal number of K = 2 users, consisting of a cell-center user and

a cell-edge user. As shown in Fig.3a, the conventional DC system achieves the 50%-likely or median sum rate of 5.6 bps/Hz.
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The deployment of RIS can substantially boost the system performance, where FDMA without and with user selection have a

sum rate of around 18.1 bps/Hz and 18.5 bps/Hz, respectively. TDMA obviously outperforms FDMA with a 50%-likely sum

rate of approximately 22 bps/Hz. That is because the RIS can provide time-selective reflection dedicated for each TDMA user,

whereas only the signal transmission of a single FDMA user can get aids owing to the lack of frequency-selective reflection. As

we expected, JT is superior to TDMA, where the 50%-likely rate is increased to approximately 23.3 bps/Hz. That is because the

signal transmission of each JT user fully exploits the time-frequency resource, in contrast to 1/K degree of freedom per OMA

user. If the phase shifts are random, the result is 17.4 bps/Hz, which justifies the effectiveness of the joint reflection optimization.

The multi-user gain due to opportunistic user selection is solid, where OT has a median rate of 26.2 bps/Hz, better than the upper

performance bound of JT. In addition, we also illustrate the performance comparison in the case of K = 20 users, as illustrated

in Fig.3b, where similar conclusions can be drawn from the numerical results. It is noted that the multi-user gain of OT becomes

large with the increasing number of users.

VI. Conclusions

Based on the insights provided by the capacity analysis, we proposed two novel schemes, i.e., joint transmission and

opportunistic transmission for RIS-aided multi-user MIMO communications system. The superiority of the proposed schemes

over the conventional orthogonal multiple access in terms of achievable sum rate was extensively justified through Monte-Carlo

simulation. Particularly, opportunistic transmission has low complexity since it relies only on the best user selection, but obviously

outperforming joint transmission, especially when the number of users becomes large. Regardless of high complexity raised by the

semidefinite relaxation of quadratically constrained quadratic program, joint transmission still cannot compete with opportunistic

transmission. The findings of this paper inspires us to further exploit multi-user diversity and opportunistic communications in

RIS-aided systems. on
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