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Abstract: Optical components interact with light through radiative channels, and as such they18

experience intrinsic losses, giving rise to complex-valued eigenfrequencies and singularities.19

Spatial inversion symmetry breaking -implemented herein by controlling the coupling efficiency20

between input and output radiative channels of metasurfaces- lifts the directional degeneracy21

of reflection zeros, and introduces a complex singularity with a positive imaginary part for full22

2𝜋-phase modulation of light. Our work establishes a general framework to predict and study the23

response of resonant systems in photonics and metaoptics.24

1. Introduction25

Non-Hermicity of photonic and nanophotonic systems provides a powerful framework to engi-26

neer innovative light propagation and scattering properties [1–6]. Emerging concepts, such as27

degenerate eigenstate accumulation and exceptional points at spectral singularities, have recently28

led to the design of metasurfaces (MSs) with unexpected wavefront modulation capabilities in-29

cluding, among others, polarization decoupling of light, unidirectional transmission, light circular30

polarizer [7–10]. Beside forming a versatile platform to test topological photonics concepts, MSs31

have distinct advantages with respect to conventional - refractive - optical components, including32

planar fabrication, the possibility of multiplexing, and achieving unconventional optical function-33

alities [11–15]. MSs were demonstrated to be extremely beneficial for various applications such34

as holography [16–18], LIDAR [19,20], imaging [21–23], polarization control [24, 25], quantum35

state detection [26], etc.36

The design of metasurfaces requires full 2𝜋−phase modulation, which is generally realized by37

leveraging several phase-control mechanisms, including the resonant interaction of light with38

nanoscale dielectric or metallic particles. The common approach to the design of resonant39

phase MSs relies on the well-known property that scattering of structures supporting a single40

resonant mode provides a maximum phase shift of 𝜋 with respect to the incoming wavefront [27].41

This limited phase modulation occurs when the photonic system is time-reversal-symmetric42

in transmission, or both parity- and time-reversal-symmetric in reflection [28–30]. To extend43

the coverage to the required full 2𝜋 response, the phase is often “doubled” by adding a back44

reflector, or combining two modes by geometric parameter tuning [31]. This idea of doubling the45

phase using multiple resonances has ensued from oversimplified models that do not consider46



the interaction of resonantly scattered light with a non-resonant background, that is the intrinsic47

non-Hermicity of the system. Taking these interference effects into consideration and looking at48

this problem using theoretical concepts associated with non-Hermitian physics provide insights49

into the mechanism of light scattering by nanostructured interfaces.50

Here, we present physical insights and design guidelines associated with the topological51

properties of metasurfaces to unify the design principles of resonant phase components and52

to further achieve asymmetric phase modulation in reflection. We rely on complex-frequency53

analysis to draw conclusions on the physics of metasurfaces and guide the designs towards54

the engineering of innovative nanophotonic devices [28]. By studying the analytical formulas55

associated with the complex values of the reflection poles and zeros, we are able to express the56

interplay between absorption loss, scattering loss, and scattering gain leading to zero and pole57

separation. In particular, we show that the total effective gain in the system should prevail over58

the total effective loss to fulfill this condition. We illustrate these analytical results with simple59

metal-dielectric-metal structures previously proposed in the literature and further exploit them to60

design interfaces featuring extremely high coupling asymmetry between two channels. More61

precisely, we link the asymmetric response with the absence of z-inversion symmetry across the62

interface, and numerically demonstrate this behavior using vertically-asymmetric nanostructures63

composed of conically-shaped nanophotonic building blocks. Our description establishes a clear64

connection between phase-controlling metasurfaces and the class of metasurfaces supporting65

phase singularities [7, 31–36]. Our results bring us to the general conclusion that any resonant66

phase metasurface that operates over a full phase range in reflection or transmission requires67

proper engineering of the position of topological singularities in the complex frequency plane.68

2. Results and discussions69

2.1. A necessary condition for the 2𝜋 resonant phase gradient70

Coupling of the metasurface to the surrounding environment can be described via linear operators71

supporting complex-valued eigenfrequencies, which express the non-Hermicity of the system.72

The imaginary parts of these eigenfrequencies essentially describe the rate of energy exchange73

between the resonators and the environment. The physical quantities representing the responses74

of these components, including reflection or transmission coefficients, as well as any other75

response function of the linear systems, can be expanded in the complex plane according to the76

Weierstrass factorization theorem [37–47] as77

det(𝑟) ∼
∏
𝑚

𝜔 − 𝜔RZ,m

𝜔 − 𝜔P,m
(1)

This expression contains an infinite number of singular points (poles and zeros) related to78

the eigenvalues of the system. As an example, poles correspond to eigen-solutions with purely79

outgoing fields. Reflection zeros instead describe purely incoming waves in one set of channels80

and outgoing light exiting the device only through the complementary set of channels [47,48].81

1 When we are operating a photonic system over a limited frequency range, its response is82

dominated by one or just a few zero-pole pairs. The contribution of the other factors can be83

truncated and simply lumped together leading to non-resonant background. Zeros and poles84

are phase singularities with opposite handedness, which are connected by a branch cut - a85

phase jump appearing due to the ambiguous value of the phase. We have previously shown86

that a sufficient condition for an optical component to realize a full 2𝜋 resonant phase shift87

is to have at least one zero-pole pair separated by the real axis [28]. The branch cut crossing88

1Note that for light scattering, poles and zeros are often calculated for the scattering matrix, but they also appear for
reflection or transmission matrices. While poles of scattering, reflection, and transmission matrices always coincide, the
zeros are generally all different.



confirms previous numerical calculations [49] and further unifies all resonant phase modulation89

mechanisms under a simple condition on the positions of complex singularities. Considering the90

time-convention 𝑒−𝑖𝜔𝑡 , poles are bound to have a negative imaginary part in passive systems91

which results in avoiding energy divergence due to causality [50]. Fulfilling the branch cut92

crossing condition thus requires engineering the zero positions to have a positive imaginary part.93

For metasurfaces operating in reflection, analytical expressions for the positions of complex94

zeros and poles can be calculated using temporal coupled modes theory (TCMT). [47, 48, 51, 52]95

TCMT has been previously applied to study, among others, the asymmetric response of photonic96

structures. [53–55] The description of a metasurface operating at normal incidence can be97

represented with the TCMT as a two-port system supporting only one dominant resonance in the98

frequency range of interest. Complex reflection zeros 𝜔RZ (Eq. 2a) and poles 𝜔𝑃 (Eq. 2b) are99

expressed as:100

𝜔RZ = 𝜔0 − 𝑖𝛾0 + 𝑖𝛾1 − 𝑖𝛾2 (2a)
𝜔P = 𝜔0 − 𝑖𝛾0 − 𝑖𝛾1 − 𝑖𝛾2 (2b)

where 𝛾0, 𝛾1, and 𝛾2 represent the absorption loss, coupling to the first (top) and second101

(bottom) channels respectively. Note that in a case of an active medium, this equation will contain102

an additional term entering with a plus sign and representing gain. In this description, 𝜔0 is the103

real eigenfrequency of the structure as if the structure were not interacting with the environment.104

Details on the derivations are presented in the Supplementary Material. The equation (Eq. 2a)105

contains all information needed to predict the branch cut crossing condition to achieve a full 2𝜋106

resonant phase response, that is for Im(𝜔RZ) > 0. In other words, if the illumination comes107

from the first channel, coupling to it should be larger than the sum of the coupling to the second108

channel (that can be considered as an effective loss) and absorption loss. This regime is described109

in the literature as the "overcoupling" regime [56] 2. The other possible situations are "critical110

coupling" (Im(𝜔RZ) = 0) and "undercoupling" (Im(𝜔RZ) < 0) regimes. For the latter two cases,111

resonant 2𝜋 phase retardation is not achievable at normal incidence. Our first conclusion is that112

resonant metasurfaces operating in reflection achieve full phase modulation when operating in113

the overcoupling regime, corresponding to the separation by the real frequency axis of an isolated114

complex-valued zero-pole pair.115

We identified another critical condition to split the zero and pole of a pair in the complex116

plane: the zeros can be manipulated to be placed in the upper part of the complex plane whenever117

the system suffers from either absorption losses or when it presents some sort of asymmetry.118

Suppose we are considering a perfectly symmetric and lossless system. The absence of loss and119

gain implies that the system verifies time-inversion symmetry (T- symmetry). The z-inversion120

symmetry (P- parity) is also verified so that the system is both P- and T-symmetric. Because of the121

out-of-plane inversion symmetry of the structure, the reflection zeros of the system, illuminated122

from the top have the same complex frequency as the zeros of the system illuminated from the123

bottom. The time-reversal symmetry also imposes that these two ”bi-directional” zeros are124

complex conjugates. The only solution is thus that the zeros are either all real or exist in pairs with125

complex conjugate values. If we consider that the response of both P- and T-symmetric systems126

in a restricted spectral region of interest is dominated by only one resonance, we immediately127

conclude that the reflection zeros, whether the system is excited from the top or from the bottom,128

are identical and for this reason, have to be real 𝜔′
RZ = 𝜔∗

RZ ∈ R, as schematically represented in129

Fig. 1a. These very specific cases have been identified as reflectionless scattering modes (R-zeros130

on the real axis) for both direct and time-reversed propagation [47]. As the parity symmetry is131

broken, for example by considering different sub- and superstrate, the zeros of the reflection can132

2In TCMT this term can be used for total radiative coupling prevailing over absorption loss. Here we used it by
considering that radiative coupling to the second channel (in this case, transmission channel) could also be associated
with a loss for a first (reflection) channel
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Fig. 1. a. Schematic representation of the time-reversal operator to parity-symmetric
and asymmetric metasurfaces. The structures considered are made of non-absorbing
and non-amplifying material. This way, the application of time-reversal symmetry
on the system, that is imposing the condition 𝑇 : 𝑡 → −𝑡, results in both inverting
input to output boundary conditions and imposing complex conjugated values on the
zeros frequencies. On top, the reflection zeros associated with light impinging onto
the metasurface from both directions are bound to the real axis. On the bottom, the
structure geometry is specifically chosen to break the z-inversion symmetry. Note that
in this latter case, time-reversal symmetry imposes the reflection zeros to be complex
conjugated.

be different for top and bottom incidence, meaning that these zeros are not forced to stay on133

the real frequency axis. However, they remain complex conjugates of each other in the case of134

a lossless system after applying time-reversal symmetry, which imposes that 𝜔′
RZ = 𝜔∗

RZ ∈ C,135

see Fig. 1b). Similarly, breaking time-reversal symmetry by adding losses or gain, even for a136

symmetric system, is also a sufficient condition to move the zeros from the real frequency axis.137

Note, however, that if the system is neither P- nor T- symmetric while preserving the overall138

PT-symmetry, zeros are expected to be bound to the real axis.139

2.2. Controlling the position of reflection phase singularities of asymmetric metal-140

insulator-metal metastructures141

Placing a mirror with close to unity reflection at the bottom of the structure is the most142

straightforward and the most employed way of breaking simultaneously z-inversion and time-143

reversal symmetries. Indeed, metallic features can not only cancel the transmission of light but144

also bring unavoidable optical losses3. As stipulated in the introduction, we can leverage both145

effects to control the complex frequencies of top and bottom reflection zero singularities. We146

3here time-reversal symmetry is broken because of the losses but it doesn’t mean that the system becomes nonreciprocal.



already know from previous works that tuning geometrical parameters of a structure changes147

the absorption 𝛾0 and the coupling coefficients 𝛾1 and 𝛾2 and that full phase modulation can be148

harvested by circulating around a zero amplitude of the reflection coefficient [31–34, 57, 58]. In149

these papers, phase, and amplitude color-coded simulation maps, calculated by varying both150

the structural parameters and the real frequency of excitation, indicated the presence of a zero151

of reflectivity and full phase modulation. It has been shown that this condition is guaranteed152

when radiative losses into the reflection channel prevail over absorption losses [31]. A similar153

idea of circulation has been recently proposed in the context of zeros of polarization conversion154

near exceptional points [7]. In the following, we analyzed this problem from the non-Hermitian155

perspective. Scattering problems driven by light sources with complex-valued frequencies are156

solved using the finite-element-based software package JCMsuite. We then prove that the complex157

singularities observed in these systems occur at the transition when a zero and pole of a pair158

become separated by the real frequency axis. For a system including a thick metallic bottom159

mirror, we can conveniently set the coupling to the transmission channel to 𝛾2 = 0. Thus, the160

expressions for the imaginary parts of the reflection zeros and poles (calculated analogously from161

Eqs. (2a) and (2b)) contain only two terms: Im(𝜔RZ) = 𝛾1 − 𝛾0, Im(𝜔P) = −𝛾1 − 𝛾0. From this162

system of equations, and numerically calculating the imaginary parts of poles and zeros, we163

can evaluate the absorption loss 𝛾0 and the coupling coefficient 𝛾1: 𝛾1 =
|Im(𝜔P ) |+Im(𝜔RZ )

2 and164

𝛾0 =
|Im(𝜔P ) |−Im(𝜔RZ )

2 . We apply this analysis to the example discussed in [58]. The structure165

studied in the latter article is a typical example of a MIM-metasurface consisting of a gold mirror,166

glass spacer of variable thickness 𝑑, and another thin gold layer nanostructured into rectangular167

antennas (Fig. 2a). To reproduce the results, we adopted the same parameters, i.e. a reflectivity168

of the bottom mirror 𝑟𝑚 = 1, the refractive index of a spacer 𝑛 = 1.5, lattice pitch 𝑎 = 350 nm169

and the parameters of the gold antennas exactly as in the former article. We first reproduced170

the same reflection amplitude and phase maps as a function of real frequency and the spacer171

thickness 𝑑 (Fig. 2b,c), consistently with Fig. 2c in [58]. At first glance, both reflection maps172

seem to reveal pairs of reflection zeros appearing for a specific range of spacer thickness. In the173

latter reference, these zeros were attributed to a pair of topological singularities with opposite174

charge ±1. Here we apply the complex frequency analysis to this problem, that is we compute the175

response of the system using a higher-order finite element method, called JCMsuite solver [59],176

assuming continuation of Maxwell equations in the complex frequency plane by considering177

a complex-frequency excitation. We could then formally identify the role played by complex178

singularities. We first calculate the reflection amplitude and phase for a given spacer thickness179

of 𝑑 = 130 nm (corresponding to one reflection zero in Fig. 2b) assuming complex excitation180

frequency and extract the associated real frequency response (Fig. 2d). Complex frequency reveals181

topological singularities, the expected pole and zero of reflection, represented on the complex182

frequency amplitude map respectively by a maximum and a minimum of reflection amplitude.183

The phase map shows that each of these features is surrounded, as previously discussed, by184

topological 2𝜋 clockwise and anticlockwise phase vortices (±1) [28]. The complex plane analysis185

thus reveals that for this specific geometrical parameters, pole and zero are separated by the real186

axis and that a 2𝜋 resonant phase modulation is obtained by varying the frequency along the real187

axis. The position of the zero in the vicinity of the real axis also leads to a decreased reflection188

amplitude resulting in a dip of the reflection coefficient for real frequency excitation. We also189

calculated both real- and complex- frequency dependent reflection for another spacer thickness of190

𝑑 = 250 nm (Fig. 2e) and we did not observe any significant resonant spectral responses, neither191

in phase nor in amplitude. Complex plane reveals that both singularities are located in a lower192

frequency plane, each positioned sufficiently far away from the real axis to significantly influence193

the response of the system at real frequency.194

The complex frequency analysis is further employed to follow the detailed evolution of195

the positions of zero and pole singularities as a function of the spacer thickness. The full196



evolution is presented in a video in Supplemental material (Complex_plane_d10-550nm.avi,197

Complex_plane_d270-275nm.avi). We observe that both zero and pole singularities move in198

circles, repeating similar trajectories with the periodicity related to the Fabry-Perot modes. We199

observe that the points of zero reflection amplitude, which were apparently identified previously200

as real space phase singularities, in Fig. 2b,c, correspond in fact to the same complex reflection201

zero 𝜔RZ crossing the real axis twice, moving back and forth between the lower and the upper202

part of the complex plane (Fig. 2f). Note that whenever the zero crosses the real frequency axis,203

the system reaches the critical coupling condition (𝛾0 = 𝛾1) leading to perfect absorption [10].204

This observation helps us understand that if indeed topological singularities of the opposite205

charge -the poles and the zeros- govern the optical response of this structure, they do not appear206

in the real parameters space, but in the complex frequency space. Moreover, our analysis brings207

us to the conclusion that only one zero is responsible for the observation of effective singularities208

previously appearing in the real parameters space. Tracking the complex values as a function of209

𝑑 also enables us to identify parameter regions where a zero-pole pair is separated by a real axis,210

that is the parameter regions where a 2𝜋 phase accumulation as a function of real-frequency can211

be achieved (see the gray shaded regions in Fig. 2f).212

To complete our analysis, we obtained the complex values of the poles and zeros and used this213

information to calculate the coupling coefficient to the reflection channel 𝛾1 and the absorption214

losses 𝛾0. The results presented in Fig. 2g confirm that in the 2𝜋 resonant phase shift regions, the215

coupling to the reflection channel prevails over absorption, i.e. 𝛾1 > 𝛾0, confirming the earlier216

results on the existence of reflection zeros in the real parameters space [6, 7, 60–63].217

2.3. Asymmetric response of dielectric cones structure218

In the following, we propose to further leverage our understanding of symmetry arguments to219

achieve a physical response similar to MIM structures but using dielectric nanostructures, i.e.220

nanostructures composed of a material having a real refractive index. As time-reversal symmetry221

still holds, reflection zeros in the direct (illumination from the top) and time-reversed (illumination222

from the bottom) scenarios are complex-conjugated. If the system is also P-symmetric, direct223

and time-reversed reflection zeros are forced to coincide 4. As discussed previously, breaking224

the parity symmetry relaxes the second requirement and allows zeros to become complex. In225

our study, we now consider a simple lossless (𝛾0 = 0) silicon-based metasurface (𝑛 = 3.5)226

presenting broken out-of-plane symmetry, realized by truncating pillar structures to form cones.227

The structure height is fixed in the rest of the analysis to ℎ = 600 nm (Fig. 3a). Pillars are228

arranged in a 2D square lattice with a fixed period of 𝑝 = 800 nm. We also embed the interface229

into a homogeneous medium with a refractive index 𝑛 = 1.5. When the pillar shape is preserved,230

i.e. when their top and bottom diameters defined as 𝐿1 and 𝐿2 respectively are equal (𝐿1 = 𝐿2),231

this structure is completely symmetric in all directions, indicating that the system remains232

identical upon z-inversion (and parity) symmetry. The reflection zeros associated with the233

parity-symmetric system are thus identical and real, whether the system is excited from the top or234

from the bottom. Indeed for lossless metasurface, 𝛾0 = 0 and its coupling coefficient to substrate235

and superstrate are identical, so that in the Eq. 2a, 𝛾1 = 𝛾2, leading to Im(𝜔RZ) = 0. 5 However,236

when the coupling asymmetry is introduced by varying the top diameter 𝐿1 between 400 nm and237

500 nm and leaving the bottom diameter at 𝐿2 = 500 nm, the structure is no longer preserved238

under the parity operation. Breaking z-inversion thus moves the zeros to the complex plane. To239

characterize and compare the behavior of the system upon the top and bottom illumination, we240

4Note that flipping upside down the structure and exchanging the boundary conditions with respect to the xy-plane at
𝑧 = 0 implies breaking P-symmetry [47]

5We note that, with respect to the reflection case, the coupling coefficients 𝛾1 and 𝛾2 do not have such a similar
straightforward influence on the positions of the transmission zeros. Transmission zeros are bound to the real axis only
by the time-reversal symmetry of the structure. This point, which extends beyond the scope of this manuscript, is further
discussed in more detail in the Supplementary Material.



computed both top and bottom reflection coefficients using finite element method simulations241

for the asymmetric case 𝐿1/𝐿2 = 0.84 and compared their amplitude and phase responses. The242

results are presented in Fig. 3 b and c. We observe that for this specific value of the asymmetry,243

the metasurface behaves similarly as an efficient mirror with almost unity reflection over the244

entire spectral region for both illumination directions. However, the phase behavior is extremely245

asymmetric, showing a drastic resonant 2𝜋 phase variation for light impinging from the top, with246

only a linear dispersion -characteristic of the propagation phase across the simulation volume- is247

observed using bottom excitation.248

We also link the asymmetric phase variation observed in Fig. 3 b. and c. with the position of249

zero singularities in the complex plane. We thus compute both top and bottom reflection cases for250

the asymmetric structure in the complex frequency plane using JCMsuite. In both illumination251

cases, i.e. considering top and bottom light impinging on the structure from the thin or the wide252

section of the cone respectively, we observe that the complex plane optical response is always253

composed of only one zero-pole pair. Fig. 3d. and e. shows the evolution of the pole and the254

zero as the structure is changing from symmetric to asymmetric (𝐿1/𝐿2 is changing from 1 to255

0.8). For the symmetric case with 𝐿1/𝐿2 = 1, the structure is P-symmetric and the reflection256

zeros are bound to the real axis (𝜔′
RZ = 𝜔∗

RZ = 𝜔RZ). Increasing the asymmetry gradually moves257

away 𝜔RZ and 𝜔′
RZ from the real axis in the opposite complex half-planes. For the geometric258

asymmetry leading to maximally asymmetric response, i.e. when 𝐿1/𝐿2 = 0.84, we observe259

that the top illumination condition achieves almost unity reflection and full phase modulation.260

This condition is characterized by a complex zero frequency that is reaching the conjugated261

value of its pole (𝜔RZ ≈ 𝜔∗
P). Similar complex conjugation between pole and zero has recently262

been shown to achieve extremely high modulation efficiency [64]. In comparison, the bottom263

illumination case does not provide extensive phase modulation simply because the associated264

zero, which due to time-reversal symmetry consideration is conjugated to the top illumination265

zero, has a large imaginary part and, as such, does not influence the real frequency response of266

the metasurface (Fig. 3c.).267

At this point, we recall the TCMT analytical expressions for reflection poles and zeros,268

considering here a lossless system with two-ports, i.e. 𝛾0 = 0 in Eqs. 2a, 2b, and simplify the269

expressions to calculate the coupling coefficients 𝛾1 and 𝛾2, we obtain270 {
𝛾1 =

|Im(𝜔P ) |+Im(𝜔RZ )
2

𝛾2 =
|Im(𝜔P ) |−Im(𝜔RZ )

2
(3)

With these equations and after numerically obtaining Im(𝜔RZ), Im(𝜔P), we calculate the271

coupling coefficients 𝛾1 and 𝛾2. We observe that the coupling to the reflection channel 𝛾1272

increases with asymmetry, while 𝛾2 decreases with asymmetry to reach 0 for 𝐿1/𝐿2 = 0.84, as273

shown in Fig. 3f. We show how the reflection phase and amplitude are changing with a gradual274

increase of asymmetry in the case of top illumination in Supplementary information. We also275

calculate the minimum reflection 𝑅min in a considered frequency region as a function of diameters276

ratio (𝐿1/𝐿2). These data, shown on the same plot in Fig. 3g., are presented as a function of the277

coupling asymmetry 𝛾2/𝛾1. Increasing the coupling asymmetry (𝛾1/𝛾2 decreases) significantly278

increases the reflection efficiency of the metasurface over the spectral region of interest. This279

condition creates a unique situation, similar to a Gires-Tournois resonator with approximately280

unity reflection, but with one layer of dielectric only and without using a metallic or Bragg mirror281

(Fig. 1b.). The reflection tends to unity for both bottom and top illumination. However, due to282

the complex conjugation of top and bottom zeros in a time-reversal symmetric system, we obtain283

an asymmetric phase modulation, characterized by a single-side resonant phase modulation of284

interest for the design of metasurfaces. Again, this behavior is shown to be connected to the285

presence of a zero in the upper part of the complex-frequency plane.286



3. Conclusion287

In conclusion, we provide guidelines to achieve full-phase modulation as a function of the real288

frequency in reflection. Our analysis reveals that bringing the reflection zeros to the upper part of289

the complex plane, a condition previously identified as a sufficient condition for full 2𝜋 phase290

modulation can be realized using nanostructured interfaces that break the z-inversion symmetry.291

Breaking the out-of-plane symmetry allows reaching a full phase modulation with only one292

resonant mode which is less sensitive to parameter change than the careful adjustment of the293

interaction between two scattering modes usually proposed for Huygens metasurfaces. Instead,294

we show that any array of nanostructures that behaves as a Gires-Tournois resonator can feature295

narrow-band high reflection efficiency and full-phase modulation for an extended stretch of296

parameter values. This approach could thus have a high impact on the emerging field of non-local297

metasurfaces employing high quality factor resonant mode. [27,65–67]. Our work unifies, via the298

analysis of complex frequency position of reflection singularities, the physics of the overwhelming299

majority of MIM phase-gradient metasurfaces operating in reflection [6, 7, 57,58, 60–63]. We300

also rely on a temporal coupled-mode theory to study the positions of the complex topological301

singularities and to generalize the previously defined overcoupling regime associated with the302

full-phase modulation regime. This regime is characterized by the condition at which the303

coupling to the reflection channel exceeds the sum of the coupling to the transmission channel304

and the absorption loss. Linking these quantities with the imaginary parts of complex poles305

and zeros characterizing resonant reflection brings new physical insights to the problem of 2𝜋306

phase modulation. Additionally, the realization of a strong asymmetric phase response between307

forward and backward reflection with z-inversion symmetry broken surfaces further highlights308

the interest in considering topological singularities in the complex plane to design metasurfaces309

in general. Incidentally, direct excitation of these complex zeros using non-monochromatic light310

enables extreme scattering responses, which are no longer limited by conventional physical limits311

such as causality, passivity, and conservation of energy [68], and as such, extensive developments312

associated with complex singularities are expected in the coming years.313

See Supplemental Material for the detailed derivations of equations with temporal coupled314

mode theory, simulation of silicon cones metasurface response in a wider parameters range, a315

video demonstrating the evolution of complex poles and zeros in metal-insulator-metal structure316

as the spacer thickness varies from 10 𝑛𝑚 to 550 𝑛𝑚, a second video showing an evolution of the317

same zero-pole pair in the zoomed region in the lower part of the complex plane in a reduced318

range of spacer thickness variation (from 250 𝑛𝑚 to 275 𝑛𝑚).319
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Fig. 2. a. An example of metal-insulator-metal (MIM) metasurface from [58]: the gold
mirror is separated from gold resonators by a spacer of thickness 𝑑. b. Amplitude and c.
The phase of light reflected by the metasurface in (a.) as a function of real frequency and
spacer thickness (reproduced from same parameters as in [58]). d. Reflection amplitude
and phase maps corresponding to the vertical dashed line denoted by 1 (𝑑 = 130 nm
in (b.,c.): a 2𝜋 resonant phase as a function of the real frequency is obtained. Note
that this figure has been plotted using phase unwrap. In the bottom, the logarithm of
the reflection amplitude and phase as a function of complex frequency illumination
for 𝑑 = 130 nm. e. Reflection amplitude and the phase maps corresponding to the
vertical dashed line denoted by 2 (𝑑 = 250 nm in (b.,c.): no resonant phase variation
as a function of the real frequency is introduced. In the bottom, the logarithm of the
reflection amplitude and phase as a function of complex frequency illumination for
𝑑 = 250 nm. f. Evolution of the imaginary parts of the complex zeros (𝜔RZ) and poles
(𝜔P) as a function of the spacer thickness 𝑑. Points corresponding to reflection zeros
crossing the real axis are noted as PA - perfect absorption. These are the regions where
the metasurface produces a resonant phase shift of 2𝜋 g. Evolution of the coupling
coefficient to the reflection channel 𝛾1 (dashed line) and the metasurface absorption loss
𝛾0 (full line) as a function of the spacer thickness 𝑑. in f and g, the regions associated
with the positive imaginary part of the reflection zero are highlighted with gray.
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Fig. 3. a. Design of an asymmetric phase-gradient metasurface consisting of a 2D
square lattice of conically-shaped silicon meta-atoms embedded in a glass environment.
Metasurface can operate almost as a perfect reflector using both top and bottom
illumination conditions. b. and c. represent the metasurface reflection amplitude and
phase using top and bottom illumination respectively. In b., a resonant 2𝜋 phase variation
as a function of the excitation frequency is observed. In c., the structure behaves as a
simple mirror, without resonant phase variation. d. and e. show the evolution of pole
and zero complex plane positions as a function of the asymmetry for top and bottom
illumination respectively. We observe that decreasing the asymmetry parameter 𝐿1/𝐿2
from 1 to 0.8 results in an asymmetric response associated with complex conjugated
reflection zeros from the degenerated real frequency symmetric case. f. Coupling
coefficients of the top (𝛾1) and bottom (𝛾2) channels of the metasurface depicted in a.
upon top illumination for different out-of-plane asymmetries (𝐿1/𝐿2 is changing from
0.8 to 1). g. The ratio between coupling coefficients 𝛾2/𝛾1 and minimum reflection in
the selected frequency range shown in b. and c. as functions of 𝐿1/𝐿2



Supplementary Material

I. TEMPORAL COUPLED MODE THEORY
DERIVATIONS

We consider a closed linear system supporting M reso-
nances and interacting with the environment through N
external channels. The field amplitudes received and lost
by the system are contained in N-dimensional vectors α
and β respectively. Incoming and outgoing fields in this
system are connected by a scattering matrix β = S(w)α.
To account for the resonant interaction of light with the
system, each internal mode can receive or lose energy to
the environment from/into the N channels contained in
N-dimensional vectors composed of α and β. We study
the evolution of this system using the temporal coupled-
mode theory (TCMT) [1–3] that describes the resonant
scattering of light on the nanoparticles as a superposi-
tion of a low quality factor background mode with M
high quality factor modes representing the resonant sys-
tem (Fig. 1a.).

The field coupled to resonances is denoted by an M-
dimensional vector a, its interaction with incoming and
outgoing fields in the channels is described by an N ×M
in-coupling matrix K and an out-coupling matrix D, re-
spectively. TCMT connects the outgoing and incom-
ing field with Eqs. 1 that are written considering time-
dependence e−iωt and assuming time-reversal symmetry
implying that the in-coupling and out-coupling coeffi-
cients of the system are the same K = D. However,
according to [3, 4] absorption and gain can still be con-
sidered through the non-Hermitian part of H0 without
violating this connection between the coefficients.

{
−iωa = −iHCMTa+DTα

β = S0α+Da
(1)

Here, a coupled-mode theory Hamiltonian is com-
posed of a closed-system Hamiltonian H0 and coupling
to the environment described with a coupling matrix D:

HCMT ≡ H0 − i
D†D

2
. In TCMT, coupling matrix D is

assumed to be frequency-independent, which is not the
case for the exact description. However, TCMT still cor-
rectly describes many systems, especially when consider-
ing comparatively high quality-factor resonances [3, 4].
S0 is an N × N direct scattering matrix accounting for
the non-resonant background. When one or several high
Q-factor resonances are being analyzed in the limited
frequency region, the contribution of all the other res-
onances are summarized by S0. However, when more
resonances are explicitly considered in the model, S0 ap-
proaches a unitary matrix. We further assume it to be a
unitary matrix as it doesn’t influence the spectral posi-
tions of poles and zeros that we aim to retrieve, but for
the accurate modeling of the scattering amplitude and
phase, this factor should be considered.
Using Eqs. 1,we get the expression for the scattering

matrix:

S (ω) =

(
IN − iD

1

ω −HCMT
D†
)

(2)

Considering 2 regions (substrate/superstrate) and di-
viding all the channels into 2 subsets (Fig. 1b.), we have:

D =

[
D1

D2

]
, D† =

[
D†

1 D†
2

]
(3)

S (ω) =

IN1
− iD1

1

ω −HCMT
D†

1 −iD1
1

ω −HCMT
D†

2

−iD2
1

ω −HCMT
D†

1 IN2 − iD2
1

ω −HCMT
D†

2

 (4)

Comparing Eq. 4 with the expression for scattering

matrix S =

[
r t′

t r′

]
we can write for reflection and trans-

mission coefficients:

r = IN1
− iD1

1

ω −HCMT
D†

1 (5) t = −iD2
1

ω −HCMT
D†

1 (6)
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FIG. 1. a. Transient coupled mode theory describes a linear system interacting with environment through N channels. It
considers system’s response as an interference of non-resonant background including all the low-quality factor contributions
and a finite number of high quality factor resonant modes. TCMT quantifies energy exchange between system and environment
by introducing in-coupling coefficient K and out-coupling coefficient D

A. Derivation of the analytical expression for
reflection zeros and poles

We start derivation from the expression for the reflec-
tion matrix Eq. 5:
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Using linear algebra identity (A + BC)−1B =
A−1B(I + CA−1B)−1, derive
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Writing the previous expression with a common de-
nominator
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Calculate reflection matrix determinant:
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Using linear algebra identity det (I −BC) =
det (I − CB), derive
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We can write this expression as

det(r (ω)) =
det (ω −HRZ)

det (ω −HCMT )
(13)

In HRZ = H0− i
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coupling to the input

channel comes with a plus sign and can be considered as
effective gain while coupling to the output channel comes
with a minus sign and considered as the effective loss[3].
Condition for reflection zero det(r (ω = ωRZ)) = 0 is

expressed as:
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B. Derivation of the analytical expression for
transmission zeros and poles

Expression for the scattering matrix (Eq. 4) shows
that, unlike for reflection, equation for transmission ma-
trix (Eq. 15) doesn’t contain a unity matrix IN1

as it is
off the S−matrix main diagonal.
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t = −iD2
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For this reason, the expression for the determinant of
the transmission matrix can not be as easily factorized
as the one for the reflection matrix (Eq. 13). Instead,
it contains two factors (Eq. 16), and when one of them
is equal to zero, another one diverges (please find the
detailed derivation below):
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However, in [5] it was proven (in a framework of the
Heidelberg model), that the numerator in Eq. 16 has to
be real in the time-reversal symmetric structure (that
doesn’t contain absorption loss or gain). In its turn, it
implies that transmission zeros in such systems exist only
on the real axis or in complex-conjugated pairs which is
the case for Huygens metasurfaces combining two modes
to reach 2π resonant phase shift. [6]

1. Derivation for det(T )

Expression for transmission matrix:

t = −iD2
1

ω −HCMT
D†

1 (17)

t = −iD2
1

ω −H0 +
iD†

1D1

2
+

iD†
2D2

2

D†
1 (18)

Using linear algebra identity(
A+BC)−1B = A−1B(I + CA−1B

)−1
, derive

t =
−iD2(ω −H0 +

iD†
2D2

2
)−1D†

1

I + i
D1

2
(ω −H0 +

iD†
2D2

2
)−1D†

1

(19)

We calculate the transmission matrix determinant
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Using linear algebra identity det (I −BC) =
det (I − CB), derive
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which transforms into
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While the denominator in this expression is the same as for reflection and scattering, the numerator consists of two
terms and doesn’t allow to derive a simple rule for transmission zeros, as it was done for reflection.
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II. ASYMMETRIC SILICON STRUCTURE

In order to obtain a full 2π resonant phase gradient
in reflection, we design a lossless silicon-based metasur-
face (n = 3.5). Starting from silicon cylinders with the
height h = 600 nm arranged in a 2D square lattice with
a fixed period of p = 800 nm, we induce the asymme-
try by reducing the top diameter of the cylinder creat-
ing truncated cones. We also embed the interface into
a homogeneous medium with a refractive index n = 1.5.
When the pillar shape is preserved, i.e. when their top
and bottom diameters defined as L1 and L2 respectively
are equal (L1 = L2), the zeros are fixed to the real axis,
while when L1 and L2 are different, the zero has a com-
plex value. Figure 2 shows how the reflection phase and
amplitude are changing with a gradual change of diame-

ters ratio from L1/L2 = 1 to L1/L2 = 0.8 in a case of top
illumination (L2 = 500nm). The amplitude map shows
a gradual increase of reflection with increasing asymme-
try. We add to it the reflection amplitude calculated in
a complex frequency plane for L1/L2 = 1 (reflection zero
is indeed on the real axis because of coupling symmetry)
and L1/L2 = 0.84 (reflection zero is almost a complex-
conjugate of pole which is a condition for maximum re-
flection amplitude). For all the range of chosen values ex-
cept L1/L2 = 1 the designed metasurface demonstrates a
sharp resonant 2π jump. The phase maps also calculated
in the complex plane for the same parameters show that
for L1/L2 = 1 the branch cut connecting pole and zero
only touches the real axis resulting in a π phase jump,
while for L1/L2 = 0.84 the branch cut crosses the real
axis which results in a 2π phase gradient.
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FIG. 2. a. Reflection amplitude as a function of real frequency and the ratio of the top and bottom diameters of truncated
silicon cones composing a metasurface. on the right, reflection amplitude in a complex frequency plane for 2 asymmetry values
L1/L2 = 1 and L1/L2 = 0.84. b. Reflection phase as a function of real frequency and the diameters ratio L1/L2. On the right,
reflection phase in a complex frequency plane for 2 asymmetry values L1/L2 = 1 and L1/L2 = 0.84.


