
A theory of organizational structures for development and
infrastructure professionals
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY-NC-SA 4.0

SUBMISSION DATE / POSTED DATE

24-02-2022 / 14-06-2023

CITATION

Leite, Leonardo; Lago, Nelson; Melo, Claudia; Kon, Fabio; Meirelles, Paulo (2022). A theory of organizational
structures for development and infrastructure professionals. TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.19210347.v4

DOI

10.36227/techrxiv.19210347.v4

https://www.techrxiv.org
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://dx.doi.org/10.36227/techrxiv.19210347.v4

1

A theory of organizational structures for
development and infrastructure professionals

Leonardo Leite, Nelson Lago, Claudia Melo, Fabio Kon, Paulo Meirelles

Abstract—DevOps and continuous delivery have impacted the organizational structures of development and infrastructure groups in
software-producing organizations. Our research aims at revealing the different options adopted by the software industry to organize
such groups, understanding why different organizations adopt distinct structures, and discovering how organizations handle the
drawbacks of each structure. We interviewed 68 carefully-selected IT professionals, 45 working in Brazil, 10 in the USA, 8 in Europe, 1
in Canada, and 4 in globally distributed teams. By analyzing these conversations through a Grounded Theory process, we identified
conditions, causes, reasons to avoid, consequences, and contingencies related to each discovered structure (segregated departments,
collaborative departments, API-mediated departments, and single department). In this way, we offer a theory to explain organizational
structures for development and infrastructure professionals. This theory can support practitioners and researchers in comprehending
and discussing the DevOps phenomenon and its related issues, and also provides valuable input to practitioners’ decision-making.

Index Terms—DevOps, Software Teams, Organizational Structures, Continuous Delivery, Software Engineering, Grounded Theory

✦

1 INTRODUCTION

Over the last decade, seeking to accelerate time-
to-market and improve customer satisfaction, software-
producing organizations have adopted DevOps and contin-
uous delivery. The automation and collaboration brought
by such initiatives have impacted the way these companies
have arranged development and infrastructure groups re-
garding operational activities and the setup of their underly-
ing infrastructure1 [3]. For example, with an automated de-
ployment pipeline, one can question the role of an engineer
exclusively assigned to command deployments. Therefore,
due to such recent changes, there is a need to investigate
how these companies are structuring development and in-
frastructure groups regarding operations activities, such as
provisioning, deployment, and monitoring. Such investiga-
tion is relevant for practitioners, especially considering that
commonly adopted structures may not necessarily yield the
best results [4].

Empirical software engineering studies have focused on
identifying the different organizational structures adopted
in the industry to arrange development and infrastructure
professionals [5], [6], [7], [8]. However, the current literature
does not reveal why these diverse organizational structures
exist. This is a missing key for enabling practitioners to

• L. Leite, N. Lago, C. Melo, F. Kon, and P. Meirelles are with the
Department of Computer Science at the University of São Paulo (IME-
USP), São Paulo, Brazil.
E-mail: {leofl, lago, claudia, kon, paulormm}@ime.usp.br,
Published as: L. Leite, N. Lago, C. Melo, F. Kon, and P. Meirelles, ”A
theory of organizational structures for development and infrastructure
professionals,” in IEEE Transactions on Software Engineering, vol. 49,
no. 4, pp. 1898-1911, 1 April 2023, doi: 10.1109/TSE.2022.3199169.

1. According to the ITIL glossary [1], infrastructure refers to all of
the hardware, software, networks, facilities, etc. that are required to
build and operate IT services. In our context, it is helpful to add to this
definition the notion that infrastructure is a layer of the software stack
that can be provided as a commodity [2]. Although infrastructure must
meet application non-functional requirements, it usually is provided
regardless of the application domain, enabling organizations to offer it
for different applications in a standardized manner.

make good use of such results. Decision-makers in software
companies are highly interested in knowing “what other
companies are doing” and “why are they doing it” to
support their decisions. Moreover, scholars should strive to
deeply comprehend the software production phenomenon
so they can adequately teach software engineering consid-
ering the reality of the industry abstracted under adequate
theories. Therefore, in this paper, we focus on the following
research questions:

RQ1: Why do different software organizations adopt
different organizational structures regarding develop-
ment and infrastructure groups?
RQ2: How do organizations handle the drawbacks of
each organizational structure?

We investigate these questions in the context of software-
producing organizations responsible for deploying the soft-
ware they produce. For brevity, we refer to them in this
paper simply as “organizations” or “companies.”

To answer the research questions above, we conducted
interviews with 68 IT professionals in 54 organizations. We
analyzed these interviews by following a Grounded Theory
process [9] to build a theory to explain [10] the organizational
structures of development and infrastructure professionals
in the context of contemporary software production. Our
findings present concerns that affect structure selection (e.g.,
handling delivery bottlenecks, enforcing corporate stan-
dards for infrastructure, and having some parity between in-
fra and development personnel) and consequences of struc-
ture adoption (e.g., conflicts due to blurred responsibilities
and developers with reckless behavior when using internal
infrastructure platforms that are too abstract). We also reveal
strategies used by companies to handle the drawbacks of
different structures (e.g., tuning the abstraction level of
internal infrastructure platforms).

We proceed by presenting related works in Section 2 and

0098-5589 ©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/9864071

2

the research design in Section 3. Then, we present our results
in Sections 4 and 5, and discuss them in Section 6. We debate
our quality criteria and threats to validity in Sections 7 and
8. Finally, we draw our conclusions in Section 9.

2 RELATED WORK

Based on several studies [11], [12], [13], Oliveira and Taka-
hashi summarize the basic elements of organizational struc-
tures as differentiation (division of labor) and integration
(coordination) [14]. Such definition aligns well with how
Conway’s Law compares graphs abstracting system struc-
tures (subsystems’ interconnections) and organization struc-
tures (communication paths among groups of people) [15].
Therefore, “organizational structure” (or just “structure”
in this paper) can be understood as “differentiation and
integration patterns”.

Organizations and their structures have been extensively
studied not only in the management and administration
fields [16], [17], [18], [19], but also in the software engineer-
ing context. Seaman and Basili consider an organizational
structure to be a network of relationships of different types
(e.g., collaborating and reporting) among developers in a
company [20]. They investigate the association between
organizational attributes and developers’ communication
efforts in code inspection meetings. Herbsleb and Roberts
study how developers can optimally coordinate decision-
making by considering the interplay among multiple deci-
sions [21]. Nagappan et al. provide eight metrics to quantify
organizational complexity, seeking to associate such metrics
with software quality [22]. Tamburri et al. report a list
of organizational social structures for the software engi-
neering context, including communities, networks, groups,
and teams [23]. Their structures could be helpful especially
for classifying associations among developers of different
teams, such as: communities of practice, informal commu-
nities, learning communities, networks of practice, informal
networks, social networks, and workgroups. However, these
earlier works focus on development activities, without con-
sidering infrastructure or operations concerns.

More recent works have proposed taxonomies [24] for
the interactions between development and infrastructure
professionals [5], [6], [7], [8], [25], [26], [27]. However, most
of them do not focus on the conception of their taxonomies
and instead take them as a starting point for their work.
Nonetheless, Shahin et al. [6] systematically conducted in-
terviews and surveys, and found four types of team struc-
tures: i) separate Dev and Ops teams with higher collaboration,
ii) separate Dev and Ops teams with a facilitator in the middle;
iii) small Ops team and more responsibilities for the Dev team,
and iv) no visible Ops team.

Independently from Shahin et al., in our previous
work [28], we created a taxonomy of structures in use by
the industry to organize development and infrastructure
professionals, which mostly coincides with that of Shahin
et al. In particular, a significant difference between our
taxonomy and theirs is that we identified the platform teams,
a pattern recently advocated by practitioners [26], [29]. Thus,
in our preliminary results [3], [28], [30], [31], we identified
the following structures (which we renamed in this paper,
as described in Sections 3.3 and 4):

• Segregated departments (originally “siloed depart-
ments”), with highly bureaucratized cooperation
among development and operations.

• Collaborating departments (originally “classical
DevOps”), focusing on facilitated communication and
collaboration among development and operations.

• API-mediated departments (originally “platform
teams”), in which the infrastructure team provides
highly-automated infrastructure services to assist de-
velopers.

• Single departments (originally “cross-functional
teams”), in which teams take responsibility for both
software development and infrastructure management.

We presented such structures as a grounded theory [9] in
the taxonomy form (i.e., as a classification system) [24]. We
observed that professionals may be organized differently for
different deployable units and that an organization can be
in a transitional state from one structure to another. We also
found evidence that API-mediated departments promote
better delivery performance [32]. Table 1 summarizes, for
each structure, (i) the differentiation between development
and infrastructure groups regarding operations activities
(deployment, infrastructure setup, and service operation in
run-time); and (ii) how these groups interact (integration).

More on the differences between our taxonomy and
those of others are published elsewhere [28]. However,
Lopez-Fernandez et al. developed a taxonomy concurrently
with ours [7]. Although they organize their taxonomy
differently from ours, both results present essential com-
mon elements, encompassing the ideas of collaborating
departments, cross-functional teams, and the provisioning
of platforms. They also corroborate our finding that plat-
form teams foster delivery performance. Lopez-Fernandez
et al. [7] acknowledge the common points among the works
of Shahin et al. [6], ours [28], and theirs, highlighting dif-
ferent insights brought by them and stressing how these
models can be appreciated in conjunction, providing data
and methods triangulation.

However, the above related works present taxonomies
to describe structures. They do not explain why different
companies adopt different organizational structures, which
is our primary research goal in this paper. Nonetheless,
Erich et al. [33] authored an earlier article closer to this
goal, in which they seek to provide an explanation for
DevOps. For six interviewed organizations, they explored:
why and how to adopt DevOps, and the consequences
(problems and results) of adopting it. They also explored
organizational structures (e.g., discussing DevOps teams
and the distribution of responsibilities). Still, their analysis is
targeted at specific organizations, with no theory building.
In other words, they do not provide a taxonomy of DevOps
structures, but simply describe the DevOps structures of
six organizations. Moreover, causes and consequences are
related to the “DevOps adoption” category, not to different
structures, which we discuss here.

3 METHODOLOGY AND RESEARCH DESIGN

We applied classic Grounded Theory (GT) [9], [34] to build
a theory based on data retrieved from semi-structured in-
terviews conducted in real-world organizations. GT is a

3

TABLE 1
Operations responsibilities and interactions in each organizational structure

Organizational structure Development differentiation Infrastructure differentiation Integration
Segregated departments Just builds the Responsible for all Limited collaboration

application package operations activities among the groups
Collaborating departments Participates/collaborates in Responsible for all Intense collaboration

some operations activities operations activities among the groups
Single departments Responsible for all Does not exist —

operations activities
API-mediated departments Responsible for all Provides the platform, Interaction happens

operations activities automating much of in specific situations,
with the platform support the operations activities not on a daily basis

TABLE 2
Description of participants and organizations

Revisit Organizational structure Number of employees Reference codes and Interviewee
in the organization roles of interviewee location

No Single depart. > 1000 I38) Developer USA
No Segregated to collaborating depart. > 1000 I39) Developer Brazil
Yes Segregated to API-mediated depart. > 1000 I40) Developer Brazil

I41) Infrastructure manager
Yes Collaborating depart. [200, 1000] I42) Infrastructure manager USA

I43) Infrastructure engineer
No API-mediated depart. [200, 1000] I44) Development manager Brazil
No Single depart. < 200 I45) Developer Brazil
Yes API-mediated depart. > 1000 I46) Development manager Brazil
No Single depart. < 200 I47) Development manager Brazil
Yes API-mediated depart. [200, 1000] I48) Infrastructure manager Spain

I49) Development manager
No Collaborating depart. [200, 1000] I50) Developer Brazil
Yes Segregated to collaborating depart. [200, 1000] I51) Infrastructure engineer Brazil
No Collaborating depart. > 1000 I52) Infrastructure manager Brazil

I54) Development manager
No API-mediated depart. [200, 1000] I53) Infrastructure manager Brazil
Yes Segregated to API-mediated depart. > 1000 I55) Infrastructure manager Brazil
No API-mediated depart. > 1000 I56) Consultant Brazil
No Single depart. > 1000 I57) Infrastructure engineer Brazil
Yes Single depart. [200, 1000] I58) Infrastructure manager Brazil
No Collaborating to API-mediated depart. < 200 I59) Infrastructure manager Brazil
No Collaborating depart. < 200 I60) Developer Brazil
No API-mediated depart. [200, 1000] I61) Infrastructure manager Brazil

I62) Infrastructure manager
No Single to API-mediated depart. < 200 I63) Development manager USA
No Single depart. < 200 I64) CTO USA
No Collaborating to single depart. [200, 1000] I65) Developer Brazil

I67) Infrastructure engineer
No Segregated to API-mediated depart. > 1000 I66) Architecture manager Brazil
Yes Collaborating depart. > 1000 I68) Development manager Brazil

methodology originated in social sciences, but its use in the
software engineering field is already commonplace [7], [8],
[34], [35]. GT supports researchers to build theories based
typically on qualitative data. We can also categorize our
study as a field study [36], a category of knowledge-seeking
studies, in opposition to solution-seeking studies [36]. This
means that, rather than a straightforward guide to action,
our theory aims to guide reasoning.

We segmented our research into two phases: the first
focuses on developing an initial taxonomy (already pub-
lished [28]), and the second focuses on answering RQ1 and
RQ2 (the present paper).

In the first phase, after initial brainstorming sessions
with seven highly-skilled DevOps specialists, we inter-
viewed 37 IT professionals of different roles (including
24 with development-related roles, 5 with infrastructure-

related roles, and 11 managers) and experience (15 with
more than 10 years of experience, while 9 with less than
5 years; 13 masters and 2 PhDs). These 37 interviewees were
working in companies of different domains, countries (21 in
Brazil, 5 in the USA, 6 in the Western Europe, 1 in Canada,
and other 4 in globally distributed teams), and sizes (14 with
more than 1,000 employees and 11 with less than 200).

We analyzed these 37 interviews to discover the different
organizational structures used by the industry to organize
development and infrastructure professionals. We analyzed
such semi-structured interviews with an open coding pro-
cess until we reached theoretical saturation [9]. We also
got feedback from participants on our emergent structures
through online surveys.

In the remainder of this section, we present the design
of our second research phase. We also present, in Figure 1,

4

a diagram summarizing the steps and products of our
research.

Fig. 1. Steps and products of our research

3.1 Sample
To understand “why different organizations adopt different
structures” (RQ1), it is crucial to analyze organizations
adopting different structures. Therefore, we selected com-
panies already visited by us in the first research phase [28]
to make sure that we would get a good coverage of all the
different structures. Since company size is expected to be
a relevant factor regarding our research question [6], [28],
we also aimed to select organizations of different sizes. To
accomplish that, we:

• Considered transitional situations as distinctive struc-
tures (e.g., collaborating departments is one struc-
ture, while transitioning from collaborating to API-
mediated departments is another one).

• Grouped the visited organizations by structure and size
(small, medium, large).

• Discarded the groups (structure and size) with only one
member (less relevant groups).

• Aimed to visit one company from each remaining
group.

Such a selection strategy left us with the goal to revisit
11 organizations within the following groups: large collab-
orating departments, medium collaborating departments,
small collaborating departments, medium single depart-
ments, small single departments, large API-mediated
departments, medium API-mediated departments, large
segregated departments, small segregated departments,
medium segregated departments transitioning to collab-
orating departments, and large segregated departments
transitioning to API-mediated departments.

Considering our need for increasing generalizability, we
also visited new organizations. Since it was not possible to
know in advance what a company’s structure would be, we
selected them taking into account only their sizes. We did
not preestablish a target on the number of new organiza-
tions to be visited – interviews continued until we reached
saturation (see Section 3.6). As a form of triangulation, we
also tried to interview a developer and an infrastructure
professional from each organization, whenever it was appli-
cable and possible.

Nonetheless, we note that having access to IT profession-
als willing to expose organizations’ internal affairs can not
be guaranteed in advance. Therefore, although the above
strategy guided our selection, we could not strictly stick to
it. In this way, Table 2 presents the 31 carried interviews in
this phase, which extend the previous 37 interviews to the
total of 68 interviews we analyzed in our research. For each
interview/interviewee, we also assigned an identifier (e.g.,
I38) to reference in this text. We conducted these interviews
from May 2020 to October 2021, and they took from 20 to 63
minutes (median of 35 minutes).

The interviewees worked in the following business
domains: education, health, logistic, telecommunications,
public administration, development support, hiring, mar-
ketplace, travel, manufacturing, finances, mobility, games,
defense, networking, semiconductors, IoT, and cloud com-
puting. One of the companies was a Tech Giant (among the
top 4 IT companies in the world), while three were unicorns
(startups with a valuation over U$1 billion).

Although we did not plan to balance the structures
among new companies, in the end, our sample was reason-
ably balanced. From 17 new companies, four presented the
collaborating departments structure, six showed the sin-
gle department structure, and seven had an API-mediated
structure. For this counting, we considered a company tran-
sitioning from structure X to Y as in Y. In particular, all the
interviewed companies with segregated departments were
already transitioning to some other structure.

3.2 Interview procedure

In the conducted semi-structured interviews, after present-
ing our taxonomy, we approached: which was the organiza-
tional structure in the context of the interviewee according
to their opinion; why the organization adopted such a

5

structure over the others; whether another structure would
be more suitable for the interviewee context; what were
the perceived (or expected) disadvantages of the discussed
structures; and what were the strategies to handle such
disadvantages. During interviews, we followed Adams’s
guidelines [37]. We provide our complete script with the ra-
tionale of each question as supplementary material (File 1).

3.3 Resonance analysis

Initially, 37 semi-structured interviews provided us with
enough data to build the first version of our taxonomy of or-
ganizational structures. In such conversations, we employed
second-level questions [38] to avoid exposing the emerging
structures to interviewees. After this, we performed a brief
and limited member check [39] through online surveys. The
following and necessary step was to observe the use of our
taxonomy in practice, verifying whether it achieves the goal
of a classification (support reasoning by increasing users’
cognitive efficiency [24]) and serves as a grounded theory
(being applicable by practitioners [9]). To answer RQ1 and
RQ2, we set up a favorable context to apply and refine our
taxonomy – we had to use its concepts during interviews on
the second research phase (Section 3.2).

We refer to the taxonomy refinement process as resonance
analysis, where “resonance” alludes to the degree to which
findings are understandable to participants [24]. By assess-
ing resonance in the Grounded Theory context, we do not
aim to determine whether the taxonomy is “valid” or not.
Under GT principles, when faced with new conflicting ev-
idence (e.g., a taxonomy misuse), we adapted and evolved
our theory, strengthening it. We note that social theories are
rarely confirmed but are instead corroborated, confronted,
or evolved by new studies [40], [41], [42]. Steinmacher, for
example, gathered qualitative data to refine his grounded
theory with additions, deletions, and reorganizations in his
model [43]. Similarly, our process guided us on managing
such operations in our taxonomy: adding, deleting, reorga-
nizing, and renaming its high-level elements.

For each interview, we coded relevant excerpts as:

• providing support to our theory, when the interviewee
employs the terms of the taxonomy to discuss reality or
possibilities in a precise and confident way; or

• displaying confusion about our theory, when the inter-
viewee employs a term from the taxonomy in a differ-
ent way than we would expect, or there is difficulty in
selecting a term to describe its reality or possibilities.

For each excerpt coded as confusion, we defined an
action to handle the situation or justify our choice of not tak-
ing any action. In consequence, the taxonomy evolved with
new versions. We did not wait for interviews to be over to
apply such actions; we interleaved collection, analysis, and
actions, following GT principles. In this way, we conducted
the last interviews based on the latest taxonomy version.

The procedures of our resonance analysis combine as-
pects of directed content analysis (coding by using prede-
fined categories) and summative content analysis (counting
codes and assessing the contexts for confusions) [44]. We
present the results of the resonance analysis in Section 4.

3.4 6C analysis

Glaser proposed 18 theoretical coding families to guide
researchers in labeling data at the conceptual level [45].
These families were intended to sensitize these professionals
to the many ways through which a concept could be
examined. The “bread and butter” coding family for
sociologists are what he labels “The Six C’s: causes,
contexts, contingencies, consequences, covariances, and
conditions” [46]. Other GT studies on software engineering
also use this practice [35], [47], [48].

The same author states that theoretical codes are vi-
tal because they potentiate a theory’s explanatory power
and increase its completeness and relevance, resulting in a
grounded theory with a greater scope and parsimony [49].
Hernandez explains that “without theoretical codes, the
substantive codes become mere themes to describe (rather
than explain) a substantive area; the descriptive thematic
approach is characteristic of qualitative research methods
such as phenomenology or ethnography but not Classic
GT” [50]. Indeed, in this paper, we present not just a “theory
for analyzing,” but a “theory for explaining” [10].

As it happened with Hoda et al. [47], when comparing
theoretical coding families, it became evident that the
6C coding family is the most suited for our research
goals. We understand that our research questions can be
answered in the 6C format since, for a given context and
certain conditions, there are causes that lead organizations
to take actions expecting specific consequences – although
contingencies emerge as well. Moreover, there may be a
covariance of such causes, consequences, and contingencies
in specific contexts and conditions.

Thus, we transcribed each interview, highlighted key
points from the interviews (the excerpts with potential the-
oretical interest), extracted codes from the key points, and
associated them with 6C labels. Usually, theoretical coding
associates codes with the core category of the study. In our
case, the four organizational structures of our taxonomy are
our core categories. As the coding process advanced, we
merged and abstracted different codes, as it is common to
open coding too. Hence, a code may have different sources
(interviews). We provide the key points and the extracted
codes as supplementary material (Files 2 and 3).

Although the original 6C labels provide a robust analysis
framework, there is no reason to force relevant codes to
fit into them. Therefore, as we perceived a need during
analysis, and as agreed in review sessions, we adapted the
labels – such flexibility agrees with Glaser’s ideas [50]. Thus,
the employed definitions of the labels used during our 6C
analysis were:

• Characterization: identifying structures’ characteristics,
i.e., aspects that enable relating companies to structures.

• Conditions: environmental conditions that are neces-
sary to implement a structure (i.e., prerequisites).

• Causes: reasons/motivations/opportunities that led
the organization to adopt a particular structure and not
another.

• Avoidance reasons: reasons/motivations that led the
organization not to adopt a particular structure.

• Consequences: outcomes that happen or are expected
to happen after an organization adopts a structure,

6

including unexpected issues.
• Contingencies: strategies to overcome a structure’s

drawbacks.
We did not analyze context and covariance interview-by-

interview. The context of our interviews is the one presented
in Section 3.1. We performed the covariance analysis after
the last interview. We used characterization codes to link in-
terviews and their codes to structures. Nevertheless, as they
largely overlap with our taxonomy’s core categories [28],
we do not explicitly report them here.

It is troublesome to differentiate facts from interviewees’
opinions. We mitigated this issue by reporting only codes
supported by at least three interviews. The rationale
is that an idea supported by three persons, thus in at
least two companies, is worthy of consideration to some
degree. We call the conditions, causes, avoidance reasons,
consequences, and contingencies supported by at least
three interviews as strong codes. We present the results of
the 6C analysis in Section 5.

3.5 Review process

The first author of this paper conducted the initial analysis
of each interview. Periodically, other two authors joined for
review sessions, in which we held discussions until reaching
consensus. While the first author is also a software devel-
oper, it is relevant to note that one of the reviewer authors
is also an experienced infrastructure professional. Receiving
insight from this type of professional for a DevOps-related
study was a recommendation given by an interviewee on
the first research phase, aiming to soften possible biases
given the first author’s metier. We held 14 review sessions,
from January to October 2021, with most of the sessions
taking around two hours.

3.6 Theoretical saturation

At each analysis snapshot (an interview analysis or a review
session), we tracked a few metrics to identify theoretical
saturation [9]. For the 6C analysis, we defined the following
metrics: number of codes, number of strong codes, and
conceptual density.

The number of codes indicates the total “amount of
learning” we had in each interview. Although we can al-
ways learn something new from new people, we expect
diminishing returns in this metric as we approach theo-
retical saturation. Strong codes are supported by at least
three interviews, excluding characterization codes. We also
expected this metric to initially grow with new interviews
and then stabilize when reaching saturation.

Each code has a support number, that is, the number
of sources supporting that code. The conceptual density is
the sum of support numbers divided by the total number of
codes. The idea is that a high density indicates that codes are
supported by multiple interviews, pointing to robust results.
The expectation was that the value of this metric should
only grow.

As observable in Figure 2, along with the interviews,
the metrics followed the expected trends, indicating enough
theoretical saturation. In detail, we note that the decreases in
the number of codes (L1) are related to the review sessions,

5 10 15 20 25 30 35
Number of analysis snapshots

0

50

100

150

200

250

300

Nu
m

be
r o

f c
od

es
 (f

or
 L

1
an

d
L2

)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Gl
ob

al
 d

en
sit

y
of

 so
ur

ce
s

pe
r c

on
ce

pt
s (

fo
r L

3)

L1) All codes - should stabilize
L2) Strong codes - should grow limited by L1
L3) Conceptual density - should grow forever

Fig. 2. Metrics of theoretical saturation for the 6C analysis

in which we deleted codes we judged to be inadequate,
besides merging other ones, forming more abstract codes.

For the resonance analysis, we defined two metrics:
support level and taxonomy changes. The support level is
the difference between the number of support codes and the
number of confusion codes. A high support level indicates
a good resonance of the taxonomy with participants. This
metric should ideally only grow.

5 10 15 20 25 30
Number of interviews

0

20

40

60

80

100

120
Support level - should grow forever
Taxonomy changes - should stabilize

Fig. 3. Metrics of theoretical saturation for the resonance analysis

Taxonomy changes is the number of changes in the
high-level view of our taxonomy: addition, renaming, and
removal of elements. We derived these changes from ob-
served confusions in the interviews or even neutral com-
ments pointing to potential improvements. We expected an
initial increase in the number of changes (after all, updating
the taxonomy based on the practitioners’ views was in

7

our process), followed by stabilization, indicating that the
previous modifications subsequently caused fewer confu-
sions among the interviewees. As observable in Figure 3,
the metrics again followed the expected trends, indicating
enough theoretical saturation.

We clarify that the metrics used here were intuitively
conceived by us, given the lack of metrics to detect theoret-
ical saturation in Grounded Theory studies [47], [48], [51].

4 IDENTIFYING ORGANIZATIONAL STRUCTURES

Based on the first 37 semi-structured interviews and fol-
lowing GT guidelines, we elaborated an initial version of
our taxonomy, with each structure having core and sup-
plementary properties. Core properties are expected to be
found in corporations with a given structure. Supplemen-
tary properties refine the explanation of a structure, but
their association with organizations is not compulsory. Such
properties are presented in detail elsewhere [28].

After having this initial version and 31 more semi-
structured interviews, we conducted our resonance analysis
process, in which we coded fragments of these 31 conversa-
tions as support or confusion fragments. For each excerpt
coded as confusion, we defined an action to handle the
situation or justified our choice of not taking any action.
In total, we recorded 35 actions, 26 of them classified as
change the taxonomy, five as improve interview presentation,
and four as improve report. Actions changed the high-level
elements of our taxonomy (organizational structures and
supplementary properties) with additions, removals, and
renamings. We considered interview presentation improve-
ments in how we explained the taxonomy to the subsequent
interviewees. We incorporated report improvements in de-
scriptions presented in our online digest of organizational
structures2. We provide the list of supports and confusions,
plus a summary of actions as supplementary material (Files
4 and 5).

One example of a fragment (I44) coded as confusion
that led to a taxonomy change: “I think it’s an in-house open-
source platform, because although we built it on top of cloud
services, AWS in particular, our ecosystem is mostly open-source,
based on Kubernetes and its ecosystem.” Before this comment,
we considered that open-source platforms were installed
and ran in physical infrastructure only. Then we noted the
following memo [9] during analysis: “Good point. . . maybe we
have to expand the scope of the in-house platform (...) when this
use of the cloud is merely the use of virtual machines; the company
is still building/installing/managing something on its own.”

Therefore, to address this confusion, we took the action
of renaming the supplementary property “in-house open-
source platform” to “in-house-administered open-source
platform.” Adding the word “administered” suggests what
matters is the company administering the open-source plat-
form regardless of whether it is installed in a physical server
or in a virtual machine provided by a cloud vendor.

Another notable change in the taxonomy was renaming
“Platform team” to “API-mediated departments.” We had
confusions in four interviews (I40, I42, I50, I52) due to
the polymorphic meanings of the terms “platform” and

2. http://ime.usp.br/∼leofl/devops/2021-06-20/structures-
digest.html

“platform team.” Moreover, the current name reflects the
structure better, since the platform team is just one of its
interplaying teams.

We also explicitly adopted the term “dev & infra de-
partments” to rename the structures. This aligns better with
the fact that the structures reflect the division of operational
activities between development and infrastructure groups,
as portrayed by Table 1. We avoid the term operators or
even operations staff, which would refer to professionals
who accept and operate new and changed software in
production and are responsible for its service levels [52]. In
fact, our research seeks to understand how these activities
were redistributed between development and infrastructure
professionals with the DevOps and continuous delivery
advent.

Figure 4 presents the consolidated version of our tax-
onomy, as evolved from the refinements. The figure shows
the taxonomy’s high-level elements: its structures and their
associated supplementary properties. We provide all the
versions of the high-level view of our taxonomy as supple-
mentary material (File 6).

5 EXPLAINING ORGANIZATIONAL STRUCTURES

Now we present, in Tables 3, 4, 5, and 6, the 46 discovered
strong codes grouped by organizational structure. Each
strong code is preceded by its identifier (e.g., SC02) and
the amount of supporting interviews.

TABLE 3
Strong codes for segregated dev & infra departments

Consequences
SC01 (5) Devs lack autonomy and depend on ops
SC02 (4) Low delivery performance (queues and delays)
SC03 (3) Friction and blaming games between devs and infra

TABLE 4
Strong codes for collaborating dev & infra departments

Conditions
SC04 (5) Enough infra people to align with dev teams
SC05 (3) Top management support

Causes
SC06 (4) In a non-large company / with few products,

it is easier to be collaborative
SC07 (3) Trying to avoid the delivery bottleneck
SC08 (3) Bottom-up initiative with later

top-management support
Consequences

SC09 (6) Growing interaction inter-areas
(e.g., knowledge sharing)

SC10 (5) Precarious collaboration (ops overloaded)
SC11 (4) Discomfort/frustration/friction/inefficiency with

blurred responsibilities (people don’t know what
to do or what to expect from others)

SC12 (3) Waiting (hand-offs), infra still a bottleneck
SC13 (3) Automation supports collaboration

Contingencies
SC14 (3) Giving more autonomy to devs

(in staging or even production)

During the coding process, we linked a few codes to sup-
plementary properties of our taxonomy. The strong codes

http://ime.usp.br/~leofl/devops/2021-06-20/structures-digest.html
http://ime.usp.br/~leofl/devops/2021-06-20/structures-digest.html

8

Single dev/infra
department

Segregated dev & infra
departments

Collaborating dev & infra
departments

infrastructure professionals as development collaborators

in-house-administered open-source platform
custom platform

API-mediated dev & infra
departments

enabler team

with a platform

Organizational structuresupplementary
properties

can qualify supplementary
properties

can qualify structures
that are qualified as supplementary

properties

infrastructure professionals occasionally embedded in product-centered dev teams cloud façade with specialized API

deployment pipeline
provider

consulting team coordination
committee

developers withinfra backgroundand attributions
lightweight infrastructure effort

dedicated infrastructureprofessionals

Fig. 4. The high-level view of our taxonomy after the refinement process

TABLE 5
Strong codes for single dev & infra departments

Conditions
SC15 (3) Enough ops for each dev team

Causes
SC16 (10) Startup scenario (small, young, weak infra scalability

requirements, business focus, use of cloud services
to limit costs)

SC17 (6) Cloud services decrease the need of infra & ops staff
SC18 (3) Delivery velocity, agility, critical project

Avoidance reasons
SC19 (4) Not suitable for applying corporate

governance & standards
SC20 (3) More costs: duplication of infra work among teams,

high salaries for infra professionals, underused
infra professionals
Consequences

SC21 (9) No [infra] defaults across teams: freedom,
but possibly leading to duplication of efforts and
high maintenance costs
Contingencies

SC22 (3) Improve infra skills in-house, inclusive with tech talks

having such attribution are SC15 (associated with “ded-
icated infrastructure professionals”) and SC22 (associated
with “developers with infra background and attributions”).

We also report, in Table 7, the total number of codes
(not only strong codes) found per code class (6C label vs.
organizational structure). One example of a code that is not
a strong code, an avoidance reason for single departments
found in I55 and I58, is “specialized knowledge brings
scale gains.” We list all the codes in the supplementary
material (File 3), where each code is linked to its supporting
interviews.

To illustrate, we present here some supporting state-
ments from the interviews (for one condition, one conse-
quence, one avoidance reason, one cause, and one contin-
gency):
SC04 (condition): “We tried this approach [collaborating de-

partments] for a while, and it didn’t work. (...) The infra
team was small, and it had to be in several teams at the same
time.” (I49).

SC11 (consequence): “If there is a problem, it may not be clear
who owns the problem, and this creates inefficiency. This
division hurts ownership.” (I38).

SC19 (avoidance reason): “They are afraid of being too open
and starting to lose control over the best practices and care
with security, availability, attacks.” (I68).

SC28 (cause): “The platform team was ideal because it was how
we managed to move people within the company without
generating a very big impact to other areas to set up a
platform.” (I41).

SC46 (contingency): “The biggest discussion was about to what
extent devs have to understand the infra. I radically thought
devs should know some minimum. But the tech leads thought
differently, that devs didn’t have to know anything.” (I53).

In the supplementary material, we discuss the above-
cited codes in more depth (File 8). A list with one supporting
excerpt for each strong code is also available in the supple-
mentary material (File 9).

5.1 Covariance analysis
Covariance, part of the 6C analysis, means the occurrence
of one code correlates with the occurrence of another
code [45], [47]. Covariance analysis reveals codes commonly
supported by multiple interviews, providing more insight

9

TABLE 6
Strong codes for API-mediated dev & infra departments

Conditions
SC23 (8) Medium to large sized company
SC24 (5) Top-down initiatives/sponsorship
SC25 (4) Upfront investment
SC26 (3) Requires coding skills from infra people

Causes
SC27 (8) Delivery bottleneck in infra management
SC28 (4) Compatible with existing rigid structures (low impact

on organogram) / Only a few people needed to form
a platform team

SC29 (4) Fosters continuous delivery
SC30 (4) A hero or visionary (hero culture)
SC31 (4) Emerged as best solution; other initiatives

not so fruitful
SC32 (3) Multiple products / multiple dev teams / multiple

clients (requires high delivery performance)
Consequences

SC33 (8) Interaction (devs x platform team) to: support devs,
make things work, and demand new capabilities
from the platform

SC34 (7) The platform provides common mechanisms
(e.g., scaling, billing, observability, monitoring)

SC35 (4) Promotes continuous delivery, agility, and
faster changes

SC36 (4) Devs responsible for infra architecture / concerns
(e.g., non-functional requirements)

SC37 (4) Platform team provides consulting and documentation
to devs

SC38 (4) Adding devs do not require adding [proportionally]
more infra people

SC39 (3) Eliminated previous bottleneck
SC40 (3) Small platform team (excellence center)
SC41 (3) High costs when using public clouds
SC42 (3) Devs skills are too focused on corporate needs,

lacking base infra knowledge (bad for devs themselves,
not for the company)

SC43 (3) The cost of managing the platform (even using
open-source software) is high

SC44 (3) Risk: platform is magic to devs; neglect quality because
they trust too much in the platform, any problem
they blame the platform and do not know what to do,
even for simple problems or when the problem is in
the application itself

SC45 (3) Devs possibly unable to understand the infra or to
contribute to the platform
Contingencies

SC46 (3) Decide how much devs must be exposed to the infra
internals (some places more, some places less)

into theory building. We define a strong covariance group
as a group of at least three codes related to a set of at least
three sources. For example, codes A, B, and C are in the same
strong covariance group when all of them are supported by
interviews 1, 2, and 3.

Following this definition, we found: 17 strong groups
with 3 codes linked to a 3 source-set; 1 strong group with 4
codes linked to a 3 source-set; 1 strong group with 5 codes
linked to a 3 source-set; and 2 strong groups with 3 codes
linked to a 4 source-set. Table 8 describes the last four strong
covariance groups, which are the strongest ones since they
have more codes or more sources.

6 DISCUSSION

In this section, we first explain how the presented results
relate to the posed research questions. Then, we indicate
some practical implications of our findings and further
interpretations of the results.

TABLE 7
Amount of codes found per code class

Seg
reg

ate
d

Coll
ab

ora
tin

g

API-m
ed

iat
ed

Single

Characteristics 5 4 6 2
Conditions 0 4 6 3
Causes 5 9 25 8
Avoidance reasons 1 1 3 7
Consequences 7 16 32 13
Contingencies 1 9 13 18

TABLE 8
Strong covariance groups

Group Strong Supporting
reference codes interviews
G1 SC27, SC33, SC34, SC37 I57, I59, I62
G2 SC10, SC24, SC27, SC30, SC31 I40, I41, I48
G3 SC27, SC33, SC34 I48, I57, I59, I62
G4 SC10, SC24, SC27 I40, I41, I48, I49

RQ1 is about why different organizations adopt different
structures for development and infrastructure professionals.
Conditions and causes in the 6C analysis point in this
direction. For example, a startup, still struggling to vali-
date its value proposition, is not in a moment to be so
cautious about infrastructure requirements. Therefore, such
a startup scenario (SC16) usually leads to the adoption of
single departments, with developers taking care of infras-
tructure concerns. After scalability and other infrastructure
concerns gain relevance for the company, and the company
increases its portfolio with multiple products to multiple
clients (SC32), API-mediated departments is seen as a path
to overcome existing delivery bottlenecks (SC27), and this
promise seems to be fulfilled (SC39). Collaborative depart-
ments requires certain parity in the ratio of development
to infrastructure people (SC15) to increase its success pos-
sibility. Therefore, having a low number of infrastructure
professionals and a hierarchy culture (SC28), hampering
direct contact between departments on a daily basis, are
forces pushing to API-mediated departments.

RQ2 inquires about the drawbacks and mitigations for
each structure. Avoidance reasons, consequences, and con-
tingencies in the 6C analysis provide us answers. Although
planned to increase direct cooperation (SC09), collaborative
departments may present side effects since responsibilities
become blurred (SC11). Some interviewees expressed con-
cerns about governance and technological standardization.
We found that multiple single departments in mid-sized or
large companies can be an obstacle to such standardization
(SC19). If this is a concern3, the company may prefer to
adopt API-mediated departments. A peculiar disadvantage
of API-mediated departments is that programmers are
less likely to be aware of the infrastructure (SC42), which
may not be a disadvantage for the company, but possibly
for the developers’ careers. In this context, we witnessed

3. We interviewed one very large company (I38) adopting single
departments that were not concerned with standardization: fostering
an inner “free market” of solutions was an innovation strategy.

10

discussions about to which degree to expose infrastructure
details to developers (SC46) and strategies to communicate
how to use the platform, such as personalized consulting
and mass communication (SC37). These discussions also
emerged from situations with programmers overly relying
on the platform, ignoring the bare minimum of infra man-
agement they should master (SC44).

In this way, the association of concepts of our taxonomy
to 6C codes provides explanations about the structures’
phenomenon. Such a new explanatory dimension enables
scholars to understand structures more deeply and better
equip practitioners to discuss them and make decisions.

6.1 Practical implications

We, now, provide some advice to the software industry
based on the practical implications of our research:

• If, for any reason, your organization must strongly
segregate development and infrastructure profession-
als, do not demand high delivery performance as an
organization goal (SC02).

• If your organization does not have enough infrastruc-
ture people to collaborate with developers freely, do
not attempt to establish a strategy of collaborating
departments (SC04).

• When adopting collaborating departments, warn pro-
fessionals that it is not feasible to foresee detailed
responsibilities expected from each role (SC11). Instead,
actions must be taken based on goals aligned among
departments.

• If you want highly autonomous teams able to move
fast, be ready to give up on enforcing corporate stan-
dards to make uniform the infrastructure of these teams
(SC21). Also, consider some measures to make every
team knowledgeable in infrastructure: hire enough in-
fra people (SC15), embrace cloud automation (SC17),
and provide time to the workforce to improve their
skills (SC22).

• If you want to achieve high delivery performance by
adopting an internal infrastructure platform, be pre-
pared to pay the price in advance (SC25): prepare infra
people with development skills (SC26) and enlarge de-
velopers’ responsibility over operations including non-
functional concerns (SC36).

• Define your platform’s expected level of abstraction
(SC46) and warn people about this expectation.. This
measure can soothe conflicts and leverage collaboration
among developers and the platform team. Also, warn
developers and the platform team about their expected
interaction patterns (SC33).

We discuss more concrete implications in the supple-
mentary material. There (File 8), we further discuss five
strong codes (SC04, SC28, SC19, SC11, SC46), the same
codes for which we provided supporting statements from
the interviews (in Section 5). This additional discussion
unveils some rich insights behind strong codes, such as
bosses fearing losing their positions as an inhibitor of radical
changes in structures (SC28), low participation of infrastruc-
ture professionals in agile ceremonies as an indication of
failure in adopting collaborating departments (SC04), and

onboarding time being a reason for the managers’ concern
with corporate standards for infrastructure (SC19).

6.2 Further interpretations
Unfortunately, the codes of different 6C labels were not
evenly distributed across the structures of our taxonomy. In
particular, we found more strong codes for API-mediated
departments, and we had only three contingency strong
codes. We identified many more contingencies (38 in total),
but most of them were supported by only one interview.
This may point to a lack of structure awareness by the
community, so each company tries to handle the problems
in different ways. It could also reflect the peculiarities of
the organizations, but evaluating the raw data, that does
not seem to be the case. For example, “Playground area so
that devs can learn infra” (I50) appears to be a contingency
that could be applied to many more organizations. Another
interpretation points to the analysis strategy: we considered
a contingency as “a solution to one problem,” which splits
a common solution into different codes.

The largest class of strong codes (6C label and structure)
we found was consequences for API-mediated depart-
ments (32 consequences). This suggests that this structure
may have more predictable outcomes than the others. Also,
from the eight codes within the strong covariance groups,
seven are related to API-mediated departments. This also
puts API-mediated departments as a more understandable
phenomenon. Interestingly, the presence of a disadvantage
of collaborative departments (SC10) within strong covari-
ance groups (G2, G4) shows a motivation for adopting API-
mediated departments.

The structure for which we found more codes suggest-
ing failure scenarios was collaborative departments (SC10,
SC11, SC12). We consider it may be easier for large orga-
nizations with segregated structures trying to move first
to collaborative departments. However, having a limited
number of infrastructure professionals and not giving them
enough budget to interact with developers are recurring
factors leading to overload (SC10). Such a situation makes
professionals forget the DevOps initiative and revert to the
previous siloed style of work. Giving more autonomy to
devs (SC14) is an attempt to handle this scenario. Moreover,
we found more examples of collaborative departments in
which the infrastructure remained as a bottleneck in the de-
livery path (SC12). This reinforces our previous finding that
there is no correlation between collaborative departments
and delivery performance [28].

Finally, an additional benefit of our theory, provided by
its building process, is offering a taxonomy with objective
terms. This concern, for example, led us to replace “silo”
(a metaphor) with “segregated” in our refinement process.
Such objectiveness is valuable considering the amount of
energy and time practitioners take in discussing again and
again what DevOps is4 [3].

7 QUALITY CRITERIA

The quality criteria we pursued are the ones defined by
Guba [39] for naturalist inquiries: credibility (how plausi-

4. See, for example, the “Chef Style DevOps Kungfu” talk:
https://youtu.be/ DEToXsgrPc.

https://youtu.be/_DEToXsgrPc

11

ble or true the findings are); dependability (methodology
applied consistently); confirmability (opportunities for cor-
recting research bias); and transferability (generalizability).
Such criteria are widely used in Grounded Theory (GT)
studies [7], [35], [53], [54]. For meeting such criteria, we
applied the following treatments [53]:

• Providing a chain of evidence (the files of our supple-
mentary material5), which contributes to credibility and
dependability.

• Collecting interviewees’ opinions on the results, i.e.,
member check (Section 7.1), which contributes to credi-
bility and confirmability.

• Having a diverse selection of participants (see Sec-
tion 3.1), including the triangulation with development
and infrastructure staff within some organizations,
which contributes to transferability;

• Triangulating among coauthors through a review pro-
cess (Section 3.5) and methodology revision by a coau-
thor experienced in qualitative methods [55], which
contribute to confirmability.

• Providing quantified evidence of saturation (Sec-
tion 3.6), which contributes to dependability (this is
an additional quality measure, not standard in other
works).

• Reporting only codes confirmed by multiple partici-
pants (strong codes), which contributes to credibility
and transferability.

7.1 Member check
Grounded Theory aims to formulate relevant theories for
practitioners, so it is crucial to investigate whether find-
ings make sense to them [24]. However, it is opportune to
highlight that the goal of our member check is to assess
only the theory resonance [24] with participants and not
to validate the theory itself. Participants are not obliged to
verify whether the abstractions risen from diverse data are
conceptually adequate [56]. Therefore, readers should con-
sider member check together with other quality treatments.

We performed a member check by collecting feedback
on our results from the participants using online surveys,
which we provide as supplementary material (File 7). For
each structure, we prepared one form listing its correspond-
ing strong codes. For each strong code, the respondent had
to tick one option within the following Likert scale: “true”,
“usually true”, “no correlation / I don’t know”, “usually
false”, “false”. We also left a field for general comments.
Because opining on all strong codes would take too long, we
asked each participant to answer only one form as a strategy
to increase the response rate. Nonetheless, they were free to
answer all the forms if they so wished.

We sent the feedback requests in three rounds: (i) to
Phase 1 interviewees, (ii) to Phase 2 interviewees, and, after
some time, (iii) to the ones who did not reply to us and
to the 7 participants of the initial brainstorming sessions.
We received responses from 39 of these 75 participants.
We received 8 responses for the segregated departments
form, 12 for the collaborating departments form, 12 for
the API-mediated departments form, and 15 for the single

5. Available at http://www.ime.usp.br/∼leofl/devops/assets/files/
smtse-v2.tar.gz.

departments form. From the 564 manifested opinions on
strong codes, 365 were favorable (65% of the participants
considered them to be true or usually true), while only 83
(15%) were unfavorable (usually false or false). In particular,
every strong code received favorable feedback from at least
one participant. This result suggests a good resonance of the
participants with our theory.

According to a respondent’s comment, disagreements
related to single departments may relate to possible in-
terpretations depending on single departments having in-
frastructure specialists. Indeed, in the forms, we did not
associate SC15 and SC22 to their respective supplementary
properties (see Section 5), which possibly jeopardized re-
spondents’ reasoning. This issue was fixed in the second
round of feedback requests.

7.2 Generalizability

Although we cannot claim generalizability with statistical
confidence, the employed methods and the taken sample
provide some relative generalizability to our theory (at least
more than case studies [38] usually provide).

We took a diverse sample. Considering semi-structured
interviews in the first and second research phases, we in-
terviewed 20 companies with more than 1,000 employees,
17 with between 200 and 1,000 employees, and 17 with less
than 200 employees. We interviewed people in 8 countries.
The company domains also varied wildly.

In the second research phase, we applied our taxonomy
in conversations with professionals working in companies
that did not provide data to the classification construction
in the first phase. In the context of our resonance analysis,
among the interviews in new companies, we had 99 codes
of support and 25 codes of confusion (four times more
support than confusion), which contributes to showing the
generalizability of our theory. In addition, confusion codes
started to rarefy at the last interviews since we used confu-
sions to improve the theory. In the 6C analysis, we found
15 characteristics (of 17 characteristics codes) that define
the organizational structures in 15 new companies (88% of
the new interviewed companies), which also contributes to
show that our theory applies to these new contexts.

We also were cautious about the diversity of the inter-
viewees’ roles. Only five (13%) of the interviewees had an
infrastructure role in the first research phase. In the second
phase, we were able to improve this situation. From the
31 interviewees in the second phase, 14 of them (nearly
half) had an infrastructure role. Since, for the second phase,
we looked for people with more in-house experience, so
they could answer our “why questions,” we ended up also
interviewing a larger fraction of managers (30% vs. 61% of
managers).

The 6C analysis also provided more evidence for some
findings of the first phase. In particular, API-mediated
departments still seems to be a promising path to achieve
high delivery performance in comparison with the other
structures. Such results now concur with results of other
independent studies [7], [29]. We heard of bottlenecks in
the delivery path, especially in the segregated and the
collaborating departments structures, while some intervie-
wees claimed that the API-mediated structure removed the

http://www.ime.usp.br/~leofl/devops/assets/files/smtse-v2.tar.gz
http://www.ime.usp.br/~leofl/devops/assets/files/smtse-v2.tar.gz

12

bottleneck previously existing. Another reinforced findings
is that single departments is more associated with small
organizations, while API-mediated departments is not.

In summary, the points strengthening our theory’s gener-
alizability are: (i) diversity of professional and company pro-
files in our sample; (ii) applying our taxonomy to scenarios
that did not feed its initial version; (iii) gathering evidence
of support for the theory among new companies; and (iv)
gathering evidence corroborating preliminary findings.

8 THREATS TO VALIDITY

As usual to taxonomical theories [24], our work does not
provide probabilistic predictions in terms of dependent and
independent variables. As usual to grounded theories [9],
some factors (such as interviewees anonymity and unavoid-
able subjectivity in analysis) make the research not fully
replicable. In particular, anonymity is a trade-off with the
potential number of interviewees and goes along with eth-
ical research [57]; also, interviewing the same person again
does not necessarily yield the same results.

Given cost considerations, the review process has lim-
itations. Reviewing authors read only some transcriptions
excerpts: whenever needed during reviews, we searched
for these relevant excerpts to support our discussions. Our
research data corresponds to people’s views and opin-
ions, which may drift from objective reality. Therefore, an
observational research approach would be desirable [24].
However, our research questions are too abstract to grasp
only by observation, even meeting observations, without
further conversations with the observed people. Therefore,
observational research with the same goal as ours would be
much more expensive, if at all feasible, especially involving
as many organizations as we did.

Responses were dependent on how we presented the
taxonomy, which interviewees could misunderstand. A mit-
igation for this issue was analyzing how to improve the
taxonomy presentation for the subsequent sessions.

9 CONCLUSION

Our research provides a theory on how software-producing
companies organize their development and infrastructure
workforce according to different organizational structures:
segregated departments, collaborative departments, API-
mediated departments, and single department. Some of
these structures have relevant variations represented in
our taxonomy (e.g., single departments may or may not
encompass staff dedicated to infrastructure). We found why
different organizations adopt (or do not adopt) different
structures and the conditions leading to this choice (e.g.,
API-mediated departments are pursued to address deliv-
ery bottlenecks; single departments are avoided for its
unsuitability in enforcing corporate standards; and col-
laborating departments require proportional infra people
per development team). We also found that each structure
has drawbacks and how organizations deal with such dis-
advantages (e.g., collaborating departments may lead to
conflicts due to blurred responsibilities; tuning the platform
abstraction level may prevent developers from over-relying
on the platform as magical). A notable result is that we

found many contingencies, but only a few shared among
different organizations, which can be a consequence of the
lack of awareness of organizational structure patterns in the
software industry.

This work has implications for practice. By increasing the
awareness of organizational structures in the community,
practitioners can make more informed decisions on struc-
ture selection and drawback handling. Moreover, having
an up-to-date view of what “other companies are doing” is
always a relevant input for practitioners’ decision-making.
An example is that practitioners can relate observed prob-
lems in their organizations to expected consequences under
our theory. Such explicit associations can avoid hours of
unfruitful discussions, possibly assuming the problem to be
“something that only happens here.”

This work also has implications for scholars. Professors
can update their understanding of the software production
phenomenon based on concepts and relations grounded on
the current behavior of the software industry. Thus, profes-
sors can update their software engineering classes accord-
ingly. A secondary and methodological contribution of our
work for developing new grounded theories is providing an
objective technique to detect theoretical saturation, which is
rarely seen in the literature.

Finally, grounded theories can always be adapted ac-
cording to the discovery of new instances of the phe-
nomenon. Therefore, further research on the topic is wel-
come, especially considering that, usually, software engi-
neering theories (as social theories) are not proven to be
true. In particular, observational studies would be desirable
to strengthen (or dispute) our theory. Given the existence of
other taxonomies in the DevOps context, promising future
work is conciliating them in a unified model. Such unifica-
tion may also demand methodological advances: e.g., how
to merge taxonomies and validate such an integration? We
also believe many more insights and discussions can be
derived from our strong codes, be it in academic or prac-
titioners forums. In particular, a relevant implication for re-
searchers is that each strong code could be submitted to val-
idation studies or, at least, be a starting point to new studies.

ACKNOWLEDGMENTS

We thank the support of the Brazilian Federal Service
for Data Processing (Serpro), CNPq proc. 465446/2014-0,
CAPES – Finance Code 001, and FAPESP procs. 14/50937-1,
15/24485-9, and 2019/12743-4.

REFERENCES

[1] “ITIL 4th edition, glossary,” 2019, https://purplegriffon.
com/downloads/resources/itil4-foundation-glossary-january-
2019.pdf, accessed on Nov 2021.

[2] J. Fulmer, “What in the world is infrastructure,” PEI Infrastructure
Investor, vol. 1, no. 4, pp. 30–32, 2009.

[3] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey
of DevOps concepts and challenges,” ACM Computing Surveys,
vol. 52, no. 6, pp. 127:1–127:35, 2019.

[4] D. A. A. Tamburri, R. Kazman, and H. Fahimi, “On the relation-
ship between organisational structure patterns and architecture in
agile teams,” IEEE Transactions on Software Engineering, pp. 1–23,
2022, early access.

https://purplegriffon.com/downloads/resources/itil4-foundation-glossary-january-2019.pdf
https://purplegriffon.com/downloads/resources/itil4-foundation-glossary-january-2019.pdf
https://purplegriffon.com/downloads/resources/itil4-foundation-glossary-january-2019.pdf

13

[5] K. Nybom, J. Smeds, and I. Porres, “On the impact of mixing
responsibilities between devs and ops,” in International Conference
on Agile Software Development, ser. XP 2016. Springer International
Publishing, 2016, pp. 131–143.

[6] M. Shahin, M. Zahedi, M. A. Babar, and L. Zhu, “Adopting
continuous delivery and deployment: Impacts on team struc-
tures, collaboration and responsibilities,” in Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE’17. ACM, 2017, pp. 384–393.

[7] D. Lopez-Fernandez, J. Diaz, J. Garcia-Martin, J. Perez, and
A. Gonzalez-Prieto, “Devops team structures: Characterization
and implications,” IEEE Transactions on Software Engineering, 2021,
early access.

[8] R. W. Macarthy and J. M. Bass, “An empirical taxonomy of
DevOps in practice,” in 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2020, pp. 221–228.

[9] B. Glaser and A. Strauss, The discovery of grounded theory: strategies
for qualitative research. Aldine Transaction, 1999.

[10] S. Gregor, “The nature of theory in information systems,” MIS
quarterly, pp. 611–642, 2006.

[11] J. Stoner and R. E. Freedman, Administração. Prentice-Hall, 1995.
[12] L. Donaldson, “Teoria da contingência estrutural,” in Handbook de

estudos organizacionais. Atlas, 1999.
[13] R. H. Hall, Organizações, estruturas e processo. Prentice-Hall, 1984.
[14] N. Oliveira and N. Takahashi, “Organizational structure, format,

shape design and architecture,” in Automated organizations: Devel-
opment and structure of the modern business firm. Springer, 2012.

[15] M. E. Conway, “How do committees invent,” Datamation, vol. 14,
no. 4, pp. 28–31, 1968.

[16] F. C. Lunenburg, “Organizational structure: Mintzberg’s frame-
work,” International journal of scholarly, academic, intellectual diver-
sity, vol. 14, no. 1, 2012.

[17] D. E. Yeatts and C. Hyten, High-Performing Self-Managed Work
Teams: A Comparison of Theory to Practice. Sage Publications, 1998.

[18] D. S. Pugh, D. J. Hickson, and C. R. Hinings, “An empirical
taxonomy of structures of work organizations,” Administrative
Science Quarterly, vol. 14, no. 1, 1969.

[19] M. E. Sosa, S. D. Eppinger, and C. M. Rowles, “The misalignment
of product architecture and organizational structure in complex
product development,” Management Science, vol. 50, no. 12, 2004.

[20] C. B. Seaman and V. R. Basili, “Communication and organization:
an empirical study of discussion in inspection meetings,” IEEE
Transactions on Soft. Engineering, vol. 24, no. 7, pp. 559–572, 1998.

[21] J. Herbsleb and J. Roberts, “Collaboration in software engineering
projects: A theory of coordination,” in International Conf. on Infor-
mation Systems 2006 Proceedings, ser. ICIS 2006, 2006, pp. 553–568.

[22] N. Nagappan, B. Murphy, and V. Basili, “The influence of orga-
nizational structure on software quality,” in 2008 ACM/IEEE 30th
International Conference on Software Engineering, 2008, pp. 521–530.

[23] D. A. Tamburri, P. Lago, and H. v. Vliet, “Organizational social
structures for software engineering,” ACM Computing Surveys,
vol. 46, no. 1, 2013.

[24] P. Ralph, “Toward methodological guidelines for process theories
and taxonomies in software engineering,” IEEE Transactions on
Software Engineering, vol. 45, no. 7, pp. 712–735, 2019.

[25] M. Skelton and M. Pais, “Devops topologies,” 2013, https://web.
devopstopologies.com/, accessed on Nov 2021.

[26] ——, Team Topologies: Organizing business and technology teams for
fast flow. IT Revolution Press, 2019.

[27] A. Mann, M. S. A. Brown, and N. Kersten, “2018 State of DevOps
Report,” 2018, https://puppet.com/resources/whitepaper/2018-
state-of-devops-report, accessed on Jul 2019.

[28] L. Leite, G. Pinto, F. Kon, and P. Meirelles, “The organization of
software teams in the quest for continuous delivery: A grounded
theory approach,” Information and Software Technology, vol. 139, p.
106672, 2021.

[29] A. Brown, M. Stahnke, and N. Kersten, “2020 State of DevOps
Report,” 2020, https://www2.circleci.com/2020-state-of-devops-
report.html, accessed on Dec 2021.

[30] L. Leite, F. Kon, G. Pinto, and P. Meirelles, “Building a theory
of software teams organization in a continuous delivery context,”
in 42nd International Conference on Software Engineering Companion,
ser. ICSE ’20 Companion, 2020, pp. 294–295.

[31] L. Leite, G. Pinto, F. Kon, and P. Meirelles, “Platform teams: An
organizational structure for continuous delivery,” in IEEE/ACM
42nd International Conference on Software Engineering Workshops, ser.
ICSEW’20, 2020, pp. 505–511.

[32] N. Forsgren, M. A. Rothenberger, J. Humble, J. B. Thatcher, and
D. Smith, “A taxonomy of software delivery performance profiles:
Investigating the effects of DevOps practices,” in AMCIS 2020
Proceedings, no. 8, 2020.

[33] F. M. A. Erich, C. Amrit, and M. Daneva, “A qualitative study
of DevOps usage in practice,” Journal of Software: Evolution and
Process, vol. 29, no. 6, 2017.

[34] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in soft-
ware engineering research: A critical review and guidelines,” in
2016 IEEE/ACM 38th International Conference on Software Engineer-
ing, ser. ICSE ’16, 2016, pp. 120–131.

[35] M. Jovanović, A. Mas, A.-L. Mesquida, and B. Lalić, “Transition of
organizational roles in agile transformation process: A grounded
theory approach,” Journal of Systems and Software, vol. 133, 2017.

[36] K.-J. Stol and B. Fitzgerald, “The ABC of software engineering
research,” ACM Transac. on Software Engineering and Methodology,
vol. 27, no. 3, 2018.

[37] W. C. Adams, “Conducting semi-structured interviews,” in Hand-
book of Practical Program Evaluation, 3rd ed. Jossey-Bass, 2010.

[38] R. K. Yin, Case Study Research, Design and Methods, 4th ed. Sage
Publications, 2009.

[39] E. Guba, “Criteria for assessing the trustworthiness of naturalistic
inquiries,” Educational Technology Research and Development (ECTJ),
vol. 29, pp. 75–91, 1981.

[40] D. G. Sirmon, M. A. Hitt, R. D. Ireland, and B. A. Gilbert,
“Resource orchestration to create competitive advantage: Breadth,
depth, and life cycle effects,” Journal of management, vol. 37, no. 5,
pp. 1390–1412, 2011.

[41] L. T. Pinfield, “A field evaluation of perspectives on organizational
decision making,” Administrative Science Quarterly, vol. 31, no. 3,
pp. 365–388, 1986.

[42] P. A. Anderson, “Decision making by objection and the Cuban
missile crisis,” Administrative Science Quarterly, vol. 28, no. 2, pp.
201–222, 1983.

[43] I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa, “Over-
coming open source project entry barriers with a portal for
newcomers,” in Proceedings of the 38th International Conference on
Software Engineering, ser. ICSE ’16. ACM, 2016, pp. 273–284.

[44] H.-F. Hsieh and S. E. Shannon, “Three approaches to qualitative
content analysis,” Qualitative health research, vol. 15, no. 9, pp.
1277–1288, 2005.

[45] B. Glaser, Theoretical Sensitivity: Advances in the Methodology of
Grounded Theory. The Sociology Press, 1978.

[46] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.
[47] R. Hoda, J. Noble, and S. Marshall, “The impact of inadequate

customer collaboration on self-organizing agile teams,” Informa-
tion and software technology, vol. 53, no. 5, pp. 521–534, 2011.

[48] G. van Waardenburg and H. van Vliet, “When agile meets the
enterprise,” Information and Software Technology, vol. 55, no. 12, pp.
2154–2171, 2013.

[49] B. Glaser, The grounded theory perspective III: Theoretical coding. The
Sociology Press, 2005, pp. 70.

[50] C. A. Hernandez, “Theoretical coding in Grounded Theory
methodology,” Grounded Theory Review, vol. 8, no. 3, 2009.

[51] M. Waterman, J. Noble, and G. Allan, “How much up-front?: A
grounded theory of agile architecture,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, ser. ICSE ’15,
2015, pp. 347–357.

[52] E. Woods, “Operational: The forgotten architectural view,” IEEE
Software, vol. 33, no. 3, pp. 20–23, 2016.

[53] M. G. Waterman, “Reconciling agility and architecture: a theory
of agile architecture,” Ph.D. dissertation, Victoria University of
Wellington, 2014.

[54] M. Shahin and M. A. Babar, “On the role of software architecture in
DevOps transformation: An industrial case study,” in Proceedings
of the International Conference on Software and System Processes, ser.
ICSSP ’20. ACM, 2020, pp. 175–184.

[55] C. Melo, “Productivity of agile teams: an empirical evaluation of
factors and monitoring processes,” Ph.D. dissertation, University
of São Paulo, 2015.

[56] B. G. Glaser, “Conceptualization: On theory and theorizing us-
ing grounded theory,” International Journal of Qualitative Methods,
vol. 1, no. 2, pp. 23–38, 2002.

[57] P. E. Strandberg, “Ethical interviews in software engineering,”
in International Symposium on Empirical Software Engineering and
Measurement 2019, ser. ESEM ’19, 2019.

https://web.devopstopologies.com/
https://web.devopstopologies.com/
https://puppet.com/resources/whitepaper/2018-state-of-devops-report
https://puppet.com/resources/whitepaper/2018-state-of-devops-report
https://www2.circleci.com/2020-state-of-devops-report.html
https://www2.circleci.com/2020-state-of-devops-report.html

14

Leonardo Leite received the MSc degree and
the PhD degree in Computer Science from the
University of São Paulo (USP) respectively in
2014 and 2022. Since 2014, he is a software
developer at the Brazilian Federal Service for
Data Processing (Serpro), in which he has suc-
cessfully promoted DevOps practices, such as
the adoption of automated tests, deployment
pipelines, continuous delivery, and monitoring.

Nelson Lago received the Bachelor’s degree in
music and the MSc degree in Computer Science
from the University of São Paulo (USP) in 2000
and 2004. He is currently the Technical Man-
ager of the USP FLOSS Competence Center,
and works both as researcher and IT operations
manager.

Claudia Melo received the MSc degree and the
PhD degree in Computer Science from the Uni-
versity of São Paulo (USP) respectively in 2006
and 2013. Former professor at the University of
Brası́lia (UnB) and head of technology for Latin
America at ThoughtWorks. She is now a Direc-
tor of Software Engineering/Tech Org Design at
Loft.

Fabio Kon received a bachelor’s degree in Mu-
sic from the São Paulo State University in 1992
and a Ph.D. degree in Computer Science from
the University of Illinois at Urbana-Champaign
in 2000. He is a Full Professor at the University
of São Paulo (USP) and carries out research in
software engineering, agile methods, distributed
systems, data science, and smart cities. He is
the coordinator of the Brazilian National S&T
Institute on the Future Internet for Smart Cities
(https://interscity.org).

Paulo Meireless received the PhD degree in
Computer Science from the University of São
Paulo (USP) in 2013. He is an adjunct professor
at the Federal University of ABC (UFABC). He
also works as a collaborating researcher at USP,
investigating Software Engineering, with a focus
in Free Software and DevOps.

https://interscity.org

	A theory of organizational structures for development and infrastructure professionals
	Introduction
	Related work
	Methodology and research design
	Sample
	Interview procedure
	Resonance analysis
	6C analysis
	Review process
	Theoretical saturation

	Identifying organizational structures
	Explaining organizational structures
	Covariance analysis

	Discussion
	Practical implications
	Further interpretations

	Quality criteria
	Member check
	Generalizability

	Threats to validity
	Conclusion
	References
	Biographies
	Leonardo Leite
	Nelson Lago
	Claudia Melo
	Fabio Kon
	Paulo Meireless

