
A Novel Integer Linear Programming Formulation for Job-ShopA Novel Integer Linear Programming Formulation for Job-Shop
Scheduling ProblemsScheduling Problems
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY-NC-SA 4.0

SUBMISSION DATE / POSTED DATE

15-05-2021 / 19-05-2021

CITATION

Liu, Anbang; Luh, Peter; Yan, Bing; Bragin, Mikhail (2021): A Novel Integer Linear Programming Formulation
for Job-Shop Scheduling Problems. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.14601123.v1

DOI

10.36227/techrxiv.14601123.v1

https://www.techrxiv.org
https://dx.doi.org/10.36227/techrxiv.14601123.v1

1

 2 5
Abstract – Job-shop scheduling is an important but difficult

problem arising in low-volume high-variety manufacturing. It is
usually solved at the beginning of each shift with strict
computational time requirements. To obtain near-optimal
solutions with quantifiable quality within strict time limits, a
direction is to formulate them in an Integer Linear Programming
(ILP) form so as to take advantages of widely available ILP
methods such as Branch-and-Cut (B&C). Nevertheless,
computational requirements for ILP methods on existing ILP
formulations are high. In this paper, a novel ILP formulation for
minimizing total weighted tardiness is presented. The new
formulation has much fewer decision variables and constraints,
and is proven to be tighter as compared to our previous
formulation. For fast resolution of large problems, our recent
decomposition-and-coordination method “Surrogate Absolute-
Value Lagrangian Relaxation” (SAVLR) is enhanced by using a 3-
segment piecewise linear penalty function, which more accurately
approximates a quadratic penalty function as compared to an
absolute-value function. Testing results demonstrate that our new
formulation drastically reduces the computational requirements
of B&C as compared to our previous formulation. For large
problems where B&C has difficulties, near-optimal solutions are
efficiently obtained by using the enhanced SAVLR under the new
formulation.

Index terms–Manufacturing, job-shop scheduling, integer
linear programming, decomposition and coordination

I. INTRODUCTION
ob shops are manufacturing systems designed for low-
volume/high-variety production [1]. In a job shop, machines
are grouped based on their functionalities, and each group

has limited capacities. A part may need to go through a
sequence of operations, each can be processed by one or a few
machine groups. A schedule is usually generated with strict
computational time requirements, e.g., 10 to 20 minutes, at the
beginning of a shift. The scheduling problem is subject to four
types of constraints: part-to-machine assignment constraints,
processing time requirements, operation precedence constraints,
and machine capacity constraints. To have on-time delivery –
the ultimate goal of job-shop scheduling, the objective function
should be due date related, e.g., weighted tardiness penalties.
The problem is difficult because of its combinatorial nature.

To obtain near-optimal solutions within strict time limits, a
direction is to formulate them in an Integer Linear
Programming (ILP) form so as to take advantages of widely
available ILP methods such as Branch-and-Cut (B&C) [2]–[4].
Nevertheless, the efficiency of ILP methods is significantly

This work is supported in part by Chinese National Innovation Center of

High Speed Train R&D project “Modeling and comprehensive intelligent
optimization for new high efficiency urban rail transit system” under grant No.
CX/KJ-2020-0006.

Anbang Liu is with the Center for Intelligent and Networked System
(CFINS), Department of Automation, Tsinghua University, Beijing 10084,
China (e-mail: liuab19@mails.tsinghua.edu.cn).

affected by problem formulations, and when a formulation
contains large numbers of decision variables and constraints,
these methods may experience difficulties [5]. Developing
good formulations is thus of critical importance. This, however,
is difficult in view of the many types of complicated constraints
within job-shop scheduling problems.

As will be reviewed in Section II, an ILP formulation was
presented in [6] based on our classic formulation [7], with very
recent extensions reported in [8]. In [6], operation beginning
times were selected as integer decision variables. Processing
time requirements and operation precedence constraints were
easily formulated based on them. To consider machine capacity
constraints, an additional set of binary indicator variables was
created to indicate the status of operations: if an operation is
active on a machine group at a time slot (i.e., being processed),
then the corresponding indicator variable equals one; and zero
otherwise. These indicator variables depend on operation
beginning times, and to describe such relationships, many
constraints are needed. Consequently, the computational
requirements of ILP methods for large problems are high.

To overcome the above-mentioned difficulties, a novel ILP
formulation will be developed in Section III. In the formulation,
the set of binary indicator variables indicating whether an
operation begins at a time slot on a machine group is selected
as decision variables. If an operation begins at a certain time
slot on a machine group, then the corresponding indicator
variable equals one; and zero otherwise. Based on these
variables, all constraints, including machine capacity
constraints, are innovatively formulated without introducing
additional decision variables or constraints. The numbers of
decision variables and constraints are thus significantly reduced
as compared to those of [6]. To theoretically demonstrate the
advantages of our formulation over that of [6] beyond counting
the numbers of decision variables and constraints, the two
formulations are compared in terms of “tightness” – a novel
concept to examine MILP formulations [8]. A formulation is
“tight” if its constraints directly delineate the convex hull of the
feasible solution set. In this case, the problem can be directly
solved by using Linear Programming (LP) methods. Suppose
that the two formulations of a problem have the same convex
hull. One formulation is “tighter” if the solution set of its LP-
relaxed formulation (with integrality requirements relaxed) is a
proper subset of the solution set of the other LP-relaxed
formulation. We prove that our new formulation is tighter than
the previous formulation. Since the new formulation has fewer

Peter B. Luh and Mikhail A. Bragin are with the Department of Electrical
and Computer Engineering, University of Connecticut, Storrs, CT 06269-4157,
USA (e-mail: peter.luh@uconn.edu and mikhail.bragin@uconn.edu.).

Bing Yan is with the Department of Electrical and Microelectronic
Engineering at Rochester Institute of Technology, Rochester, NY 14623, USA
(e-mail: bxyeee@rit.edu).

A Novel Integer Linear Programming
Formulation for Job-Shop Scheduling Problems

Anbang Liu, Peter B. Luh, Life Fellow, Bing Yan, Member, IEEE, Mikhail A. Bragin, Member, IEEE

J

2

decision variables and constraints and is tighter as compared to
the previous formulation, solution quality of B&C is much
improved, while computational requirements are much smaller,
as will be supported by numerical testing results in Section V.

Since our new formulation has low computational
requirements, B&C can solve small- or medium-sized problems
efficiently. For large problems, B&C may still suffer from poor
performance. Our recent decomposition-and-coordination
method “Surrogate Absolute-Value Lagrangian Relaxation”
(SAVLR) is enhanced in Section IV. SAVLR exploits
exponential reduction of complexity upon problem
decomposition, and effectively coordinates subproblem
solutions with accelerated convergence [9]. In the method,
machine capacity constraints, which couple various parts
assigned to a machine group, are “relaxed.” Instead of using
powerful quadratic penalty functions as in Augmented
Lagrangian Relaxation [10], violations of these constraints are
penalized by using an absolute-value function. This absolute-
value function is piece-wise linear with two segments, and is
exactly linearized by introducing additional decision variables
and constraints so as to use ILP solvers. The absolute-value
function, however, is a poor approximation to a quadratic
function, and the quadratic growth of penalties cannot be well
captured. When the level of constraint violation is large, the
absolute-value penalty function may not impose a sufficiently
large penalty, especially at the early stage of optimization. To
overcome this difficulty, the absolute-value penalty function is
enhanced by using a symmetric, 3-segment piecewise linear
function, where the middle segment is a constant. This function
better captures the quadratic growth of penalties as compared
to the absolute-value function. In addition, it can be exactly
linearized, and the numbers of additional decision variables and
constraints needed for linearization are the same as those
required by the absolute-value function. Extension to multiple-
segment piecewise linear penalty functions is possible.

To demonstrate the performance of our new formulation and
the enhanced SAVLR (or SAVLRE for short), three examples
are presented in Section V. The first and second are of small
and medium sizes, respectively, and are solved by using B&C.
The results demonstrate that our new formulation drastically
reduces the computational requirements of B&C as compared
with the original formulation of [6], and optimal solutions are
efficiently obtained. The third example with five large instances
is solved by using SAVLRE. Testing results demonstrate that
the convergence of multipliers is improved by using the new 3-
segment penalty function as compared to using the absolute-
value penalty function, and near-optimal solutions are therefore
obtained in a computationally efficient manner.

II. LITERATURE REVIEW
In this section, existing job-shop scheduling formulations are

reviewed in subsection A. Solution methodologies are then
discussed in subsection B.
A. Problem formulations

With complicated constraints, formulating a job-shop
scheduling problem is difficult [1]. ILP formulations were
reported in [11]–[14]. In these formulations, the objective is
usually to minimize the makespan, i.e., the time span from the
very beginning to the end when all the parts are processed. The

makespan, however, is a questionable objective function. The
reason is that for practical job shops, the paramount objective is
on-time deliveries of parts, and part due dates need to be
considered in the objective function. The makespan, however,
does not even include due dates in the formulation, and cannot
capture the on-time delivery performance. The total weighted
tardiness is a much practical objective function, and has been
used in most of our previous work [6], [7]. As related to
constraints, operations are usually assigned to individual
machines, and overlapping of two operations on a machine is
prohibited. In view that there are many possible sequences
among the operations assigned to a machine, the number of
such constraints are large, limiting the size of problems that can
be solved by optimization. Practically, there are multiple
machines of the same functionality in a job shop. The
consideration of groups of machines with the same
functionality as opposed to individual machines is therefore a
better modeling approach.

In [7], one of our earlier papers, a separable nonlinear
formulation was presented. Operation beginning times were
selected as integer decision variables, indicating when each
operation is to begin on an eligible machine group (as opposed
to begin on an eligible machine). The objective is to minimize
the total weighted tardiness. Machine capacity constraints limit
the number of active operations (i.e., operations that are being
processed) on a group. Consider for example a machine group
with five machines available at a particular time slot. Then at
most five operations can be active at that time slot. These
machine capacity constraints couple parts together and are
additive. The objective function is also part-wise additive.
Therefore, after machine capacity constraints are relaxed, the
problem can be decomposed into part subproblems, each with
much-reduced complexity.
 In our recent work [6], an ILP formulation was developed
based on [7]. In the formulation, operation beginning times
were selected as integer decision variables. From these
variables, processing time requirements and operation
precedence constraints were easily formulated. The difficulty is
the modeling of machine capacity constraints. An additional set
of binary indicator variables was created to indicate if an
operation is active on an eligible machine group at each time
slot following the idea of [7]. Then the sum of these indicator
variables over all relevant operations for a machine group
should be less than or equal to the number of machines available
in that group at each time slot. This set of indicator variables is
related to operation beginning times. To describe such
relationships, a significant number of additional constraints are
needed. Therefore, although this formulation is linear, B&C
might suffer from poor performance for large problems. Very
recently, the formulation in [6] was tightened through a
systematic approach by transforming the constraints to directly
delineate the convex hull of the feasible solution set in [8], and
the computational efficiency of B&C has thus been improved.
B. Solution methodologies

In this subsection, heuristics, branch-and cut, standard
Lagrangian Relaxation, Surrogate Lagrangian Relaxation and
Surrogate Absolute-Value Lagrangian Relaxation are briefly
reviewed to solve job shop scheduling problems.

3

Heuristics. Heuristics such as shift bottleneck method [15], [16]
and meta-heuristics such as Tabu search [17] are frequently
used to solve job-shop scheduling problems. These methods
have the advantage of low computational requirements.
However, convergence is difficult to guarantee, and the quality
of solutions is difficult to quantify.
Branch-and-Cut (B&C). Branch-and-Cut (B&C) has been
used to solve ILP job-shop scheduling problems, e.g., [6], [12],
[13]. The key idea of B&C is to find the convex hull of the
feasible solution set through adding “valid cuts.” If the convex
hull is found, then the optimal solution can be obtained by using
LP methods. If the method fails to obtain the convex hull, or
valid cuts are difficult to obtain or are ineffective, then time-
consuming Branch-and-Bound is used. Since finding convex
hulls of feasible solution sets itself is NP-hard, B&C may suffer
from poor performance for large problems.
Standard Lagrangian Relaxation. Lagrangian Relaxation
(LR) methods were frequently used to solve ILP problems [7],
[18]. In [7], after relaxing coupling machine capacity
constraints, the “relaxed problem” is decomposed into smaller
subproblems, one for each part. Since subproblems have much-
reduced sizes, their complexity is drastically reduced as
compared to that of the original problem. Subproblem solutions
are then coordinated through iterative updating of multipliers
based on subgradients. However, since all subproblems need to
be solved to obtain a subgradiant and the stepsizes require the
knowledge of the unknown optimal dual value, the performance
of traditional LR is generally poor. To accelerate convergence,
the violations of coupling constraints can be penalized by
quadratic penalty terms which can be approximated by using
piecewise linear functions as in [18]. Nevertheless, [18] did not
provide the equation for the piecewise linear functions, and did
not examine how many segments should be used and why.
Surrogate Lagrangian Relaxation (SLR) and Surrogate
Absolute-Value Lagrangian Relaxation (SAVLR). By
exploiting a contraction mapping concept, our recent SLR ([10])
was developed without requiring the knowledge of the optimal
dual value to calculate stepsizes. Moreover, multipliers are
updated without requiring all subproblems to be solved, thereby
reducing the high computational requirements and the
multiplier zigzagging issues. Most of the major difficulties of
traditional LR have thus been overcome. Convergence is further
improved in the SAVLR method in [9], where absolute-value
penalty functions (2-segment piecewise linear functions) are
used to penalize the levels of machine capacity violations in [6].
This penalty function can be exactly linearized with very few
additional constraints. SAVLR is usually combined with B&C
to efficiently solve ILP problems.

III. A NOVEL INTEGER LINEAR FORMULATION
In this section, a novel ILP formulation for job-shop

scheduling problems based on that of [6, 8] is presented in
subsection A. The advantages of the formulation are then
analyzed in subsection B.
A. Problem formulations

Consider a job shop with M machine groups. The capacity of
machine group m at time slot t is denoted as Mm,t for m ∈ [1,
2, .., M] and t ∈ [1, 2, ..., T], where T is the total number of time

slots and is assumed to be long enough to process all the parts.
There are I parts, each with an arrival time ai and a due date di.
Part i ∈ [1, 2, ..., I] needs to go through a sequence of Ji
operations, and the jth operation of part i is denoted as (i, j) – a
“part-operation pair.” Let the set of all part-operation pairs be
denoted as S. An operation can be processed by one of the
eligible machine groups Ui,j, and the processing time of
operation (i, j) on machine group m is denoted as pi,j,m, which
may be machine group dependent. It is assumed that processing
cannot be interrupted, i.e., non-preemptive. In the following,
decision variables are first introduced. Then four types of
constraints, including part-to-machine assignment constraints,
processing time requirements, operation precedence constraints,
and machine capacity constraints, are formulated, followed by
the objective function.
a) Decision variables

As reviewed in subsection II.A, operation beginning times
are integer decision variables in the formulations of [6], [8],
resulting in large numbers of additional variables and
constraints. To overcome this difficulty, a set of binary
indicator variables indicating whether an operation begins at a
time slot on a machine group is selected as decision variables.
If operation (i, j) is to begin on machine group m at time slot t,
then bi,j,m,t equals one; and it equals zero otherwise.
b) Part-to-machine assignment constraints

Since each operation must be assigned to a unique machine
group and to begin at a unique time slot, part-to-machine
assignment constraints are modeled as follows:

,

, ,

, , , 1, (,) .
i j

i j i j

u

i j m t
m U t l

b i j S
∀ ∈ =

= ∀ ∈∑ ∑ (1)

In the above, the range [li,j, ui,j] contains all eligible beginning
times for operation (i, j). The method to calculate [li,j, ui,j] will
be described later in (9) and (10).
c) Processing time requirements

From the operation beginning indicator variables, integer
operation beginning times are obtained as

,

, ,

, , , , , (,) ,
i j

i j i j

u

i j i j m t
m U t l

b t b i j S
∀ ∈ =

= ⋅ ∀ ∈∑ ∑ (2)

where the integer variable bi,j is the beginning time of operation
(i, j). Since processing is non-preemptive, the completion time
equals its beginning time plus the required processing time
following equation (2) in [6], i.e.,

,

, ,

, , , , , ,() 1, (,) ,
i j

i j i j

u

i j i j m i j m t
m U t l

c t p b i j S
∀ ∈ =

= + − ∀ ∈∑ ∑ (3)

where ci,j is the completion time of operation (i, j). Note that
{bi,j} and {ci,j} are introduced here for easy understanding and
presentation. They are not decision variables in the solution
process to be introduced in Section IV.
d) Operation precedence constraints

For each part, its operations need to be processed in a given
sequence. Without loss of generality, operations for a part are
numbered according to their precedence, and operation (i, j+1)
cannot begin until operation (i, j) is completed, i.e.,

{ }, 1 , , (,) (,) | (,) , (, 1) .i j i jb c i j i j i j S i j S+ > ∀ ∈ ∈ + ∈ (4)
Equation (4) can be re-written without {bi,j} or {ci,j} as:

4

{ }

, ,

, , , ,

, +1, , , , , , ,() ,

(,) (,) | (,) , (, 1) .

i j i j

i j i j i j i j

u u

i j m t i j m i j m t
m U t l m U t l

t b t p b

i j i j i j S i j S
∀ ∈ = ∀ ∈ =

⋅ ≥ +

∀ ∈ ∈ + ∈

∑ ∑ ∑ ∑ (5)

e) Machine capacity constraints
To formulate machine capacity constraints, it is noticed that

if operation (i, j) is active on machine group m at time t, then its
beginning time must be within the interval [t-pi,j,m+1, t].
Therefore, the status (active or not) of operation (i, j) on
machine group m at time t, represented by δi,j,m,t, can be obtained
by summing up the operation beginning indicator variables over
[t-pi,j,m+1, t]:

, ,

, , , , , , ,
[1,]

, (,) , , .
i j m

i j m t i j m k i j
k t p t

b i j S m U tδ
∀ ∈ − +

= ∀ ∈ ∈ ∀∑ (6)

Again, variables {δi,j,m,t} are introduced for easy understanding
and presentation. They are not decision variables.

Based on (6), the number of active operations on machine
group m at time slot t is obtained by summing up the statuses of
all relevant operations that can be processed by the machine
group. Machine capacity constraints can thus be formulated as:

, ,

, , , ,
(,) [1,]

, , ,
m i j m

i j m k m t
i j O k t p t

b M t m
∈ ∀ ∈ − +

≤ ∀ ∀∑ ∑ (7)

where Om denotes the set of operations that can be processed by
machine group m.
f) The Objective function

Following [6], [7], the objective function to be minimized is
the total weighted tardiness. The tardiness of part i is the
number of time slots being late, i.e., the number of time slots
that the completion time of the last operation of part i exceeds
the due date di. It is thus described by ,max(,0)

ii J ic d− , where
(i, Ji) is the last operation of part i. The total weighted tardiness
is thus the sum of the weighted tardiness of all the parts:

,() max(,0),
ii i J i

i
f c w c d≡ ⋅ −∑ (8)

where wi is the weight or the importance of part i. Equation (8)
can be easily re-written without {bi,j} or {ci,j}.
g) Ranges of operation beginning times

To reduce the decision space, possible beginning time slots
of operation (i, j), i.e., [li,j, ui,j], need to be delineated. The lower
limits {li,j} and the upper limits {ui,j} are derived at the data-
preprocessing stage as follows. The earliest possible beginning
time slot of the first operation of part i is the part arrival time,
i.e., li,1 = ai. A subsequent operation cannot begin until there is
enough time to complete all the proceeding operations, i.e.,

,

1

, , ,
1

min (), 2.
i j

j

i j i i k mm Uk
l a p j

−

∈
=

= + ∀ ≥∑ (9)

There is a minimization in (9) since processing times may
depend on the selections of machine groups, which cannot be
predetermined. The smallest processing times are used to give
the maximal flexibility in selecting the beginning time slot.
Similarly, an operation cannot begin too late so that there is not
enough time to complete it and its subsequent operations. We
therefore have:

,
, , ,min (), .

i

i j

J

i j i k mm Uk j
u T p j

∈
=

= − ∀∑ (10)

Here, the smallest processing times are also used.

Based on the above, the job-shop scheduling problem can be
described as:

,

, ,

, , , , ,

, , ,

min{ max(() 1 ,0)},

. .(1), (5), (7), {0,1}, , , , .

i Ji

i i
i J i Ji i

u

i i J m i J m t ib i m U t l

i j m t

w t p b d

s t b i j m t
∀ ∈ =

⋅ + − −

∈ ∀

∑ ∑ ∑ (11)

The above objective function with the nonlinear “max” within
it can be linearized by introducing additional non-negative
integer decision variables {zi} following page 150 of [19] as:

,
min{ },i ib z i

w z⋅∑

subject to constraints (1), (5), (7) and additional inequalities
,

, ,

, , , , ,() 1 , .
i Ji

i i
i J i Ji i

u

i J m i J m t i i
m U t l

t p b d z i
∀ ∈ =

+ − − ≤ ∀∑ ∑ (12)

In view that part-to-machine assignment constraints (1) and
operation precedence constrains (5) are only associated with
individual parts, and machine capacity constraints (7) that
couple operations together and the objective function (8) are
part-wise additive, the above formulation is separable.
B. The advantages of our new formulation

It is difficult to compare our formulation directly with that
of [6] since for the latter, each operation can only be processed
by one machine group rather than by multiple machine groups.
This limitation has been removed in [8] before the formulation
is tightened – the theme of [8]. In view that tightening is a new
and dedicated research topic and has not been addressed for the
new formulation, the new formulation is thus compared with
the untightened formulation of [8], i.e.,

,

,

,

,

,, , ,

, ,

, , , , , ,

, , , ,

, , , ,

min{ max(,0)},

. . 1, (,) , (13)

1, (,) , (13)

(1), (,) , , (13)

(1), (,) , , (13

i

i j

i j

i j

i j

i i J ib c x i

i j m
m U

i j i j i j m i j m
m U

i j i j m t
m U

i j i j m t
m U

w c d

s t x i j S a

c b x p i j S b

t b M i j S t c

t c M i j S t

δ

δ

δ

∈

∈

∈

∈

⋅ −

= ∀ ∈

= + − ∀ ∈

≥ − − ∀ ∈

≤ + − ∀ ∈

∑

∑

∑

∑

∑

, , , , , , ,

,1 , 1 ,

, , , ,
(,)

)

, (,) , , (13)

, 1, (,) , (13)

, , .(13)
m

i j m t i j m i j m
t

i i i j i j

i j m t m t
i j O

d

x p i j S m e

b a b c i j S f

M m t g

δ

δ
+

∀ ∈

= ∀ ∈

≥ ≥ + ∀ ∈

≤ ∀

∑

∑

 (13)

To start with, our new formulation has significantly fewer
decision variables and constraints as compared to the previous
formulation [8] (now as (13)). To demonstrate this, consider a
problem with M machine groups, T time slots and a total of N
operations. In the new formulation, the number of decision
variables is N∙M∙T, and the total number of constraints is
M∙T+2∙N. In the previous formulation (13), the total number of
decision variables is N∙M∙T+2N+M∙N, and the total number of
constraints is at least M∙T+2T∙N. Since the number of time slots
considered is usually much larger than 1, e.g., T = 300 in [8],
our new formulation has much fewer decision variables and
constraints.

5

To theoretically demonstrate the advantages of our
formulation over that of [8] beyond counting the numbers of
decision variables and constraints, it is proved that our new
formulation is tighter. This is done in two steps. First, the two
formulations are shown to have the same convex hull of the
feasible solution set after rewriting the new formulation in
terms of the operation status variables {δi,j,m,t} of the previous
formulation (13). It is then shown by a counter example that the
feasible solution set of LP-relaxed formulation of the new
formulation is a proper subset of that of (13).
a) Equivalent formulation

In view that (6) determines a one-to-one relationship between
operation beginning times {bi,j,m,t} and operation statuses
{δi,j,m,t}, our new formulation (11) can be rewritten as an
equivalent problem with {δi,j,m,t} as decision variables:

,

, ,

, , , , ,,

, , , , , ,

min{ max(() 1 ,0)},

. .(1), (5), (6), (7), , {0,1}, , , , .

i Ji

i i
i J i Ji i

u

i i J m i J m t ib i m U t l

i j m t i j m t

w t p b d

s t b i j m t

δ

δ
∀ ∈ =

⋅ + − −

∈ ∀

∑ ∑ ∑ (14)

Since the formulation (14) and the previous formulation (13)
have the same set of feasible {δi,j,m,t}, they have the same
convex hull of the solution set.
b) Comparing solution sets of LP-relaxed formulations

After relaxing integrality requirements of (14), the LP-
relaxed problem of our new formulation can be formed as

,

, ,

, , , , ,,

, , , , , ,

min{ max(() 1 ,0)},

. .(1), (5), (6), (7),0 1,0 1, , , , .

i Ji

i i
i J i Ji i

u

i i J m i J m t ib i m U t l

i j m t i j m t

w t p b d

s t b i j m t

δ

δ
∀ ∈ =

⋅ + − −

≤ ≤ ≤ ≤ ∀

∑ ∑ ∑ (15)

To demonstrate that the solution set of (15) is a proper subset
of that of the previous formulation (13), two propositions are
presented. In Proposition 1, it is demonstrated that any
continuous solution {δi,j,m,t} feasible to (15) is also feasible to
the LP-relaxed problem of the previous formulation (13). In
Proposition 2, a continuous solution {δi,j,m,t} is given that is
feasible to the LP-relaxed problem of the previous formulation
(13) but not feasible to (15).
Proposition 1. Any continuous solution {δi,j,m,t} feasible to (15)
of the new formulation is also feasible to the LP-relaxed
problem of the previous formulation (13).
Proof. Consider a solution {δi,j,m,t} that is feasible to (15). The
set of beginning times {bi,j,m,t} can be determined by (6). In the
following, solution {δi,j,m,t, bi,j, ci,j, xi,j,m} with {bi,j} satisfying (2),
{ci,j} satisfying (3), and {xi,j,m} satisfying

, , , ,m, , , ,i j m i j t
t

x b i j m= ∀∑ ， (16)

is proven to be feasible to the LP-relaxed problem of the
previous formulation (13) as follows.
Satisfaction of the part-to-machine assignment constraints
(13a). Since (1) and (16) hold, (13a) are clearly satisfied.
Satisfaction of the processing time requirements (constraints
(13b), (13c), (13d), (13e)). In [8], the processing time
requirements are described by two equality constraints (13b)
and (13e) and two “big-M” inequality constraints (13c) and
(13d). Since (13b) can be easily derived from (13e), the
satisfaction of (13e) is first proved. By using the relationship
between {δi,j,m,t} and {bi,j,m,t} as described by (6), the left-hand
side of (13e) can be written as a sum of {bi,j,m,t}, and it can then

be shown that (13e) are satisfied. Based on this, the satisfaction
of constraints (13b) can be easily proved.

The satisfaction of (13c) and (13d) can be proved as follows.
When operation (i, j) is active at time slot t, it can be shown that
its beginning time (i.e., the right-hand side of constraints (13c))
is always smaller than or equal to t, and therefore constraints
(13c) are satisfied. For other cases, constraints (13c) are always
satisfied since M (as in the “big-M”) is a large number. It can
be similarly shown that constraints (13d) are satisfied.
Satisfaction of the operation precedence constraints and
machine capacity constraints (constraints (13f) and (13g)). By
using (2), (3) and (6), constraints (13f) and (13g) of [8] can be
rewritten in the form of (5) and (7) of our new formulation, and
it can be shown that they are satisfied. ■
 In the following, a continuous solution {δi,j,m,t} is given that
is feasible to the LP-relaxed problem of the previous
formulation (13) but not feasible to (15). To guarantee that the
machine capacity constraints (13g) are not violated, the total
number of time slots T and the machine capacity {Mm,t} should
not be too small. Specifically, suppose that they satisfy the
following inequality:

,t(,) , , ,

1max(min()) 0.
/m

m tm i j O i j m i j

M
T p U∈

− ≤

∑ (17)

This condition is generally easy to satisfy, and is satisfied for
all the instances tested in Section V.
Proposition 2. Under condition (17), the solution

, , , , , , ,
, , ,

, , , ,

1 / , , , {1,..., },

0, , , , { 1,..., }
i j m i j i j m i j m

i j m t
i j m i j m

Y U i j m t Y p

i j m t Y p T
δ

 ∀ ∈=
∀ ∈ +

，

,
 (18)

with , , , ,/ ,i j m i j mY T p =
is feasible to the LP-relaxed problem of the previous
formulation (13), but not feasible to (15).
Proof. Under (17), it can be checked that solution (18) satisfies
all the constraints of the LP-relaxed formulation of previous
formulation (13). However, (18) is not feasible to (15), and this
can be demonstrated as follows. When the arrival times of all
the parts are 1, then it can be shown that (5) and (6) cannot be
satisfied at the same time. When there exists at least one part
whose arrival time is greater than 1, then it can be shown that
constraints (5) and (1) cannot be satisfied at the same time.

IV. SOLUTION METHODOLOGY
As will be demonstrated in Section V, B&C can solve small-

or medium-sized problems based on the new formulation. For
large problems, B&C may still suffer from difficulties because
of the combinatorial nature of the problem. For fast resolution
of such problems, SAVLR [9] is enhanced in this section.

In SAVLR, the problem is decomposed into subproblems by
relaxing the coupling machine capacity constraints (7), and
subproblem solutions are coordinated by iteratively updating
multipliers. After the machine capacity constraints (7) are
relaxed by using Lagrangian multipliers {λt,m}, the relaxed
problem at iteration k is formed as:

6

(), , ,

, ,

, ,

()
min ,

()

k
i i t m t m t m

i t m

z b s
k

t m t m
t m

w z g b s

c g b s

λ ⋅ + + +

 +

∑ ∑∑

∑∑
 (19)

subject to (1), (5), (13), where

, ,

, , , , ,
(,) [1,]

()
m i j m

t m i j m k m t
i j O k t p t

g b b M
∈ ∀ ∈ − +

≡ −∑ ∑ ， (20)

and {st,m} are non-negative slack variables introduced to
convert inequality constraints (7) to equality constraints. In (19),
the absolute-value penalty function with the positive penalty
coefficient c is used instead of a quadratic penalty function as
in the Augmented Lagrangian Relaxation method ([10]) to
facilitate the use of B&C. It is piecewise linear with two
segments, and can be exactly linearized by introducing
additional decision variables and constraints. However, since
the absolute-value function is a poor approximation to a
quadratic function, the quadratic growth characteristics of
quadratic penalty functions cannot be well captured. When
multipliers are far away from their optimal values and the levels
of constraint violations are large, especially at the early stage of
optimization, the absolute-value penalty function might not be
able to impose a sufficiently large penalty.

To overcome the above-mentioned difficulty, our idea is to
use a convex piecewise linear function with three segments to
approximate the quadratic function. In Figure 1, a quadratic
function is depicted in blue, and the absolute-value function is
depicted in black. It can be seen that the absolute-value function
is not a good approximation to the quadratic function. To
improve approximation accuracy, take the following convex
piecewise linear function with three segments as an example:

() max(0,4 3, 4 3),p x x x≡ − − − (21)
which is depicted in red in the figure. As can be seen, with three
segments, the approximation accuracy is improved as compared
to that of the absolute-value function, in particular for the
interval [-4, 4]. For problem instances considered in Section V,
the violation of the capacity for a machine group at a time slot
is generally less than 4 according to our testing. Therefore,
function (21) provides a good approximation to the quadratic
function, and imposes sufficiently large penalties when the
level of violation is 2 or above as compared to those imposed
by the absolute-value function.

Fig. 1 Illustration of the 3-segment piece-wise linear function, the absolute-

value function, and the quadratic function
A convex piecewise linear function such as (21) can be

exactly linearized through introducing additional decision
variables and constraints following the standard way as
discussed on page 150 of [19]. To linearize such a function, one
additional decision variable is required, and the number of

additional constraints equals the number of non-zero segments.
For our 3-segment function (21), the number of non-zero
segments is two. Therefore, the numbers of additional decision
variables and constraints required are equal to those required by
the absolute-value function. In general, the number of segments,
the vertices, and the slopes of the function can be adjusted.
Nevertheless, more segments do not mean better performance,
since more additional constraints are required by linearization.
 With the new penalty function (21) replacing the absolute-
value penalty function, the solution process follows exactly that
of [9]. The relaxed problem becomes:

()

()
, , ,

, ,
, ,

()
min ,

()

. . (1), (5), (13).

k
i i t m t m t m

i t m

kz b s
t m t m

t m

w z g b s

c p g b s

s t

λ ⋅ + + +

+

∑ ∑∑

∑∑ (22)

After linearizing the penalty function following page 150 of
[19], a subproblem for part i can be formed by optimizing with
respect to decision variables associated with that part while
fixing decision variables associated with other parts at their
previously obtained values.

After solving a subproblem consisting one or a few parts at
iteration k by using B&C, multipliers are updated based on
surrogate subgradients to coordinate subproblem solutions as:

()1
, , , ,() , , .k k k

t m t m t m t ms g b s t mλ λ+ = + + ∀ (23)
To guarantee the convergence of multipliers, the stepsize sk in
(23) is updated following (18) and (19) of [9]. If the penalty
coefficient ck is too large, the surrogate optimality condition
((14) in [9]) may not be satisfied, and solutions may get trapped
at a local minimum. In this case, ck is decreased following (21)
in [9]. Finally, when the stepsize sk reduces below a certain
threshold or when the CPU time (consists of data and model
loading, solving, and solution outputting time) reaches a pre-
specified limit, the iterative multiplier updating process stops.

Since machine capacity constraints (7) are relaxed,
subproblem solutions, when put together, generally do not
satisfy (7). To obtain a solution feasible to the original problem
(11), subproblem solutions are “repaired” when the norm
squared of constraint violations is less than or equal to a
threshold γ, i.e.,

()2
, ,

,
() .t m t m

t m
g b s γ+ ≤∑ (24)

Repairing is done by optimizing the decision variables
associated with violated machine capacity constraints while
fixing the remaining decision variables by using B&C. This will
be done several times to obtain multiple feasible solutions. At
the convergence of multipliers, surrogate dual value provides a
lower bound to feasible costs, and subproblem solutions are
repaired to obtain the last feasible solution. The feasible
solution with the minimal cost is then the final solution.

V. NUMERICAL RESULTS
The new formulation and solution methodology are

implemented by using MATLAB R2018a and CPLEX 12.8.0.0.
Three examples are tested on a laptop with the Intel Xeon W-
10855M processor at 4.3-Ghz, 64GB of RAM, and Windows

7

10. The first example is a small instance considered in [6]–[8],
and the second example consists of several medium-sized
problems. These two examples are solved by using B&C to
numerically demonstrate the advantages of our new formulation.
The third example consists of several large instances, and is
solved by using our SAVLRE to demonstrate that near-optimal
solutions can be efficiently obtained.
Example 1: A small problem

 This example consists of an instance with 127 parts, and was
taken from Pratt & Whitney’s Development Operation shop
solved in [6]–[8] to test problem formulations. There are 19
machine groups, each with one to six machines, and for each
machine group, the number of machines contained is a constant
with respect to time slot t. The problem is solved by using B&C.
The solving time, which equals total CPU time minus data and
model loading and solution outputting time, was used as the
stopping criteria for B&C. It was used in [6] and [8] as well. In
this example, optimization stops when the solving time reaches
3,600 seconds, or when the optimal solution is found. The
feasible cost, the MIP gap, and the solving time of both the new
formulation and the previous formulation (13) are presented in
Table I. It can be seen that the new formulation enjoys better
solution quality with much reduced computational
requirements.

Table I Comparison of formulations: small size
New formulation (B&C) Formulation [8] (B&C)
Cost1 GAP2 Solving

time (s)
Cost1 GAP2 Solving

time (s)
14,872 0 3.31 15,117 3.72% 3600

1: Total weighted tardiness
2: MIP gap reported by the CPLEX solver

As reviewed in Section II, the formulation (13) has been
improved by using a systematic formulation tightening
approach. As reported in Table 2 of [8], after tightening, a
feasible cost with 0.01% MIP gap was obtained by using B&C
after 14.7s. The results thus fall within the range obtained by
using our new formulation.
Example 2: Medium-sized problems

This example consists of six instances with 200 to 400 parts,
and 10 to 30 machine types. Each part requires one to seven
operations, and each operation can be processed by one to three
machine groups. The arrival time of each part is generated by
using a uniform distribution U[1, 300], and the due date of each
part equals its possible earliest completion time (i.e., its arrival
time plus its smallest total processing time). As for tardiness
weights, 30% of parts have a weight of 1, 65% of parts have a
weight of 10, and 5% of parts have a weight of 100. The total
number of time slots is 500, which is large enough to complete
all the parts, and satisfies condition (17). The stopping criteria
are the same as in Example 1.

Scenarios without machine breakdowns are considered first,
where capacities of machine groups are constant over the
planning horizon. The feasible costs, the MIP gaps, and the
solving times by using B&C are presented in Table Ⅱ. It can be
seen that the new formulation significantly improves the
solution quality and drastically reduces computational
requirements of B&C as compared to the original formulation

To test the robustness of our new formulation with respect to
non-constant capacities of machine groups, each machine is

assumed to have a probability of 0.3% to break down at each
time slot, and repairing takes four consecutive time slots. Based
on this, ten scenarios are randomly generated, and other data are
the same as those for the 300-part instance. The optimal
solutions of all ten scenarios are efficiently obtained by using
B&C. The average solving time is 319s, with the minimal 166s,
the maximal 890s, and the standard deviation 214s. The results
demonstrate the robustness of our new formulation with respect
to non-constant machine capacities.

Table II Comparison of formulations: medium size
Instance New formulation (B&C) Formulation

[8] (B&C)
Cost GAP Solving

time (s)
LP Cost3 Cost

LP
Cost3

200*201 377 0 12.77 374.41 Fail2 0
250*20 593 0 33.91 572.17 Fail 0
300*20 609 0 179.27 558.55 Fail 0
300*10 621 0 156.14 538.47 Fail 0
400*10 1147 0 1395.13 1010.23 Fail 0
300*30 1129 0 188.16 832.01 Fail 0

1: 200*20 means the instance with 200 parts and 20 machine groups
2: No feasible solution is found after 3600s
3: The optimal cost of the corresponding LP-relaxed problem

The optimal costs of the corresponding LP-relaxed problems
are also presented in Table II. As can be seen, the optimal costs
of the LP-relaxed formulations of our new model are much
larger than those of the previous formulation of [8]. This is
because the solution set of the LP-relaxed problem of the new
formulation is a proper subset of that of the previous
formulations (13). Here, the LP cost of the previous formulation
(13) is zero. This is because after relaxing integrality constraints,
operation statuses {δi,j,m,t} of (13) can no longer be correctly
determined by the “big-M” inequalities (13c) and (13d). For the
data set tested, there exist solutions with operation beginning
times equal to the earliest possible beginning times while
satisfying machine capacity constraints, leading to zero total
weighted tardiness.
Example 3: Large problems

This example consists of five instances with 400 to 600 parts,
and 10 to 30 machine types. The parts are grouped to form 10
subproblems. Other data are generated following the method of
Example 2 without machine breakdowns. The problems are
solved by using SAVLRE with the new formulation. When the
norm squared of machine capacity violations is less than or
equal to 40, i.e., γ in (24) is 40, heuristics are used to find
feasible solutions to the original problem. The algorithm stops
when the CPU time reaches 1,800s or the stepsize reduces
below 0.05. The feasible cost, the gaps, and the CPU times of
both SAVLRE and B&C are presented in Table III.
 The first instance is with 500 parts and 10 machine groups.
By using SAVLRE, a solution with a cost of 4,210 is obtained
after 813s, and 3,942 after 1100s. The duality gap is 13.1% and
7.1%, respectively. The results demonstrate that high-quality
solutions are efficiently obtained by using SAVLRE. For
comparison purposes, B&C is also tested. Since the problem
instance is large, no feasible solution is obtained after 3,600s.

To examine the effects of the new penalty function, the norm
squared of machine capacity violations at each minor iteration
(i.e., after solving one subproblem) is depicted in red in Figure
2. For comparison purposes, those of SAVLR are depicted in
blue. As can be seen, the new method enjoys a faster reduction

8

of the machine capacity violations than SAVLR. This is
because our 3-segmnent function (21) provides a good
approximation to the quadratic function and sufficiently large
penalties. Moreover, since the numbers of decision variables
and constraints required to linearize (21) are the same as those
required by the absolute-value function, the computational
requirements are similar to those of the absolute-value function.
The average CPU time per minor iteration is 3.91s for SAVLRE,
and 3.52s for SAVLR. Testing of 5- and 7-segment piecewise
linear penalty functions has also been conducted, and the results
were not satisfactory. This is because linearizing these
functions requires additional constraints, resulting in significant
increases of subproblem solving times.

Fig. 2 the norm squared of constraint violations in each minor iteration

For the instance with 600 jobs and 10 machine types, a cost

of 7448 with a gap of 5.9% is obtained by SAVLRE after 1261s.
A cost of 7503 with a gap of 6.8% is obtained slower by
SAVLR after 1403s. To demonstrate the scalability of
SAVLRE, three more instances are tested, and the results are
shown in Table III.

It is difficult to compare our results with many of the results
obtained by using heuristic methods in the literature since their
codes and data are generally not available. Nevertheless, let us
comment on the results of the “shift bottleneck” methods of
[15], [16]. The largest instance considered there has 200 parts
and 30 machines, and the corresponding “ratio” (the average
gap between feasible costs and their lower bounds) is 10.2%.
These results fall within the range obtained by using our method,
demonstrating the scalability and quality of our optimization-
based method.

Table III Comparison of methodologies: large problems

Instance New formulation (SAVLRE+B&C) New formulation
(B&C)

Cost Lower
Bound

GAP

CPU
time (s)

Cost Solving
time (s)

500*10 3942 3659 7.1% 1100 Fail
600*10 7448 7008 5.9% 1261 Fail
400*20 2019 1907 5.5% 404 2773

(30.91%)
3600

500*20 3967 3554 10.4% 872 Fail
500*30 6387 5835 8.6% 843 Fail

VI. CONCLUSION
In this paper, a novel ILP formulation is developed for job-

shop scheduling. As compared to the previous formulation of
[6],[8], the new formulation has much reduced numbers of
decision variables and constraints. Moreover, a brand new way

to compare the tightness of formulations is developed, and our
new formulation is proven to be tighter. Therefore, solution
quality is much improved, while the computational
requirements are much reduced. SAVLR is also enhanced so
that near-optimal solutions can be efficiently obtained for large
problems. These advancements will have major implications on
formulating and resolution of other manufacturing scheduling
problems and beyond. To further improve solution quality and
computation efficiency, tightening of the new formulation will
be further investigated.

REFERENCES
[1] M. Pinedo, Scheduling, vol. 29. Springer, 2012.
[2] M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the

resolution of large-scale symmetric traveling salesman problems,”
SIAM review, vol. 33, no. 1, pp. 60–100, 1991.

[3] R. Gomory, “An algorithm for the mixed integer problem,” RAND
CORP SANTA MONICA CA, 1960.

[4] R. E. Gomory, “Solving linear programming problems in integers,”
Combinatorial Analysis, vol. 10, pp. 211–215, 1960.

[5] L. A. Wolsey and G. L. Nemhauser, Integer and combinatorial
optimization, vol. 55. John Wiley & Sons, 1999.

[6] B. Yan, M. A. Bragin, and P. B. Luh, “Novel formulation and
resolution of job-shop scheduling problems,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3387–3393, 2018.

[7] D. J. Hoitomt, P. B. Luh, and K. R. Pattipati, “A practical approach
to job-shop scheduling problems,” IEEE transactions on Robotics
and Automation, vol. 9, no. 1, pp. 1–13, 1993.

[8] B. Yan, M. Bragin, and P. Luh, “An Innovative Formulation
Tightening Approach for Job-Shop Scheduling,” 2021, TechRxiv.
Preprint. https://doi.org/10.36227/techrxiv.12783893.v2.

[9] M. A. Bragin, P. B. Luh, B. Yan, and X. Sun, “A scalable solution
methodology for mixed-integer linear programming problems arising
in automation,” IEEE Transactions on Automation Science and
Engineering, vol. 16, no. 2, pp. 531–541, 2018.

[10] D. P. Bertsekas, Nonlinear programming, Third Edit. Athena
Scientific, Belmont, MA, 2016.

[11] V. Roshanaei, A. Azab, and H. ElMaraghy, “Mathematical modelling
and a meta-heuristic for flexible job shop scheduling,” International
Journal of Production Research, vol. 51, no. 20, pp. 6247–6274,
2013.

[12] M. Karimi-Nasab and M. Modarres, “Lot sizing and job shop
scheduling with compressible process times: A cut and branch
approach,” Computers & Industrial Engineering, vol. 85, pp. 196–
205, 2015.

[13] S. Chansombat, P. Pongcharoen, and C. Hicks, “A mixed-integer
linear programming model for integrated production and preventive
maintenance scheduling in the capital goods industry,” International
Journal of Production Research, vol. 57, no. 1, pp. 61–82, 2019.

[14] L. Meng, C. Zhang, Y. Ren, B. Zhang, and C. Lv, “Mixed-integer
linear programming and constraint programming formulations for
solving distributed flexible job shop scheduling problem,”
Computers & Industrial Engineering, vol. 142, p. 106347, 2020.

[15] Z. Yan, G. Hanyu, and X. Yugeng, “Modified bottleneck-based
heuristic for large-scale job-shop scheduling problems with a single
bottleneck,” Journal of Systems Engineering and Electronics, vol. 18,
no. 3, pp. 556–565, 2007.

[16] R. Uzsoy and C.-S. Wang, “Performance of decomposition
procedures for job shop scheduling problems with bottleneck
machines,” International Journal of Production Research, vol. 38, no.
6, pp. 1271–1286, 2000.

[17] M. Saidi-Mehrabad and P. Fattahi, “Flexible job shop scheduling
with tabu search algorithms,” The international journal of Advanced
Manufacturing technology, vol. 32, no. 5–6, pp. 563–570, 2007.

[18] C. Liu, M. Shahidehpour, and J. Wang, “Application of augmented
Lagrangian relaxation to coordinated scheduling of interdependent
hydrothermal power and natural gas systems,” IET generation,
transmission & distribution, vol. 4, no. 12, pp. 1314–1325, 2010.

[19] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

