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An Improved Demodulation for LoRa
Through a Threshold-Based Detection of Error

Vincent Savaux, Member, IEEE

Abstract—This paper deals with an improved demodulation
technique for LoRa signal. The principle consists in detecting the
possible errors of demodulation, by comparing the highest peak
of the periodogram of the dechirped received signal weighted by
a coefficient β smaller than one with the other peaks of the
periodogram. If an error is detected, a second demodulation
stage is processed at an oversampling rate (OSR) higher than
the first demodulation stage. Otherwise, the result of the first
demodulation is kept. A thorough performance analysis of the
suggested technique, based on order statistics, is carried out,
in terms of detection rate, error rate, and complexity. It is
shown that β can be tuned to adjusts the trade-off between
performance and complexity. Moreover, simulations results shows
that it is possible, for relatively low signal-to-noise (SNR) values,
to reach the performance of the demodulation at highest OSR
while keeping the complexity of the demodulation at lowest OSR.

Index Terms—LoRa, Demodulation, Detection, Order Statistics

I. INTRODUCTION

In the recent years, the Internet of things (IoT), and particularly
the low power wide area (LPWA) technologies, have enabled the
connectivity of a constantly growing number of devices, offering
digital transformation across industry verticals [1]. The LPWA
solutions are able to achieve long range communications at low
data rates, using low cost devices with long battery life. Among
the LPWA technologies [2], [3], LoRa is one of the most deployed
and studied, mainly because it allows the deployment of networks
in non-licensed bands [4]. The LoRa physical layer (PHY) has
been developed by Semtech, based on the signal modulation
called chirp spread spectrum (CSS) originally described in [5].

Lots of aspects of the performance of the LoRa PHY has been
extensively studied in the scientific literature. The overall proper-
ties of CSS modulation have been analyzed in [6], [7]. Further-
more, signal processing algorithms have been suggested for time
and frequency synchronization [8]–[13], multiple demodulations
in presence of collision of LoRa signals [14], or multipath channel
estimation [15]. Otherwise, numerous papers deal with perfor-
mance analysis of the LoRa CSS waveform. In [16]–[20] the
symbol and bit error rates (SER and BER) of LoRa signal have
been analytically derived or approximated considering different
channel models. These results have been extended by the authors
of [21], [22] to consider the overall frame error rate (FER) instead
of the BER. Alternatively, the impact of the interference from
other signals on the BER performance is investigated in [23].

Interestingly, some papers deal with the improvement of the
LoRa demodulation through software define radio implementa-
tions [24] or cloud radio access network approach [25]. However,
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to the best of the author’s knowledge, there is no dedicated paper
dealing with signal processing algorithms for the improvement
of the LoRa demodulation specifically (in term of error rate).
The main reason is that the usual LoRa demodulation is already
designed to be optimal in the maximum likelihood (ML) sense.
To improve the performance of the LoRa demodulation, a basic
method then consists in considering an oversampled received
signal to increase the signal-to-noise ratio (SNR). However, this
signal processing technique is straightforward (i.e. without scien-
tific contribution), and increases the complexity of the receiver.

In this paper, a new LoRa demodulation improving the error
rate performance is suggested. The principle consists in three
steps: i) the usual LoRa demodulation is performed, ii) a test al-
lowing to detect possible errors of demodulation is then processed,
iii) if an error is detected, a second demodulation at higher over-
sampling rate (OSR) than the first one is carried out, otherwise
the result of the first one is kept. The decision rule for the test
considers that an error of demodulation occurs if at least one peak
of the periodogram of the demodulated LoRa symbol is higher
than a threshold defined as the highest peak of the periodogram
weighted by a coefficient β∈ [0,1]. It results that, according to
the chosen β value, the suggested demodulation can approach the
performance of the demodulation at highest OSR (third step) with
a reduced complexity, even down to that of the usual LoRa de-
modulation (first step). Thus, the coefficient β allows the receiver
to adjust the trade-off between performance and complexity.

Beyond the simple idea of the proposed threshold-based
demodulation, a thorough theoretical performance analysis
of the method is developed based on order statistics, leading
to closed-form expressions of the detection rate, the overall
error rate, and the complexity. Moreover, the developments
are validated through simulations results, which also show that
the suggested technique is able to outperform the usual LoRa
demodulation by several decibels for a similar asymptotical
complexity. In addition, the impact of imperfect synchronization
is discussed, it is also mentioned that the method could be
easily adapted to other technologies, and otherwise the analysis
could have an application in applied mathematics since it could
lead to closed-form solutions of specific functions.

The rest of the paper is organized as follows: Section II intro-
duces the basics on LoRa demodulation and the corresponding
performance. The suggested threshold-based demodulation is de-
scribed in Section III, and the performance analysis is developed
in Section IV. Section V is dedicated to the simulations results,
and the method is discussed in Section VI, which also introduces
other applications. Finally, Section VII concludes this paper.

Notations: The normal font x is used for scalars, and the
lower-case and the upper-case x and X indicates samples in time
and frequency domains, respectively. The probability of an event
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E is denoted by P(E), and E{.} is the mathematical expectation.
We define the order statistics as follows (we use the usual
notations as in [26]): let X0,X1,..,XN−1 be N random variables,
then we denote by X(0)≤X(1)≤ ..≤X(N−1) the corresponding
order statistics, i.e. X(0) is the smallest variable of the Xk,
k= 0,1,N−1, X(1) is the smallest variable larger than X(0),
and so on such that X(N−1) is the largest variable of the Xk.

II. LORA SYSTEM MODEL AND PERFORMANCE

This section presents the basics on LoRa modulation
and demodulation, including the complexity analysis of the
demodulation process. Furthermore, the analytical SER and
BER expressions are provided as well.

A. LoRa Modulation and Demodulation

The modulation of the data symbols in LoRa is based on
CSS modulation. The process can be summarized as follows:
the binary data stream to be transmitted is split into packets of
size SF , where SF is called the spreading factor (SF). Then,
the binary packet is mapped onto a symbol s(m) of duration
Ts, where m∈{0,1,..,2SF−1} is the symbol index. Thus, the
SF is a key parameter as it allows to adapt the LoRa symbol
length and therefore its robustness against distortions, to the
cost of a data rate loss, through the relation BwTs=N=2SF

where Bw is the signal bandwidth (typically 125 kHz, 250 kHz,
or 500 kHz). We define r the OSR of the signal (r=1 means
Nyquist rate), then for any n= 0,1,..,N ′−1 where N ′= rN ,
and for any SF value, the modulated LoRa symbol s(m) can
be expressed by generalizing [7]-(13) as

s(m)[n]=exp
(

2jπ
n

r

( n

2N ′
− 1

2
+
m

N
−u(

n

r
−N+m)

))
, (1)

where u(.) indicates the Heaviside step function.
We assume that the LoRa signal is correctly synchronized at

the receiver side [9]–[12], and then the residual synchronization
errors can be neglected. Moreover, the LoRa signal bandwidth
is narrow enough to consider a one-tap block fading channel
h. Therefore, for any n=0,1,..N ′−1, the received signal r[n]
is given by

r[n]=hs(m)[n]+w[n], (2)

where w[n], n=0,1,..,N ′−1, are the independent and identically
distributed (iid) samples of the complex additive white Gaussian
noise (AWGN) such that w[n]∼CN (0,σ2). It must be noticed
that h can be a random variable, according to the channel model.
Thus in the following, we consider both AWGN (where h=1)
and Rayleigh channel models. In any case, we generally define
the signal-to-noise ratio (SNR) as

SNR=
E{|hs(m)[n]|2}
E{|w[n]|2}

=
E{|h|2}
σ2

. (3)

1) LoRa Demodulation for OSR r = 1: The aim of the
demodulation process in LoRa is to estimate the symbol index
m from the observation r[n]. To this end, a maximum likelihood
(ML) estimator is optimal in condition of synchronized reception.
The basic principle of the LoRa demodulation at OSR r= 1,
detailed in [10], [11], [16] for instance, consists in three steps.
First, the quadratic component of phase of the LoRa symbol
in (1) is removed through the "dechirp" operation:

y[n]=r[n]exp
(
−2jπn(

n

2N
− 1

2
)
)
. (4)

Then, a discrete Fourier transform (DFT) is applied:

Y [k]=
1√
N

N−1∑
n=0

y[n]e
−2jπnk

N , (5)

where k=0,1,..,N−1. It is noteworthy that Y [k]=
√
Nδ(k−

m)+W [k] when k=m, and Y [k]=W [k] when k 6=m, where
δ(k) is the Dirac impulse and W [k] are the noise samples in
frequency domain. Moreover, the noise samples W [k] are all iid
and W [k]∼CN (0,σ2). Finally, the ML estimator of m yields

m̂= arg max
k∈[[0,N ]]

|Y [k]|2, (6)

where |Y [k]|2 is called the periodogram of y[n]. By limiting the
complexity analysis to the number of complex multiplications,
we deduce that (4), (5), and (6) require N , N log(N), and N
operations, respectively.

2) LoRa Demodulation for OSR r > 1: The LoRa
demodulation process for OSR r>1 is similar to (4)-(6) with
some adaptations. The "dechirp" operation becomes:

y[n]=r[n]exp
(
−2jπ

n

r
(
n

2N ′
− 1

2
)
)
, (7)

where n = 0,1, ..,N ′. Then, a DFT like (5) is applied, with
size N ′ instead of N . However, unlike previously where the
periodogram |Y [k]|2 using r = 1 yields one unique peak (in
absence of noise) at the position k=m and with the amplitude
N , the periodogram |Y [k]|2 using r>1 highlights two peaks at
the positions k=m and k=m−N+N ′, and with amplitudes
r(N−m)√

N ′
and rm√

N ′
, respectively. This property is proved in

Appendix A, and shown in Fig. 1, where r=2, N=128, and
m=71.

It should be noted from the previous results that the two
peaks of interest are located in the index ranges k∈ [[0,N−1]]
and k∈ [[N ′−N,N ′−1]], respectively. Therefore, the optimal
way (in the ML sense) to combine the energy of both peaks
consists in the following sum, for k=0,1,..,N−1:

Ỹ [k]=Y [k]+Y [(r−1)N+k]. (8)

It must be noticed that Ỹ [k] =
√
N ′δ(k−m) + W̃ [k] when

k=m, and Ỹ [k] = W̃ [k] when k 6=m, where W̃ [k] =W [k]+
W [(r−1)N+k] are the combined noise samples in frequency
domain, which are all iid and W̃ [k]∼CN (0,2σ2). Thus, it is
worth noting that the ratio between the square amplitude of the
Dirac pulse and the noise power depends on the OSR value r.

Finally, the estimation of m is performed similarly to (6) where
Y [k] is substituted by Ỹ [k], with k∈ [[0,N ]]. Furthermore, (7),
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Fig. 1. Amplitude of Y [k] and Ỹ [k] versus frequency samples k, using r=2,
N=128, and m=71.

(5) (with r>1), and (6) (with r>1) requires N ′, N ′log(N ′),
and N operations, respectively. However, the complexity of the
DFT can be substantially reduced by noticing that the N ′−2N
samples in the range k∈ [[N,N ′−N−1]] are unnecessary in the
demodulation process for r>1, and their computation can then
be avoided. As a consequence, the complexity of the DFT can be
reduced to 2N log(N ′) and even 2N log(2N) in practice [27],
since the DFT is deterministic. In the following, we provide
the analytical expressions of the achievable SER and BER for
any OSR, since it will be used in the further developments.

B. SER and BER Performance

The symbol error rate of LoRa modulation, given the channel
gain h, is defined as Ps|h=P(m̂ 6=m). It is convenient to develop
P(m̂ 6= m) by using the order statistics. Thus, let us define
Xk= |Y [k]|2, then Xk obeys a χ2 distribution if k 6=m and a
non-central χ2 distribution if k=m. Moreover, we denote by

X(0)≤ ..≤X(k)≤ ..≤X(N−2)

the N−1 ordered random variables obeying a χ2 distribution,
i.e. any X(k) 6=Xm. Then it results that we can rewrite Ps|h as

Ps|h=P(m̂ 6=m)

=P(X(N−2)≥Xm), (9)

highlighting that a symbol is erroneously estimated when at least
the highest peak of the periodogram corresponding to noise only
is larger that the peak containing the Dirac pulse of amplitude N .
The SER expression of the LoRa signal sampled at Nyquist rate,
and given the channel gain h, is well known from [17]–[19],
and hereby reported:

Ps|h=−
N−1∑
k=1

(−1)k
(
N−1
k

)
k+1

exp
(
− kN |h|2

(k+1)σ2

)
. (10)

We here provide a more general SER expression for any OSR
r>1, and given the suggested demodulation for r>1 as follows:
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Fig. 2. Illustration of the principle of the detector of errors of demodulation,
where β=0.8, m̂=52, and Ωk,β={3,39}.

Ps|h=−
N−1∑
k=1

(−1)k
(
N−1
k

)
k+1

exp
(
− kN ′|h|2

2(k+1)σ2

)
, (11)

where N has been substituted by N ′ and σ2 by 2σ2 in the
exponential. This highlights that, for any oversampling rate
r>1, the amplitude of the Dirac pulse in Y [m] is

√
N ′, while

the symbol index m is estimated within the interval [[0,N ]] in
(6). Moreover, the factor 2σ2 comes from the sum of noise
components W̃ [k]=W [k]+W [(r−1)N+k] in (8). Different
theoretical SER expressions have been developed in [19] from
(11) with r=1 according to the channel model, such as AWGN,
Rayleigh, Rice, or Nakagami, and can be straightforwardly
extended to the more general expression (11) where r>1. The
BER, in turn, is simply expressed as Pe= 2SF−1

2SF−1Ps.
We deduce from (11) that the larger the value N ′ (i.e. the

OSR r) the lower the SER and BER. A simple method to
improve the performance of the LoRa demodulation then
consists in increasing the OSR at the receiver side. However, a
performance improvement is only effective for r>2, as r=2 in
(11) leads to the same SER as in (10) using r=1. Furthermore,
the performance improvement by means of an increase of the
OSR is obtained to the cost of a non-linear increase of the
complexity, which is the main limit of this solution. We hereby
suggest an alternative low-complexity demodulation technique
based on the detection of possible symbol errors at OSR r=1.

III. THRESHOLD-BASED DEMODULATION

In this section, we describe the suggested demodulation
based on the detection of symbol errors. Moreover, we define
notations that will be used in the performance analysis.

A. Error Detection

The basic idea of the proposed improved demodulation is to
perform the usual LoRa symbol demodulation (4)-(6) at OSR r1
(typically r1 =1), and to check if it is likely that the symbol m
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has been erroneously estimated. If an error is detected, then a sec-
ond demodulation at OSR r2>r1 is performed, otherwise the re-
ceiver keeps the first estimated m̂ value obtained at OSR r1. The
following decision rule for the error detection is arbitrarily con-
sidered for its simplicity: a coefficient β∈ [0,1] is set such that a
possible symbol error is decided if it exists k∈ [[0,N ]] such that:

|Y [k]|2≥β|Y [m̂]|2, k 6=m̂. (12)

where |Y [m̂]|2 is by definition in (6) the largest peak of the
periodogram. This event is illustrated in Fig. 2, where β=0.8,
and two peaks exceeds β|Y [m̂]|2. Accordingly, we define Ωk,β
the set of indexes k such that (12) is true. Thus, in Fig. 2, we
can observe that Ωk,β ={3,39}. The suggested demodulation
can be summarized by three main steps:

1) Estimate m̂ through the LoRa symbol demodulation
(4)-(6) at OSR r1.

2) Perform the test (12). If Ωk,β=∅, then the demodulation
is finished, otherwise (Ωk,β 6=∅) go to step 3.

3) Estimate again m̂ through the LoRa symbol demodulation
in Section II-A2 at OSR r2>r1.

Intuitively, we understand that the use of the demodulation at
OSR r2>r1 shall improve the performance, whereas the test in
step 2 shall limit the complexity, in particular since the increase
of complexity is negligible ((12) only involves one multiplication
and N−1 comparisons). In addition, it is unlikely for the test
(12) to be true when σ2 is weak compared with N ′, i.e. in
moderately high SNR range. These remarks will be theoretically
analyzed in Section IV, and numerically illustrated in Section
V. Prior to this, we hereby introduce some definitions and
notations in order to ease and clarify the further developments.

B. Definitions and Notations
Definition 1. We define E as the following event: ∃k,
k = 0,1,..,N − 1, such that k 6= m̂, and β ∈ [0,1], such that
|Y [k]|2 ≥ β|Y [m̂]|2. Thus, E corresponds to the event "an
error is detected".

Definition 2. From the definition of E, we also define the
sub-events E1 and E0 as follows:
• E1 is similar to the event E (an error is detected), condi-

tionally to m̂=m, i.e. the symbol m is properly estimated;
• E0 is similar to the event E (an error is detected), condition-

ally to m̂ 6=m, i.e. the symbol m is erroneously estimated.

Thus, by referring to the usual terms used in detection theory,
E1 can be seen as the "false alarm" event, whereas E0 is rather
the "good detection" event. In turn, the probability of E can be
defined as the overall detection rate. From Definitions 1 and 2, we
deduce that, given h, the mathematical relationship between the
probability of the event E and that of both events E1 and E0 is

PE|h=P(E∩m̂=m)+P(E∩m̂ 6=m)

=PE1|h(1−Ps|h)+PE0|hPs|h. (13)

It is worth to be claimed that, unlike usual detection theory
where it is sought to maximize PE1|h while minimizing PE0|h,
we here consider the test in (12) for its simplicity, its inherent
performance being evaluated in Sections IV and V.

IV. PERFORMANCE ANALYSIS

In this section, we derive the detection rate of the demodulation
error detector, and then we provide the performance analysis
of the suggested demodulation method in terms of SER/BER
and complexity. Both AWGN and Rayleigh channel models
are considered. To simplify the developments, we suppose that
the first demodulation of the suggested method is performed
at r1 =1, but the results remain valid for r1>1 by substituting
N by N ′ and σ2 by 2σ2 within the sums.

A. Detection Rate

The detection rate PE|h requires the assessment of PE1|h and
PE0|h, such as given in Propositions 1 and 2. To this end, and
for a clarity matter, we keep the same notations as previously
defined in Section II to obtain (11), i.e. Xk= |Y [k]|2, and X(k)

the corresponding ordered variables.

Proposition 1. For any N = 2SF , β ∈ [0,1], and given any
channel channel coefficient h ∈C, the probability PE1|h (i.e.
the probability of the event E1) is given by:

PE1|h=P(X(N−2)≥βXm̂|m̂=m)

=P(X(N−2)≥βXm|Xm≥X(N−2)), (14)

where X(N−2) satisfies X(N−2) 6=Xm and is therefore equal to
one of the |Y [k]|2 obeying a χ2 distribution. The development
of (14) leads to the closed-form expression (15).

Proof. See Appendix B for the proof of PE1|h such as
expressed in (15).

Proposition 2. For any N = 2SF , β ∈ [0,1], and given any
channel channel coefficient h∈C, the probabilities PE0|h (i.e.
the probability of the event E0) is given by:

PE0|h=P(X(N−2)≥βXm̂|m̂ 6=m)

=P(X(N−2)≥βXm̂||Xm̂≥Xm), (16)

where X(N−2) is either a variable obeying a χ2 distribution
(if X(N−2) 6= |Y [m]|2), or a variable obeying a non-central χ2

distribution (if X(N−2) = |Y [m]|2). The development of (16)
leads to the closed-form expression (17).

Proof. See Appendix C for the proofs of PE0|h such as
expressed in (17).

It can be directly verified from (14) and (15) that PE1|h(β=
0)=1 and PE1|h(β=1)=0, as well as from (16) and (17) we
have PE0|h(β=0)=1 (this result is a bit more tricky to prove,
but not shown in this paper) and PE0|h(β=1)=0. In turn, we de-
duce from (13) that PE|h(β=0)=1 and PE|h(β=1)=0. This
is consistent with the test in (12) since all peaks |Y [k]|2, k 6=m̂
of the periodogram respect the inequality |Y [k]|2≥ 0 (β= 0)
and no peak respects the inequality |Y [k]|2≥|Y [m̂]|2 (β=1).
Moreover, from (13), (15), and (17), we deduce that the overall de-
tection rate in AWGN channel, denoted by PAWGN

E , is given by

PAWGN
E =PE|h=1, (18)



5

PE1|h=
1

1−Ps|h

N−1∑
k=0

(−1)k
(
N−1

k

)(exp
(
− kN |h|2

(k+1)σ2

)
k+1

−
exp
(
− βkN |h|2

(βk+1)σ2

)
βk+1

)
, (15)

PE0|h=
(N−1)(N−2)

Ps|h

[
1

N−2

(
1

2
exp
(
−N |h|

2

2σ2

)
− β

1+β
exp
(
− N |h|2

(β+1)σ2

))

−
N−3∑
k=0

(−1)k
(
N−3

k

)( exp
(
− (k+2)N |h|2

(k+3)σ2

)
(k+1)(k+2)(k+3)

−
exp
(
− (k+1+ 1

β )N |h|
2

(k+2+ 1
β )σ

2

)
β(k+1)(k+1+ 1

β )(k+2+ 1
β )

)]
. (17)

where h=1 is substituted in (15) and (17). If a Rayleigh channel
is assumed, then |h|2 obeys a χ2 distribution with two degrees
of freedom, which is defined as

f|h|2(x)=
e
− x

σ2
h

σ2
h

, (19)

where σ2
h=E{|h|2} is the variance of the channel coefficient,

and x∈R+. The detection rate in Rayleigh channel, expressed
as PRayE , is obtained by

PRayE =

∫ +∞

0

PE|hf|h|2(x)dx

=

∫ +∞

0

PE1|h(1−Ps|h)f|h|2(x)dx

+

∫ +∞

0

PE0|hPs|hf|h|2(x)dx, (20)

where |h|2 =x is substituted in the expressions of PE1|h and
PE0|h in (15) and (17). Thus, the first integral in the right side
of (20) leads to

∫ +∞

0

PE1|h(1−Ps|h)f|h|2(x)dx

=

N−1∑
k=0

(−1)k
(
N−1

k

)

×

(
σ2

kNσ2
h+(k+1)σ2

− σ2

βkNσ2
h+(βk+1)σ2

)
, (21)

and the second one,
∫ +∞
0

PE0|hPs|hf|h|2(x)dx leads to (22).
The formulas (13)-(22) allow us to derive the analytical

closed-form expressions of the detection rate in AWGN and
Rayleigh channel models. Despite their apparent complexity,
it is worth noticing that, asymptotically, PAWGN

E and PRayE

tends to 0 when σ2 tends to 0 (or equivalently when the SNR
tends to +∞). It highlights that it is unlikely that a peak of the
periodogram becomes larger than β|Y [m]|2 for a sufficiently
high SNR. The SNR range of validity of this remark will be
illustrated through numerical results in Section V. Beforehand,
we use the previous developments of the detection rate to derive
the analytical expressions of the achievable SER/BER error rate
and the complexity of the suggested demodulation.

B. SER/BER Performance of the Suggested Demodulation
Method

For clarity purpose, we hereby highlight the OSR by the
superscript (r). Thus for instance, P (1)

s|h is the symbol error rate
for OSR1. Let us consider two different OSRs r1 and r2 such
as r1<r2 (typically r1 =1 and r2>2), then the overall SER
performance of the suggested demodulation method, given h,
denoted by Ps,ND|h, involving a first demodulation at OSR
r1, and the second one at OSR r2, can be expressed as

Ps,ND|h=P
(r1)
s|h (1−P (r1)

E0|h)+P
(r1)
E|h P

(r2)
s|h , (23)

where P (r1)
s|h (1−PE0|h) is the probability that an error occurs at

OSR r1 and is not detected, and PE|hP
(r2)
s|h is the the probability

that an error occurs at OSR r2 while an error has been previously
detected. The overall SER performance Ps,ND then depends
on the channel model, and can be expressed and calculated in
closed form in a similar way as in (18) and (20) when AWGN
and Rayleigh channel model is considered, respectively.

It is worth noticing from (23) and from what has been
previously proved that, for any σ2 value, we have the following
bounds for Ps,ND|h:

Ps,ND|h(β=1)≥Ps,ND|h≥Ps,ND|h(β=0)

⇔ P
(r1)
s|h ≥Ps,ND|h≥P

(r2)
s|h . (24)

This result confirms the intuitive fact that the demodulation
method can be configured as a function of β to reach any
expected performance within the set [P

(r2)
s|h ,P

(r1)
s|h ]. This will

further shown through numerical results in Section V.

C. Complexity Analysis

Once again, we hereby highlight the OSR by the superscript
(r), e.g. N (r) = r.2SF , and we suppose that r1 < r2.
The complexity analysis considers the number of complex
multiplications. It consists in the demodulation at OSR r1, and
the demodulation at OSR r2 when a possible error has been
detected. Thus, the overall complexity, denoted by CND, of
the suggested demodulation is given by

CND=N+N (r1)(1+log(N (r1)))

+P
(r1)
E (N+N (r2)(1+log(N (r2)))), (25)
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∫ +∞

0

PE0|hPs|hf|h|2(x)dx=
N−1

N−2

(
σ2

Nσ2
h+2σ2

− βσ2

Nσ2
h+(β+1)σ2

)

−
N−3∑
k=0

(−1)k
(
N−3

k

)(
(N−1)(N−2)σ2

(k+1)(k+2)((k+2)Nσ2
h+(k+3)σ2)

− (N−1)(N−2)σ2

β(k+1)(k+1+ 1
β )((k+1+ 1

β )Nσ2
h+(k+2+ 1

β )σ2)

)
. (22)

where P
(r1)
E = PAWGN

E or P (r1)
E = PRayE according to the

considered channel model. Interestingly, it has been stated
that PE tends to zero for high SNR values. We conclude that
the complexity of the suggested method tends to that of the
demodulation carried out at OSR r1, i.e. the complexity of the
suggested method decreases when the SNR increases. Further
simulations results will be provided in Section V to numerically
illustrate this property. More generally, from (24) and (25), we
deduce that the threshold value β should be chosen to optimize
the trade-off between performance and complexity.

V. SIMULATIONS RESULTS

The simulations results have been obtained using Matlab, and
the theoretical results in (18) and (20) have been computed with
Python 3 including numpy library for a sake of computation
precision. Up to 108 independent Monte-Carlo runs have been
performed to attain a satisfactory precision in the simulated
results. In all simulations a SF7 LoRa signal with Bw = 125
kHz has been considered, but it must be mentioned that similar
results are obtained for larger SF (curves are shifted to the left).
Moreover, we set the oversampling rates to r1 =1, r2 =4, and
the variance of the Rayleigh channel coefficient to σ2

h=1.
Fig. 3 shows the detection rate PE , PE1

, and PE0
versus SNR

(dB) in AWGN channel and β= 0.8, for both the theoretical
results and the simulated ones. It can be observed that the
numerical results and the theoretical results match, therefore
validating the developments (15) and (17) in Propositions 1 and
2. It can also be seen that PE0 increases and PE1 decreases
to zero when the SNR increases. This means that, when the
SNR increases, it is more likely to correctly detect the actual
error while limiting the "false alarm" probability. In addition,
the overall detection rate PE decreases to zero when the SNR
increases, mainly due to the fact that the number of errors of
demodulation tends to zero as the SNR increases.

In Fig. 4 is depicted the detection rate PE versus SNR (dB)
in AWGN and Rayleigh channels for β∈{0.6,0.9}, obtained
through simulations and through analysis (18) (AWGN) and
(20) (Rayleigh). Once again, it can be observed that both
theoretical and numerical results match for both β values,
therefore validating the theoretical developments.

Fig. 5 shows the SER performance of the suggested
new demodulation (ND) versus SNR (dB) in AWGN
channel (a) and Rayleigh channel (b), for different values of
β ∈ {0.6,0.7,0.8,0.9}. The performance of the usual LoRa
demodulation with OSR1 is also plotted as reference. It can
be observed in Fig. 5-(a) that, at SER=10−2, a gain of 0.5 dB
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Fig. 3. PE , PE1, and PE0 versus SNR (dB) in AWGN channel and β=0.8.
Comparison of theoretical and numerical results.
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Fig. 4. Detection rate PE versus SNR (dB) in AWGN and Rayleigh channels
for β∈{0.6,0.9}. Comparison of theoretical and numerical results.

is achieved by the suggested method for β=0.9 compared with
OSR1, and up to 2.5 dB when β=0.6. This actually confirms
that the lower β, the better the performance since the number of
detected errors increases when β decreases. This behavior can be
observed as well in Rayleigh channel in Fig. 5-(b), where a gain
of 1 dB is achieved by the suggest method for β=0.9 compared
with OSR1, and up to 2.9 dB when β=0.6. These numerical
results then validate the good performance of the suggested
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Fig. 5. SER versus SNR (dB) of the usual LoRa demodulation at OSR1,
compared with the suggested new demodulation (ND) for β∈{0.6,0.7,0.8,0.9},
in AWGN channel (a) and Rayleigh channel (b).

demodulation as it largely outperforms the demodulation at
OSR1, and this performance can be configured through β.

To complete the performance results, Fig. 6 shows the
complexity versus the SNR (dB), keeping the same configuration
as in Fig. 5. It can be observed in both Figs. 6-(a) (AWGN)
and (b) (Rayleigh) that for extremely low SNR values, the
complexity of the suggested method increases since the detection
rate increases. However, such as expected, we notice that the
complexity tends to that of OSR1 when the SNR increases, even
for relatively low SNR values. To give a numerical example
from Figs.5 -(a) and 6-(a) (AWGN), at SNR=-10 dB, we can
observe that the SER of the new demodulation is decreased
by a factor 2 (resp. 30) compared with OSR1, for a complexity
increase of a factor 1.08 (resp. 1.47) for β=0.9 (resp.β=0.6).
To give a more general remark, we can reasonably observe that
a coefficient β=0.7 or 0.8 gives a good trade-off between the
SER performance and the complexity for SNR≥−10 dB in
AWGN channel, and for SNR≥−5 dB in Rayleigh channel.

VI. DISCUSSION

It has been theoretically and numerically proved that the sug-
gested demodulation method offers an excellent trade-off between
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Fig. 6. Complexity (25) versus SNR (dB) of the usual LoRa demodulation
at OSR1, compared with the suggested new demodulation (ND) for
β∈{0.6,0.7,0.8,0.9}, in AWGN channel (a) and Rayleigh channel (b).

performance and complexity. However, this has been carried out
in good conditions where the residual synchronization errors have
been neglected. To complete the above results, Fig. 7 shows the
SER versus SNR (dB) of the suggested new demodulation (ND)
as well as OSR1 for β= 0.7, in AWGN channel considering
a residual frequency offset. The previous results considering
perfect conditions have been reported as well. The frequency
offset has been randomly chosen within [−Bw2N ,

Bw
2N ], where

Bw
2N ≈488.28 Hz corresponds to half the distance between two
frequency bin. It can observed that, in the considered SNR range,
the presence of the frequency offset only involves a performance
reduction, highlighted by a shift to the right. However, the
same performance gain as in Fig. 5-(a) is achieved by the new
demodulation compared with OSR1. This shows that an imperfect
synchronization has a priori no effect on the detection error.

It is also interesting to notice that the basic principle of the
proposed LoRa demodulation could be extended by repeating
steps 2 and 3 once or until Ωk,β=∅, to the cost of an increase
of complexity. However, this would deserve a dedicated work.
More interesting, the new demodulation could be used in other
applications and technologies as soon as it involves demodulation
of sinusoids or more generally constant modulus signals. For
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Fig. 7. SER versus SNR (dB) of the usual LoRa demodulation at OSR1,
compared with the suggested new demodulation (ND) for β=0.7, in AWGN
channel considering a residual frequency offset.

instance, one can cite the narrowband-IoT (NB-IoT) standard,
where the suggested method could be easily adapted to be used
for the estimation of the random access preamble identifier
(RAPID), which is a mandatory parameter in the random access
procedure in NB-IoT. In fact, the RAPID corresponds to the
frequency position of the first transmitted sinusoid composing the
preamble transmitted by the device to the evolved node B (eNB).

Another possible application of the present study would lead
to closed-form expressions of some integrals involving the Q
Marcum function [28]. Thus, for instance, by denoting fZ the
non-central χ2 distribution function, then the numerator of (32)
can be re-expressed as

P(X(N−2)≥βZ∩Z≥X(N−2))

=P(
2X(N−2)

βσ2
≥ 2Z

σ2
≥

2X(N−2)

σ2
)

=

∫ +∞

0

f(N−1)(x)

∫ 2x
βσ2

2x
σ2

fZ(z)dzdx

=

∫ +∞

0

(N−1)

4
(1− e

− x2

2
)e−

x
2

×
[
Q1(
√
λ,

√
2x

σ2
)−Q1(

√
λ,

√
2x

βσ2
)
]
dx, (26)

where λ= 2|h|2
σ2 . It must be noted that the integral in (26) has a

closed-form expression in (36). Furthermore, similarly to (26),
other identities involving single and double integrals of Q1 can
be found by rewriting PA in (40) for instance.

VII. CONCLUSION

In this paper, we have introduced a new demodulation
technique for LoRa, based on the detection of possible errors of
demodulation. A thorough performance analysis based on order
statistics has been derived, in terms of detection rate, SER/BER,
and complexity, for both AWGN and Rayleigh channel models.
These theoretical results have been validated through simulations.
Furthermore, numerical results show that, by adjusting the
threshold of the detector, it is possible to asymptotically

approach (even for relatively low SNR) the performance of
the demodulation at any OSR with the complexity of OSR1.
Finally, a discussion introduces different possible applications of
the suggested method, therefore paving the way for future works.

APPENDIX A
PERIODOGRAM |Y [k]|2 FOR r>1

In this appendix, we provide details showing that the
periodogram |Y [k]|2 for OSR r>1 highlights two peaks, such
as stated in Section II-A2. Thus, in absence of noise (i.e. σ2 =0),
the "dechirp" operation in (7), for any n=0,1,..,N ′−1, leads to

y[n]=r[n]exp
(
−2jπ

n

r
(
n

2N ′
− 1

2
)
)

=exp
(

2jπ
n

r

(m
N
−u(

n

r
−N+m)

))
. (27)

The DFT of y[n] in (27), denoted by Y [k], for k=0,1,..,N ′−1,
is given by

Y [k]=
1√
N ′

N ′−1∑
n=0

y[n]e−2jπ
kn
N′

=
1√
N ′

N ′−1∑
n=0

exp
(

2jπ
n

N ′
(
m−Nu(

n

r
−N+m)−k

))
=

1√
N ′

[
r(N−m)−1∑

n=0

exp
(

2jπ
n

N ′
(
m−k

))
︸ ︷︷ ︸

YA[k]

+

N ′−1∑
n=r(N−m)

exp
(

2jπ
n

N ′
(
m−N−k

))
︸ ︷︷ ︸

YB [k]

]
, (28)

where YA[k] and YB [k] have been defined for clarity purpose.
Then by using the sums of geometric series, we obtain:

YA[k]=
1−exp

(
2jπ (m−k)

N ′ r(N−m)
)

1−exp
(

2jπ (m−k)
N ′

)
=exp

(
jπ

(m−k)

N ′
(r(N−m)−1)

) γA︷ ︸︸ ︷
r(N−m)

×asincγA
( (m−k)

N ′

)
, (29)

where asincγA is the aliased sinc function defined as

asincγA(x)=
sin(πγAx)

γAsin(πx)
. (30)

Similarly, we find that YB [k] is expressed as

YB [k]=exp
(
jπ

(m−N−k)

N ′
(2N ′−rm−1))

) γB︷︸︸︷
rm

×asincγB
( (m−N−k)

N ′

)
. (31)
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From (29) and (31), we find that |YA[k]| is maximum for k=m
modN ′=m (in that case YB [m] = 0) and reaches |YA[m]|=
r(N −m). Similarly we find that |YB [k]| is maximum for
k=m−N modN ′=m−N+N ′ (in that case YA[m−N+
N ′]=0) and reaches |YB [m−N+N ′]|=rm, finally leading to
the expected results, which concludes the proof.

APPENDIX B
PROOF OF (15)

Let X0, X1, .., XN−2 be N − 1 iid random variables
obeying a χ2 distribution with 2 degrees of freedom, and
Z = |µ+XR+ jXI |2 a random variable independent of Xk,
k=0,1,..,N−2, obeying a non-central χ2 distribution with 2
degrees of freedom. Thus, µ ∈C is defined as a (potentially
non-zero) mean, and (XR+jXI)∼NC(0,σ2) (i.e. the variance
of XR and XI is equal to σ2

2 ). Using the order statistics of
Xk, i.e. X(0)≤X(1)≤ ..≤X(N−2), the probability PE1|h, with
0≤β≤1, corresponds to the probability that at least the largest
Xk (namely X(N−2)) is higher than βZ while Z is the largest
peak, which can be expressed as

PE1|h=P(X(N−2)≥βZ|Z≥X(N−2))

=
P(X(N−2)≥βZ∩Z≥X(N−2))

P(Z≥X(N−2))

=
P(Z≥X(N−2)≥βZ)

P(Z≥X(N−2))
. (32)

It must be noted that the denominator is equal to 1−Ps|h as it
corresponds to the probability that the non-central χ2 variable
is larger than all the other (centered) χ2 variables. Let us then
focus on the numerator of (32). For any k= 0,1,..,N−2, the
cumulative distribution function (CDF) of the variable X= Xk

σ2

is FX(x) = 1−e−x, and the CDF of X(N−2)

σ2 is F(N−1)(x) =

FX(x)N−1 (see [29] for details). The distribution of X(N−2)

σ2

is, in turn, defined as f(N−1)(x)=
∂F(N−1)(x)

∂x . Furthermore, we

denote by gXR,XI (x,y) = 1
πσ2 e

− x
2+y2

σ2 the bivariate Gaussian
distribution of the couple of variables (XR,XI), where the
variance of XR and XI is equal to σ2

2 . Hence, the probability
P(Z≥X(N−2)≥βZ) can be expressed as

P(Z≥X(N−2)≥βZ)=P(
Z

σ2
≥
X(N−2)

σ2
≥ βZ
σ2

)

=

∫∫ +∞

−∞
gXR,XI (x,y)

∫ βz

σ2

z
σ2

f(N−1)(u)dudxdy

=

∫∫ +∞

−∞
gXR,XI (x,y)

[(
1−e−

z
σ2

)N−1
−
(

1−e−
βz

σ2

)N−1]
dxdy. (33)

Then, by substituting z= |µ+x+jy|2 =(µR+x)2+(µI+y)2,
where µR (resp. µI ) is the real (resp. imaginary) part of µ, and
by developing the products in (33) with the binomial formula,
we obtain:

P(Z≥X(N−2)≥βZ)

=

∫∫ +∞

−∞
gXR,XI (x,y)

N−1∑
k=0

(−1)k
(
N−1

k

)
×(e−

k|µ+x+jy|2

σ2 −e−
βk|µ+x+jy|2

σ2 )dxdy

=
1

πσ2

N−1∑
k=0

(−1)k
(
N−1

k

)
×
∫∫ +∞

−∞
e−

1
σ2

((k+1)x2+2kµRx+kµ
2
R)

e−
1
σ2

((k+1)y2+2kµIy+kµ
2
I)

−e−
1
σ2

((βk+1)x2+2βkµRx+βkµ
2
R)

e−
1
σ2

((βk+1)y2+2βkµIy+βkµ
2
I)dxdy. (34)

We remind the following result, as it will be used in some further
developments, for any a,b,c∈R∗+:

∫ +∞

−∞

e−
1
σ2

((ax2+bx+c)

√
πσ2

dx=
e−

b2−4ac

4aσ2

√
a

. (35)

By substituting a, b, and c in (35) by the corresponding values
in (34), (34) reduces to:

P(Z≥X(N−2)≥βZ)

=

N−1∑
k=0

(−1)k
(
N−1

k

)(e− k(µ2R+µ2I )

(k+1)σ2

k+1
− e
− βk(µ

2
R+µ2I )

(k+1)σ2

βk+1

)
. (36)

Finally, by substituting µ=
√
N ′h, and since |µ|2 =µ2

R+µ2
I ,

then PE1|h in (32) leads to (15), which concludes the proof.

APPENDIX C
PROOF OF (17)

We keep the same definitions and assumptions as in Appendix
B. However, we here suppose that X(N−2)≥Z, corresponding
to the case where a demodulation error occurs. Then, the
probability PE0|h is expressed as

PE0|h=P(X≥βX(N−2)|X(N−2)≥Z)

=
P( 1

βX≥X(N−2)∩X(N−2)≥Z)

P(X(N−2)≥Z)
, (37)

where X = Z or X = X(N−3). It must be noted that the
denominator is equal to Ps|h as it corresponds to the probability
that the non-central χ2 variable is lower than at least the largest
(centered) χ2 variable X(N−2). To develop the numerator in
(37), one can notice that either we have X(N−2)≥X =Z ≥
X(N−3) and in that case 1

βZ ≥ X(N−2) ≥ Z ≥ X(N−3), or
X(N−2) ≥ X = X(N−3) ≥ Z and in that case 1

βX(N−3) ≥
X(N−2) ≥X(N−3) ≥Z. Since both events are disjoints, then
the numerator in (37) can be developed as
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P(
1

β
X≥X(N−2)∩X(N−2)≥Z)=

P(
1

β
Z≥X(N−2)≥Z≥X(N−3))︸ ︷︷ ︸

PA

+P(
1

β
X(N−3)≥X(N−2)≥X(N−3)≥Z)︸ ︷︷ ︸

PB

, (38)

where PA and PB have been defined for clarity matter. We
denote by f(N−3),(N−2)(u, v), 0 ≤ u < v < +∞, the joint
distribution of X(N−2)

σ2 and X(N−3)

σ2 , then from [29] we get

f(N−3),(N−2)(u,v)=(N−1)(N−2)e−u(1−e−u)N−3e−v.
(39)

We can express PA using (39) as

PA=P(
Z

βσ2
≥
X(N−2)

σ2
≥ Z

σ2
≥
X(N−3)

σ2
)

=

∫∫ +∞

−∞
gXR,XI (x,y)

×
∫ z

σ2

0

∫ z
βσ2

z
σ2

f(N−3),(N−2)(u,v)dvdudxdy

=(N−1)(N−2)

∫∫ +∞

−∞
gXR,XI (x,y)

(
e−

z
σ2 −e−

z
βσ2

)
×
∫ z

σ2

0

e−u(1−e−u)N−3dudxdy

=(N−1)(N−2)

∫∫ +∞

−∞
gXR,XI (x,y)

(
e−

z
σ2 −e−

z
βσ2

)
×
∫ z

σ2

0

N−3∑
k=0

(−1)k
(
N−3

k

)
e−(k+1)ududxdy

=(N−1)(N−2)

∫∫ +∞

−∞
gXR,XI (x,y)

(
e−

z
σ2 −e−

z
βσ2

)
×
N−3∑
k=0

(−1)k
(
N−3

k

)
(1−e−

(k+1)z

σ2 )

k+1
dxdy.

(40)

Then, since we have
N−3∑
k=0

(−1)k
(
N−3
k

)
k+1

=
1

N−2
, (41)

and by using the result in (35), (40) leads to

PA=(N−1)(N−2)

[
1

N−2

(1

2
e−

µ2

2σ2 − β

β+1
e
− µ2

(β+1)σ2

)

−
N−3∑
k=0

(−1)k
(
N−3
k

)
k+1

( (e
− (k+2)µ2

(k+3)σ2 )

k+3
− (e

−
(k+1+ 1

β
)µ2

(k+2+ 1
β

)σ2 )

k+2+ 1
β

)]
.

(42)

Similarly to the developments leading to PA, we obtain PB
from (38) as

PB=P(
X(N−3)

βσ2
≥
X(N−2)

σ2
≥
X(N−3)

σ2
≥ Z

σ2
)

=

∫∫ +∞

−∞
gXR,XI (x,y)

×
∫ +∞

z
σ2

∫ u
β

u

f(N−3),(N−2)(u,v)dvdudxdy

=(N−1)(N−2)

∫∫ +∞

−∞
gXR,XI (x,y)

×
∫ +∞

z
σ2

(e−u−e−
u
β )

×
N−3∑
k=0

(−1)k
(
N−3

k

)
e−(k+1)ududxdy

=(N−1)(N−2)

∫∫ +∞

−∞
gXR,XI (x,y)

×
N−3∑
k=0

(−1)k
(
N−3

k

)

×
(e− (k+2)z

σ2

k+2
− e
−

(k+1+ 1
β

)z

σ2

k+1+ 1
β

)
dxdy

=(N−1)(N−2)

N−3∑
k=0

(−1)k
(
N−3

k

)

×

(
e
− (k+2)µ2

(k+3)σ2

(k+2)(k+3)
− e

−
(k+1+ 1

β
)µ2

(k+2+ 1
β

)σ2

(k+1+ 1
β )(k+2+ 1

β )

)
. (43)

Finally, by substituting µ=
√
N ′h, and since |µ|2 =µ2

R+µ2
I ,

then PE0|h leads to (17), which concludes the proof.
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