
Are the Methods in Your Data Access
Objects (DAOs) in the Right Place?

A Preliminary Study

Maurício F. Aniche, Gustavo A. Oliva, Marco A. Gerosa
University of São Paulo

Department of Computer Science
E-mails: {aniche, goliva, gerosa}@ime.usp.br

Abstract—Isolating code that deals with system infrastructure
from code that deals with domain rules is a good practice when
developing applications. Code that deals with the database, for
example, is often isolated in classes following a Data Access
Object (DAO) pattern. Developers often create a DAO for each
domain entity in the system. However, as some pieces of code
deal with more than one entity/table, developers need to decide in
which DAO they will place the code, and sometimes choose a less
intuitive location. In this paper, we present a heuristic to identify
methods that may have been written in an ambiguous place. To
validate the idea, we tested it on three industrial projects from
a Brazilian company. The heuristic selected, on average, 13% to
18% of the methods in DAOs. After evaluating such methods,
we concluded that the heuristic was correct in 50% to 75%
of cases. Therefore, we believe that the heuristic can indicate
possible technical debt, where the developers may inspect and
possibly refactor.

I. INTRODUCTION

Object-oriented software development taught us about the
separation of concerns [4] [1] [8] [3]. Today, it is common
sense among developers to separate code that deals with system
infrastructure from code that deals with business rules and
domain objects. Database access, for example, may require
large and complex code and the use of external libraries, so
developers usually isolate it in Data Access Object (DAO)
classes. Moreover, as the number of database queries in a
system can be huge, the data access code is split into many
different DAO classes, usually one per table/entity. For exam-
ple, the InvoiceDAO is responsible for persisting and retrieving
data from invoices, while the ProductDAO is responsible for
dealing with products.

However, a query can be complex and make use of many
different tables. When that happens, a question that often
comes to developers’ minds is in which DAO should I put
this query? In practice, what happens is that developers some-
times write the method in the wrong -— or in an ambiguous
—- DAO.1 A possible explanation for this would be that, at the
time the developer was writing the query, s/he put the method
on the DAO related to the first table in the query.

1"Wrong" may be not be the best word to describe this action. It is hard
to affirm that a method is in the wrong place, as this depends on the context.
By wrong, we mean a method that could possibly be in another DAO, in
which it would be easier to find– we use the word ambiguous to express this
throughout the paper.

When the location of a method is ambiguous, developers
spend much time searching for it. If they do not find it,
they will duplicate code and write the same query in a new
method. Writing the method in the right DAO avoids code
duplication and improves separation of concerns, leading to
higher maintainability. Zazworka et al. [9] studied technical
debts and their relationship to software quality, and found that
a modularity violation such this one, in which the method is
located in the wrong module, may be highly related to bugs
and a higher change likelihood.

A technical debt (TD) [2] [6] reflects inadequate decisions
that were made in the system. Seaman’s research group [5] cat-
egorizes three different ways to tackle the TD: identification,
measurement, and monitoring. In this paper, we focus on TD
identification by aiming to find DAO methods in the wrong
place. In order to do that, we conceived a simple heuristic,
based on the method’s return type and input parameters. We
evaluated it in three web projects that belong to a Brazilian
company. We found that the heuristic selected from 13% to
18% of all DAO methods, and it was correct 50% to 75% of
the time in all projects. Thus, it indeed points to places that
need further inspection.

This paper is structured as follows. In Section II, we briefly
explain DAO classes and why developers sometimes write
database access methods in the wrong class. In Section III, we
present our experiment and describe, in details, our approach
to identifying the wrongly-placed methods. In Section IV, we
show our findings based on the three evaluated projects, and
we discuss their consequences. In Section V, we present threats
to the validity of this study. Finally, in Section VI, we present
our final thoughts, as well as plans for future work.

II. DATA ACCESS OBJECTS (DAOS)

A Data Access Object (DAO) is an abstraction to a data
source, such as a database [7]. The goal of this pattern is to
separate the business logic from the database persistence, so
that both parts can evolve and be changed independently [4].

This pattern is very common in many applications. As
each entity may be queried in many different ways, developers
tend to write one DAO class per table/entity, to facilitate
maintenance. This means that a system with three entities, such
as Invoice, Product, and Order, will have three tables to store
each of them, and three different DAOs (usually named after
the entity plus the suffix "DAO").



This naming convention also facilitates maintenance. If a
database query that deals with the Product table needs to be
changed, then it needs to be done in the ProductDAO class. If,
for any reason, the query is not there, the developer will have
to search for it in the other DAOs, or write a new one.

However, deciding in which DAO a specific query should
be is not an easy task. A single query may touch different
tables (using the JOIN instruction, for example). In Listing 1,
we show an example of that. This query joins three tables:
Projects, Commits, and Artifacts.

Listing 1: An example of a SQL query that deals with three
tables
SELECT

p . name as projec tName ,
c . i d as commitId ,
a . name as a r t i f a c t N a m e ,
a . p a t h as a r t i f a c t P a t h

FROM
P r o j e c t s p

JOIN
Commits c on c . p r o j e c t _ i d = p . i d

JOIN
A r t i f a c t s a on a . commit_id = c . i d

WHERE
p . r e p o s i t o r y = ’ Apache ’ ;

If one analyzes the query, s/he may notice that it probably
belongs to ArtifactDAO. The SQL returns many artifacts and
their relative commit and project. This method probably returns
a list of Artifact. On the other hand, there are two other tables
in the query. It would not be an exception to find this query
in ProjectDAO, or even in CommitDAO. This is an example of
what we call an ambiguous method.

This technical debt may cost the team. Code duplication,
for example, is a possible consequence. When developers open
a DAO class and do not find the method they want, they may
write a new one, resulting in two different methods that do the
same thing in the system.

Based on that, it is clear that developers must find a
way to detect methods and queries that were written in
ambiguous DAOs. However, we do not aim to find a perfect
algorithm to find them: as with any metric, we are looking for
good indicators. In practice, if a project contains 1000 methods
in its DAOs, it is impossible for a human to check each one
of them manually; but, if the algorithm filters 50 methods, a
human can verify those at an acceptable cost. With that being
said, our goal is to write an algorithm that selects a reasonably
small set of classes that need to be manually checked.

III. EXPERIMENT DESIGN

Based on the discussion and motivations given above, this
paper aims to answer the following research question:

RQ. How can one automatically identify methods that may
have been placed in the wrong or in ambiguous DAOs?

To find a solution to that question, we conceived a heuristic
and implemented it in a tool that outputs the methods that

seem to be in the wrong place. As a case study, we con-
veniently selected three projects from a Brazilian software
development company. Maurício, one of the authors of this
paper, works for this company. All three are web projects,
developed in Java. They all use the same technology and
frameworks, namely VRaptor (MVC Framework), Hibernate
(Object-Relational Mapping Framework), JSP, and JSTL (view
layer). Each deals with a specific domain: Caelumweb is an
ERP, Gnarus is an e-learning system, and Codesheriff is a
code metric visualization application. Although the projects
were developed by different teams, teams typically share ideas
and experiences.

After running the tool on the three projects, we invited a
developer from each project to manually inspect all methods
that were output. The developer from Caelumweb had worked
on the project for the previous two years; the developers from
Gnarus and Codesheriff had worked on the projects from their
beginnings (three and one years, respectively).

The developers were instructed to state whether each listed
method was in the right place. There was no specific technique
– they all had the list of all methods selected by the algorithm
and the full source code of the project. They then navigated
through each selected method (and sometimes through other
related classes) and made decisions. As discussed before, it
is hard to precisely define whether a method is in the right
place, thus the decisions were purely based on the feelings
and knowledge of the project of the developers.

If a developer thought the method was in a wrong or
ambiguous place, we considered that the heuristic had correctly
selected that method. If s/he stated otherwise, we considered
that the heuristic was wrong. If, for some reason, the developer
was in doubt about the method, we considered the heuristic as
correct for that method as well (if even the human did not
know if the method was in the right place, such a method
definitely merits human analysis). In Table I, we summarize
the aforementioned decision algorithm.

TABLE I: Decision table

Suggested method Developer’s opinion Result
X() Right place Heuristic Failed
Y() Wrong place Heuristic OK
Z() Not sure Heuristic OK

In Table II, we describe the size of each project. The
number of classes and number of commits represent the size
and age of the project. The total number of DAOs and methods
reflects the number of queries and methods that needed to be
analyzed. This number varied from 50 to 900 Java classes,
and from 10 to 80 DAO classes. Caelumweb, for example,
contained almost 600 methods in DAOs. If a developer were
to go method-by-method to check if the methods were in the
right place, s/he would expend a lot of effort.

TABLE II: Analyzed Projects

Project # of Classes # of Commits # of DAOs # of Methods
Gnarus 924 10451 39 233
Caelumweb 1321 12077 81 590
Codesheriff 56 339 10 70



In the following subsections, we detail the designed heuris-
tic to identify potentially misplaced methods. All the gathered
data (including the SQL queries used to manipulate it), as well
as the specific build of the tool we employed, are available on
a website2.

A. The Heuristic

The heuristic is based on the assumption that all queries
that deal with the X table/entity should be on XDao. By dealing
with the entity, we mean that the method should return the
entity or receive it as an input parameter. Also, in practice,
we noticed that many methods return a primitive type. That
happens when the query returns a single item, such as an
integer or a double (by executing a COUNT or a SUM in
the database).

To be considered "correct," a method should follow at least
one of the following rules. To simplify the rule, we will assume
that X is the type that the XDao is associated with.

1) The return type of the method is X.
2) The return type of the method is a primitive.
3) The return type of the method is an enum.
4) The return type of the method is a sub-type of X.
5) The return type is a generic type with more than one

type.
6) The return type is a generic type of X, such as List

<X >.
7) The return type name contains a substring of X.
8) One parameter of the method is an instance of X.
9) One parameter of the method is a generic type of X,

such as List <X >.
10) All parameters of the method are primitives.

If a method, for any reason, does not match any criteria,
then it is determined that the method may be in the wrong
place, and needs to be validated by a human.

B. Implementation

The heuristic is simple in terms of implementation. Essen-
tially, it deals with methods’ return types and parameters. We
developed a Java parser that navigates through all the classes
in a system and returns all methods that do not match the
criteria.

The parser was developed in Java and uses of ANTLR to
parse the language. Currently, it is a simple command-line tool
that prints a list of methods and their respective classes. The
source code is freely available3.

IV. RESULTS AND DISCUSSION

In Table III, we show the results of the heuristic for the
three projects. The heuristic pointed that 13% to 18% of the
methods were potentially misplaced.

As noted before, to validate the effectiveness of our ap-
proach, we invited one developer per project to manually

2http://www.github.com/mauricioaniche/icsm2014-daos. Last access on
June 27, 2014.

3http://www.github.com/mauricioaniche/calculadora-de-daos. Last accessed
on June 26, 2014.

inspect the whole output given by our tool. In Table IV, we
show the number of methods on which the developers agreed
with the heuristic.

TABLE IV: Developers agreement on the heuristic

Project # of Inspected Methods # of Agreements % of Agreement
Caelumweb 79 59 74.68%
Codesheriff 13 8 61.53%
Gnarus 33 16 48.48%

One may note that the agreement ranges from 48%
(CodeSheriff) to 75% (Caelumweb). This means that, in the
worst case, 1 out of 2 selected methods were considered to
be in an ambiguous place. When analyzing the cases in which
the heuristic selected a method considered to be in the right
place, we found out a few things:

• There are many DAOs whose name does not match
the entity’s name. Sometimes the DAO’s name is
a shortcut to the name of the entity. The DAO
that deals with the entity ParcelaDeBoleto (which,
in portuguese, means "bankslip parcel") was named
ParcelaDao.

• There are two DAOs assigned to the same entity,
each one with its own perspective. As an exam-
ple, the Course entity in Gnarus contains both the
CourseDAO, which contains all queries needed by
the front-end application, and the AdminCourseDAO,
which contains all queries needed by the administra-
tion part of the application.

• Queries that were grouped by features. In Gnarus, we
found a DAO that represented all queries needed by
a given feature. This feature, in particular, deals with
many entities.

• Data Transfer Objects (DTOs) are used frequently.
Report queries are good examples of this. The heuris-
tic tries to guess if a class is a DTO, by matching
the name of the entity with the name of the DTO.
However, this has only worked for a few cases.

In all such cases, although the developer stated that those
methods were in the right place, they may still need attention.
New developers, or even developers who are not familiar with
specific parts of the system, may struggle to interpret these
subtle design decisions behind some DAOs.

We conclude that:

It seems to be possible to automatically identify meth-
ods that may be located in an ambiguous DAO. Our
approach, in particular, filters around 13% to 18% of the
all methods in DAOs, and it is correct 50% to 75% of the
time. As the number of selected methods is small and the
assertion rate is high, it may be worthwhile to allocate
a developer to manually inspect the methods and move
them to a better location, if necessary.

V. THREATS TO VALIDITY

As with any initial research, this study contains a few
threats to the validity of the results. However, we believe that



TABLE III: The numbers of the heuristic execution on the projects

Project # of Methods # of Right Methods # of Wrong Methods % of Wrong Methods
Caelumweb 590 511 79 13.38%
Codesheriff 70 57 13 18.57%
Gnarus 233 200 33 14.16%

these can all be treated in future versions of this work.

• We evaluated only three projects, and they were all
from the same company. As companies usually have
a standard method of developing applications, the
heuristic may not be valid for projects developed by
other companies. More projects need to be analyzed.

• We relied on the point of view of a single developer
per project. Although these developers were knowl-
edgeable about the projects, a discussion with the
whole teams or with the developers that actually
implemented the methods could provide greater in-
sight and a more accurate view of the reasons behind
the designs. However, as the developers are potential
users of those pieces of code, if they considered the
methods misplaced, the heuristics actually identified
points needing attention.

• Although we validated the methods that were selected
by the heuristic (false positives), we did not evaluate
those that were in the wrong place but were not
identified by the heuristic (false negatives). A more
complete manual analysis should be done.

VI. CONCLUSION AND FUTURE WORK

Data Access Objects (DAOs) are abstractions to a data
source. This is a well-known pattern used in many different
applications. However, as argued in this study, developers
sometimes misplace their methods. This makes maintenance
difficult, as the team cannot easily locate the queries. In the
worst cases, they even write duplicate methods.

In this paper, we propose an approach to quickly and
automatically identify methods that may be in an ambiguous
location. Calculations showed that our heuristic selected from
13% to 18% of all methods in DAOs, and was correct on
50% to 75% of these selections. It seems feasible to allocate a
developer to manually investigate each of the filtered methods,
and to move them to a better location, if necessary.

As a next step, we want to ask an outside expert to assess
the methods and identify which are incorrect. That would allow
us to use standard precision/recall metrics. Understanding the
costs of this technical debt is an important step, too; if a
method is in the wrong place, but the refactoring is more
expensive than the cost of the developer searching for the
method, keeping the method in the wrong place may be the
best option. In addition, we need to further evaluate this model
by analyzing other projects belonging to different companies,
as well as open-source projects.

ACKNOWLEDGMENTS

We would like to thank Caelum Ensino e Inovação for
allowing us to run the study in its environment, as well as
supporting the development of the tool. We would also like to
thank NAWEB, NAPSoL-PRP-USP, CNPq, and FAPESP for
their support. Gustavo received a grant from CNPq under the
program Science Without Borders (250071/2013-4) during the
development of this work.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

[2] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical debt: from metaphor
to theory and practice. IEEE Software, 29(6):18–21, 2012.

[3] C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development. Prentice Hall,
third edition, 2004.

[4] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15:1053–1058, December 1972.

[5] C. Seaman. Carolyn seaman’s research group on technical debt, 10 2012.
[6] C. Seaman and Y. Guo. Measuring and monitoring technical debt.

Advances in Computers, 82:25–46, 2011.
[7] I. Sun Microsystems. Core j2ee patterns - data access object, 02 2007.
[8] R. Wirfs-Brock and A. McKean. Object Design: Roles, Responsibilities,

and Collaborations. Pearson Education, 2002.
[9] N. Zazworka, C. Izurieta, S. Wong, Y. Cai, C. Seaman, F. Shull, et al.

Comparing four approaches for technical debt identification. Software
Quality Journal, pages 1–24, 2013.


