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Abstract – Job-shop scheduling is an important but difficult 

problem arising in low-volume high-variety manufacturing. It is 
usually solved at the beginning of each shift with strict 
computational time requirements. To obtain near-optimal 
solutions with quantifiable quality within strict time limits, a 
direction is to formulate them in an Integer Linear Programming 
(ILP) form so as to take advantages of widely available ILP 
methods such as Branch-and-Cut (B&C). Nevertheless, 
computational requirements for ILP methods on existing ILP 
formulations are high. In this paper, a novel ILP formulation for 
minimizing total weighted tardiness is presented. The new 
formulation has much fewer decision variables and constraints, 
and is proven to be tighter as compared to our previous 
formulation. For fast resolution of large problems, our recent 
decomposition-and-coordination method “Surrogate Absolute-
Value Lagrangian Relaxation” (SAVLR) is enhanced by using a 3-
segment piecewise linear penalty function, which more accurately 
approximates a quadratic penalty function as compared to an 
absolute-value function. Testing results demonstrate that our new 
formulation drastically reduces the computational requirements 
of B&C as compared to our previous formulation. For large 
problems where B&C has difficulties, near-optimal solutions are 
efficiently obtained by using the enhanced SAVLR under the new 
formulation.  

Index terms–Manufacturing, job-shop scheduling, integer 
linear programming, decomposition and coordination 

I. INTRODUCTION 
ob shops are manufacturing systems designed for low-
volume/high-variety production [1]. In a job shop, machines 
are grouped based on their functionalities, and each group 

has limited capacities. A part may need to go through a 
sequence of operations, each can be processed by one or a few 
machine groups. A schedule is usually generated with strict 
computational time requirements, e.g., 10 to 20 minutes, at the 
beginning of a shift. The scheduling problem is subject to four 
types of constraints: part-to-machine assignment constraints, 
processing time requirements, operation precedence constraints, 
and machine capacity constraints. To have on-time delivery – 
the ultimate goal of job-shop scheduling, the objective function 
should be due date related, e.g., weighted tardiness penalties. 
The problem is difficult because of its combinatorial nature.  

To obtain near-optimal solutions within strict time limits, a 
direction is to formulate them in an Integer Linear 
Programming (ILP) form so as to take advantages of widely 
available ILP methods such as Branch-and-Cut (B&C) [2]–[4]. 
Nevertheless, the efficiency of ILP methods is significantly 
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affected by problem formulations, and when a formulation 
contains large numbers of decision variables and constraints, 
these methods may experience difficulties [5]. Developing 
good formulations is thus of critical importance. This, however, 
is difficult in view of the many types of complicated constraints 
within job-shop scheduling problems.  

As will be reviewed in Section II, an ILP formulation was 
presented in [6] based on our classic formulation [7], with very 
recent extensions reported in [8]. In [6], operation beginning 
times were selected as integer decision variables. Processing 
time requirements and operation precedence constraints were 
easily formulated based on them. To consider machine capacity 
constraints, an additional set of binary indicator variables was 
created to indicate the status of operations: if an operation is 
active on a machine group at a time slot (i.e., being processed), 
then the corresponding indicator variable equals one; and zero 
otherwise. These indicator variables depend on operation 
beginning times, and to describe such relationships, many 
constraints are needed. Consequently, the computational 
requirements of ILP methods for large problems are high. 

To overcome the above-mentioned difficulties, a novel ILP 
formulation will be developed in Section III. In the formulation, 
the set of binary indicator variables indicating whether an 
operation begins at a time slot on a machine group is selected 
as decision variables. If an operation begins at a certain time 
slot on a machine group, then the corresponding indicator 
variable equals one; and zero otherwise. Based on these 
variables, all constraints, including machine capacity 
constraints, are innovatively formulated without introducing 
additional decision variables or constraints. The numbers of 
decision variables and constraints are thus significantly reduced 
as compared to those of [6]. To theoretically demonstrate the 
advantages of our formulation over that of [6] beyond counting 
the numbers of decision variables and constraints, the two 
formulations are compared in terms of “tightness” – a novel 
concept to examine MILP formulations [8]. A formulation is 
“tight” if its constraints directly delineate the convex hull of the 
feasible solution set. In this case, the problem can be directly 
solved by using Linear Programming (LP) methods. Suppose 
that the two formulations of a problem have the same convex 
hull. One formulation is “tighter” if the solution set of its LP-
relaxed formulation (with integrality requirements relaxed) is a 
proper subset of the solution set of the other LP-relaxed 
formulation. We prove that our new formulation is tighter than 
the previous formulation. Since the new formulation has fewer 
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decision variables and constraints and is tighter as compared to 
the previous formulation, solution quality of B&C is much 
improved, while computational requirements are much smaller, 
as will be supported by numerical testing results in Section V.  

Since our new formulation has low computational 
requirements, B&C can solve small- or medium-sized problems 
efficiently. For large problems, B&C may still suffer from poor 
performance. Our recent decomposition-and-coordination 
method “Surrogate Absolute-Value Lagrangian Relaxation” 
(SAVLR) is enhanced in Section IV. SAVLR exploits 
exponential reduction of complexity upon problem 
decomposition, and effectively coordinates subproblem 
solutions with accelerated convergence [9]. In the method, 
machine capacity constraints, which couple various parts 
assigned to a machine group, are “relaxed.” Instead of using 
powerful quadratic penalty functions as in Augmented 
Lagrangian Relaxation [10], violations of these constraints are 
penalized by using an absolute-value function. This absolute-
value function is piece-wise linear with two segments, and is 
exactly linearized by introducing additional decision variables 
and constraints so as to use ILP solvers. The absolute-value 
function, however, is a poor approximation to a quadratic 
function, and the quadratic growth of penalties cannot be well 
captured. When the level of constraint violation is large, the 
absolute-value penalty function may not impose a sufficiently 
large penalty, especially at the early stage of optimization. To 
overcome this difficulty, the absolute-value penalty function is 
enhanced by using a symmetric, 3-segment piecewise linear 
function, where the middle segment is a constant. This function 
better captures the quadratic growth of penalties as compared 
to the absolute-value function. In addition, it can be exactly 
linearized, and the numbers of additional decision variables and 
constraints needed for linearization are the same as those 
required by the absolute-value function. Extension to multiple-
segment piecewise linear penalty functions is possible.  

To demonstrate the performance of our new formulation and 
the enhanced SAVLR (or SAVLRE for short), three examples 
are presented in Section V. The first and second are of small 
and medium sizes, respectively, and are solved by using B&C. 
The results demonstrate that our new formulation drastically 
reduces the computational requirements of B&C as compared 
with the original formulation of [6], and optimal solutions are 
efficiently obtained. The third example with five large instances 
is solved by using SAVLRE. Testing results demonstrate that 
the convergence of multipliers is improved by using the new 3-
segment penalty function as compared to using the absolute-
value penalty function, and near-optimal solutions are therefore 
obtained in a computationally efficient manner.  

II. LITERATURE REVIEW 
In this section, existing job-shop scheduling formulations are 

reviewed in subsection A. Solution methodologies are then 
discussed in subsection B. 
A. Problem formulations 

With complicated constraints, formulating a job-shop 
scheduling problem is difficult [1]. ILP formulations were 
reported in [11]–[14]. In these formulations, the objective is 
usually to minimize the makespan, i.e., the time span from the 
very beginning to the end when all the parts are processed. The 

makespan, however, is a questionable objective function. The 
reason is that for practical job shops, the paramount objective is 
on-time deliveries of parts, and part due dates need to be 
considered in the objective function. The makespan, however, 
does not even include due dates in the formulation, and cannot 
capture the on-time delivery performance. The total weighted 
tardiness is a much practical objective function, and has been 
used in most of our previous work [6], [7]. As related to 
constraints, operations are usually assigned to individual 
machines, and overlapping of two operations on a machine is 
prohibited. In view that there are many possible sequences 
among the operations assigned to a machine, the number of 
such constraints are large, limiting the size of problems that can 
be solved by optimization. Practically, there are multiple 
machines of the same functionality in a job shop. The 
consideration of groups of machines with the same 
functionality as opposed to individual machines is therefore a 
better modeling approach. 

In [7], one of our earlier papers, a separable nonlinear 
formulation was presented. Operation beginning times were 
selected as integer decision variables, indicating when each 
operation is to begin on an eligible machine group (as opposed 
to begin on an eligible machine). The objective is to minimize 
the total weighted tardiness. Machine capacity constraints limit 
the number of active operations (i.e., operations that are being 
processed) on a group. Consider for example a machine group 
with five machines available at a particular time slot. Then at 
most five operations can be active at that time slot. These 
machine capacity constraints couple parts together and are 
additive. The objective function is also part-wise additive. 
Therefore, after machine capacity constraints are relaxed, the 
problem can be decomposed into part subproblems, each with 
much-reduced complexity.  
 In our recent work [6], an ILP formulation was developed 
based on [7]. In the formulation, operation beginning times 
were selected as integer decision variables. From these 
variables, processing time requirements and operation 
precedence constraints were easily formulated. The difficulty is 
the modeling of machine capacity constraints. An additional set 
of binary indicator variables was created to indicate if an 
operation is active on an eligible machine group at each time 
slot following the idea of [7]. Then the sum of these indicator 
variables over all relevant operations for a machine group 
should be less than or equal to the number of machines available 
in that group at each time slot. This set of indicator variables is 
related to operation beginning times. To describe such 
relationships, a significant number of additional constraints are 
needed. Therefore, although this formulation is linear, B&C 
might suffer from poor performance for large problems. Very 
recently, the formulation in [6] was tightened through a 
systematic approach by transforming the constraints to directly 
delineate the convex hull of the feasible solution set in [8], and 
the computational efficiency of B&C has thus been improved. 
B. Solution methodologies 

In this subsection, heuristics, branch-and cut, standard 
Lagrangian Relaxation, Surrogate Lagrangian Relaxation and 
Surrogate Absolute-Value Lagrangian Relaxation are briefly 
reviewed to solve job shop scheduling problems.  
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Heuristics. Heuristics such as shift bottleneck method [15], [16] 
and meta-heuristics such as Tabu search [17] are frequently 
used to solve job-shop scheduling problems. These methods 
have the advantage of low computational requirements. 
However, convergence is difficult to guarantee, and the quality 
of solutions is difficult to quantify.  
Branch-and-Cut (B&C). Branch-and-Cut (B&C) has been 
used to solve ILP job-shop scheduling problems, e.g., [6], [12], 
[13]. The key idea of B&C is to find the convex hull of the 
feasible solution set through adding “valid cuts.” If the convex 
hull is found, then the optimal solution can be obtained by using 
LP methods. If the method fails to obtain the convex hull, or 
valid cuts are difficult to obtain or are ineffective, then time-
consuming Branch-and-Bound is used. Since finding convex 
hulls of feasible solution sets itself is NP-hard, B&C may suffer 
from poor performance for large problems.  
Standard Lagrangian Relaxation. Lagrangian Relaxation 
(LR) methods were frequently used to solve ILP problems [7], 
[18]. In [7], after relaxing coupling machine capacity 
constraints, the “relaxed problem” is decomposed into smaller 
subproblems, one for each part. Since subproblems have much-
reduced sizes, their complexity is drastically reduced as 
compared to that of the original problem. Subproblem solutions 
are then coordinated through iterative updating of multipliers 
based on subgradients. However, since all subproblems need to 
be solved to obtain a subgradiant and the stepsizes require the 
knowledge of the unknown optimal dual value, the performance 
of traditional LR is generally poor. To accelerate convergence, 
the violations of coupling constraints can be penalized by 
quadratic penalty terms which can be approximated by using 
piecewise linear functions as in [18]. Nevertheless, [18] did not 
provide the equation for the piecewise linear functions, and did 
not examine how many segments should be used and why. 
Surrogate Lagrangian Relaxation (SLR) and Surrogate 
Absolute-Value Lagrangian Relaxation (SAVLR). By 
exploiting a contraction mapping concept, our recent SLR ([10]) 
was developed without requiring the knowledge of the optimal 
dual value to calculate stepsizes. Moreover, multipliers are 
updated without requiring all subproblems to be solved, thereby 
reducing the high computational requirements and the 
multiplier zigzagging issues. Most of the major difficulties of 
traditional LR have thus been overcome. Convergence is further 
improved in the SAVLR method in [9], where absolute-value 
penalty functions (2-segment piecewise linear functions) are 
used to penalize the levels of machine capacity violations in [6]. 
This penalty function can be exactly linearized with very few 
additional constraints. SAVLR is usually combined with B&C 
to efficiently solve ILP problems.  
 

III. A NOVEL INTEGER LINEAR FORMULATION 
In this section, a novel ILP formulation for job-shop 

scheduling problems based on that of [6, 8] is presented in 
subsection A. The advantages of the formulation are then 
analyzed in subsection B.  
A. Problem formulations 

Consider a job shop with M machine groups. The capacity of 
machine group m at time slot t is denoted as Mm,t for m ∈ [1, 
2, .., M] and t ∈ [1, 2, ..., T], where T is the total number of time 

slots and is assumed to be long enough to process all the parts. 
There are I parts, each with an arrival time ai and a due date di. 
Part i ∈ [1, 2, ..., I] needs to go through a sequence of Ji 
operations, and the jth operation of part i is denoted as (i, j) – a 
“part-operation pair.” Let the set of all part-operation pairs be 
denoted as S. An operation can be processed by one of the 
eligible machine groups Ui,j, and the processing time of 
operation (i, j) on machine group m is denoted as pi,j,m, which 
may be machine group dependent. It is assumed that processing 
cannot be interrupted, i.e., non-preemptive. In the following, 
decision variables are first introduced. Then four types of 
constraints, including part-to-machine assignment constraints, 
processing time requirements, operation precedence constraints, 
and machine capacity constraints, are formulated, followed by 
the objective function.  
a) Decision variables  

As reviewed in subsection II.A, operation beginning times 
are integer decision variables in the formulations of [6], [8], 
resulting in large numbers of additional variables and 
constraints. To overcome this difficulty, a set of binary 
indicator variables indicating whether an operation begins at a 
time slot on a machine group is selected as decision variables. 
If operation (i, j) is to begin on machine group m at time slot t, 
then bi,j,m,t equals one; and it equals zero otherwise.  
b) Part-to-machine assignment constraints 

Since each operation must be assigned to a unique machine 
group and to begin at a unique time slot, part-to-machine 
assignment constraints are modeled as follows:  

,

, ,

, , , 1, ( , ) .
i j

i j i j

u

i j m t
m U t l

b i j S
∀ ∈ =

= ∀ ∈∑ ∑             (1) 

In the above, the range [li,j, ui,j] contains all eligible beginning 
times for operation (i, j). The method to calculate [li,j, ui,j] will 
be described later in (9) and (10).  
c) Processing time requirements 

From the operation beginning indicator variables, integer 
operation beginning times are obtained as 

,

, ,

, , , , , ( , ) ,
i j

i j i j

u

i j i j m t
m U t l

b t b i j S
∀ ∈ =

= ⋅ ∀ ∈∑ ∑          (2) 

where the integer variable bi,j is the beginning time of operation 
(i, j). Since processing is non-preemptive, the completion time 
equals its beginning time plus the required processing time 
following equation (2) in [6], i.e.,  

,

, ,

, , , , , ,( ) 1, ( , ) ,
i j

i j i j

u

i j i j m i j m t
m U t l

c t p b i j S
∀ ∈ =

= + − ∀ ∈∑ ∑      (3) 

where ci,j is the completion time of operation (i, j). Note that 
{bi,j} and {ci,j} are introduced here for easy understanding and 
presentation. They are not decision variables in the solution 
process to be introduced in Section IV. 
d) Operation precedence constraints  

For each part, its operations need to be processed in a given 
sequence. Without loss of generality, operations for a part are 
numbered according to their precedence, and operation (i, j+1) 
cannot begin until operation (i, j) is completed, i.e.,  

{ }, 1 , , ( , ) ( , ) | ( , ) , ( , 1) .i j i jb c i j i j i j S i j S+ > ∀ ∈ ∈ + ∈    (4) 
Equation (4) can be re-written without {bi,j} or {ci,j} as:  
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{ }

, ,

, , , ,

, +1, , , , , , ,( ) ,

( , ) ( , ) | ( , ) , ( , 1) .

i j i j

i j i j i j i j

u u

i j m t i j m i j m t
m U t l m U t l

t b t p b

i j i j i j S i j S
∀ ∈ = ∀ ∈ =

⋅ ≥ +

∀ ∈ ∈ + ∈

∑ ∑ ∑ ∑      (5) 

e) Machine capacity constraints  
To formulate machine capacity constraints, it is noticed that 

if operation (i, j) is active on machine group m at time t, then its 
beginning time must be within the interval [t-pi,j,m+1, t]. 
Therefore, the status (active or not) of operation (i, j) on 
machine group m at time t, represented by δi,j,m,t, can be obtained 
by summing up the operation beginning indicator variables over 
[t-pi,j,m+1, t]:  

, ,

, , , , , , ,
[ 1, ]

, ( , ) , , .
i j m

i j m t i j m k i j
k t p t

b i j S m U tδ
∀ ∈ − +

= ∀ ∈ ∈ ∀∑    (6) 

Again, variables {δi,j,m,t} are introduced for easy understanding 
and presentation. They are not decision variables.  

Based on (6), the number of active operations on machine 
group m at time slot t is obtained by summing up the statuses of 
all relevant operations that can be processed by the machine 
group. Machine capacity constraints can thus be formulated as:  

, ,

, , , ,
( , ) [ 1, ]

, , ,
m i j m

i j m k m t
i j O k t p t

b M t m
∈ ∀ ∈ − +

≤ ∀ ∀∑ ∑        (7)  

where Om denotes the set of operations that can be processed by 
machine group m.  
f) The Objective function 

Following [6], [7], the objective function to be minimized is 
the total weighted tardiness. The tardiness of part i is the 
number of time slots being late, i.e., the number of time slots 
that the completion time of the last operation of part i exceeds 
the due date di. It is thus described by ,max( ,0)

ii J ic d− , where 
(i, Ji) is the last operation of part i. The total weighted tardiness 
is thus the sum of the weighted tardiness of all the parts:  

,( ) max( ,0),
ii i J i

i
f c w c d≡ ⋅ −∑            (8) 

where wi is the weight or the importance of part i. Equation (8) 
can be easily re-written without {bi,j} or {ci,j}.  
g) Ranges of operation beginning times 

To reduce the decision space, possible beginning time slots 
of operation (i, j), i.e., [li,j, ui,j], need to be delineated. The lower 
limits {li,j} and the upper limits {ui,j} are derived at the data-
preprocessing stage as follows. The earliest possible beginning 
time slot of the first operation of part i is the part arrival time, 
i.e., li,1 = ai. A subsequent operation cannot begin until there is 
enough time to complete all the proceeding operations, i.e., 

,

1

, , ,
1

min ( ), 2.
i j

j

i j i i k mm Uk
l a p j

−

∈
=

= + ∀ ≥∑            (9) 

There is a minimization in (9) since processing times may 
depend on the selections of machine groups, which cannot be 
predetermined. The smallest processing times are used to give 
the maximal flexibility in selecting the beginning time slot. 
Similarly, an operation cannot begin too late so that there is not 
enough time to complete it and its subsequent operations. We 
therefore have:  

,
, , ,min ( ), .

i

i j

J

i j i k mm Uk j
u T p j

∈
=

= − ∀∑             (10) 

Here, the smallest processing times are also used. 

Based on the above, the job-shop scheduling problem can be 
described as:  

,

, ,

, , , , ,

, , ,

min{ max( ( ) 1 ,0)},

. .(1), (5), (7), {0,1}, , , , .

i Ji

i i
i J i Ji i

u

i i J m i J m t ib i m U t l

i j m t

w t p b d

s t b i j m t
∀ ∈ =

⋅ + − −

∈ ∀

∑ ∑ ∑ (11) 

The above objective function with the nonlinear “max” within 
it can be linearized by introducing additional non-negative 
integer decision variables {zi} following page 150 of [19] as: 

,
min{ },i ib z i

w z⋅∑                   

subject to constraints (1), (5), (7) and additional inequalities 
,

, ,

, , , , ,( ) 1 , .
i Ji

i i
i J i Ji i

u

i J m i J m t i i
m U t l

t p b d z i
∀ ∈ =

+ − − ≤ ∀∑ ∑       (12) 

In view that part-to-machine assignment constraints (1) and 
operation precedence constrains (5) are only associated with 
individual parts, and machine capacity constraints (7) that 
couple operations together and the objective function (8) are 
part-wise additive, the above formulation is separable.  
B. The advantages of our new formulation  

It is difficult to compare our formulation directly with that 
of [6] since for the latter, each operation can only be processed 
by one machine group rather than by multiple machine groups. 
This limitation has been removed in [8] before the formulation 
is tightened – the theme of [8]. In view that tightening is a new 
and dedicated research topic and has not been addressed for the 
new formulation, the new formulation is thus compared with 
the untightened formulation of [8], i.e., 
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, , , , , ,
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, , .(13 )
m
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t

i i i j i j
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d
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M m t g

δ

δ
+
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∑
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    (13) 

To start with, our new formulation has significantly fewer 
decision variables and constraints as compared to the previous 
formulation [8] (now as (13)). To demonstrate this, consider a 
problem with M machine groups, T time slots and a total of N 
operations. In the new formulation, the number of decision 
variables is N∙M∙T, and the total number of constraints is 
M∙T+2∙N. In the previous formulation (13), the total number of 
decision variables is N∙M∙T+2N+M∙N, and the total number of 
constraints is at least M∙T+2T∙N. Since the number of time slots 
considered is usually much larger than 1, e.g., T = 300 in [8], 
our new formulation has much fewer decision variables and 
constraints. 
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To theoretically demonstrate the advantages of our 
formulation over that of [8] beyond counting the numbers of 
decision variables and constraints, it is proved that our new 
formulation is tighter. This is done in two steps. First, the two 
formulations are shown to have the same convex hull of the 
feasible solution set after rewriting the new formulation in 
terms of the operation status variables {δi,j,m,t} of the previous 
formulation (13). It is then shown by a counter example that the 
feasible solution set of LP-relaxed formulation of the new 
formulation is a proper subset of that of (13). 
a) Equivalent formulation  

In view that (6) determines a one-to-one relationship between 
operation beginning times {bi,j,m,t} and operation statuses 
{δi,j,m,t}, our new formulation (11) can be rewritten as an 
equivalent problem with {δi,j,m,t} as decision variables: 

,

, ,

, , , , ,,

, , , , , ,

min{ max( ( ) 1 ,0)},

. .(1), (5), (6), (7), , {0,1}, , , , .

i Ji
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i J i Ji i

u

i i J m i J m t ib i m U t l

i j m t i j m t

w t p b d

s t b i j m t

δ

δ
∀ ∈ =

⋅ + − −

∈ ∀

∑ ∑ ∑ (14) 

Since the formulation (14) and the previous formulation (13) 
have the same set of feasible {δi,j,m,t}, they have the same 
convex hull of the solution set. 
b) Comparing solution sets of LP-relaxed formulations 

After relaxing integrality requirements of (14), the LP-
relaxed problem of our new formulation can be formed as 

,

, ,

, , , , ,,

, , , , , ,

min{ max( ( ) 1 ,0)},

. .(1), (5), (6), (7),0 1,0 1, , , , .

i Ji

i i
i J i Ji i

u

i i J m i J m t ib i m U t l

i j m t i j m t

w t p b d

s t b i j m t

δ

δ
∀ ∈ =

⋅ + − −

≤ ≤ ≤ ≤ ∀

∑ ∑ ∑ (15) 

To demonstrate that the solution set of (15) is a proper subset 
of that of the previous formulation (13), two propositions are 
presented. In Proposition 1, it is demonstrated that any 
continuous solution {δi,j,m,t} feasible to (15) is also feasible to 
the LP-relaxed problem of the previous formulation (13). In 
Proposition 2, a continuous solution {δi,j,m,t} is given that is 
feasible to the LP-relaxed problem of the previous formulation 
(13) but not feasible to (15). 
Proposition 1. Any continuous solution {δi,j,m,t} feasible to (15) 
of the new formulation is also feasible to the LP-relaxed 
problem of the previous formulation (13). 
Proof. Consider a solution {δi,j,m,t} that is feasible to (15). The 
set of beginning times {bi,j,m,t} can be determined by (6). In the 
following, solution {δi,j,m,t, bi,j, ci,j, xi,j,m} with {bi,j} satisfying (2), 
{ci,j} satisfying (3), and {xi,j,m} satisfying 

, , , ,m, , , ,i j m i j t
t

x b i j m= ∀∑ ，               (16) 

is proven to be feasible to the LP-relaxed problem of the 
previous formulation (13) as follows.  
Satisfaction of the part-to-machine assignment constraints 
(13a). Since (1) and (16) hold, (13a) are clearly satisfied. 
Satisfaction of the processing time requirements (constraints 
(13b), (13c), (13d), (13e)). In [8], the processing time 
requirements are described by two equality constraints (13b) 
and (13e) and two “big-M” inequality constraints (13c) and 
(13d). Since (13b) can be easily derived from (13e), the 
satisfaction of (13e) is first proved. By using the relationship 
between {δi,j,m,t} and {bi,j,m,t} as described by (6), the left-hand 
side of (13e) can be written as a sum of {bi,j,m,t}, and it can then 

be shown that (13e) are satisfied. Based on this, the satisfaction 
of constraints (13b) can be easily proved.  

The satisfaction of (13c) and (13d) can be proved as follows. 
When operation (i, j) is active at time slot t, it can be shown that 
its beginning time (i.e., the right-hand side of constraints (13c)) 
is always smaller than or equal to t, and therefore constraints 
(13c) are satisfied. For other cases, constraints (13c) are always 
satisfied since M (as in the “big-M”) is a large number. It can 
be similarly shown that constraints (13d) are satisfied. 
Satisfaction of the operation precedence constraints and 
machine capacity constraints (constraints (13f) and (13g)). By 
using (2), (3) and (6), constraints (13f) and (13g) of [8] can be 
rewritten in the form of (5) and (7) of our new formulation, and 
it can be shown that they are satisfied.          ■ 
 In the following, a continuous solution {δi,j,m,t} is given that 
is feasible to the LP-relaxed problem of the previous 
formulation (13) but not feasible to (15). To guarantee that the 
machine capacity constraints (13g) are not violated, the total 
number of time slots T and the machine capacity {Mm,t} should 
not be too small. Specifically, suppose that they satisfy the 
following inequality: 

,t( , ) , , ,

1max( min( )) 0.
/m

m tm i j O i j m i j

M
T p U∈

− ≤
  

∑       (17) 

This condition is generally easy to satisfy, and is satisfied for 
all the instances tested in Section V.  
Proposition 2. Under condition (17), the solution 

, , , , , , ,
, , ,

, , , ,

1 / , , , {1,..., },

0,               , , , { 1,..., }
i j m i j i j m i j m

i j m t
i j m i j m

Y U i j m t Y p

i j m t Y p T
δ

 ∀ ∈= 
∀ ∈ +

，

,
  (18) 

with , , , ,/ ,i j m i j mY T p =                  
is feasible to the LP-relaxed problem of the previous 
formulation (13), but not feasible to (15).  
Proof. Under (17), it can be checked that solution (18) satisfies 
all the constraints of the LP-relaxed formulation of previous 
formulation (13). However, (18) is not feasible to (15), and this 
can be demonstrated as follows. When the arrival times of all 
the parts are 1, then it can be shown that (5) and (6) cannot be 
satisfied at the same time. When there exists at least one part 
whose arrival time is greater than 1, then it can be shown that 
constraints (5) and (1) cannot be satisfied at the same time. 
 

IV. SOLUTION METHODOLOGY 
As will be demonstrated in Section V, B&C can solve small- 

or medium-sized problems based on the new formulation. For 
large problems, B&C may still suffer from difficulties because 
of the combinatorial nature of the problem. For fast resolution 
of such problems, SAVLR [9] is enhanced in this section.  

In SAVLR, the problem is decomposed into subproblems by 
relaxing the coupling machine capacity constraints (7), and 
subproblem solutions are coordinated by iteratively updating 
multipliers. After the machine capacity constraints (7) are 
relaxed by using Lagrangian multipliers {λt,m}, the relaxed 
problem at iteration k is formed as: 
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subject to (1), (5), (13), where 

, ,

, , , , ,
( , ) [ 1, ]

( )
m i j m

t m i j m k m t
i j O k t p t

g b b M
∈ ∀ ∈ − +

≡ −∑ ∑ ，       (20) 

and {st,m} are non-negative slack variables introduced to 
convert inequality constraints (7) to equality constraints. In (19), 
the absolute-value penalty function with the positive penalty 
coefficient c is used instead of a quadratic penalty function as 
in the Augmented Lagrangian Relaxation method ([10]) to 
facilitate the use of B&C. It is piecewise linear with two 
segments, and can be exactly linearized by introducing 
additional decision variables and constraints. However, since 
the absolute-value function is a poor approximation to a 
quadratic function, the quadratic growth characteristics of 
quadratic penalty functions cannot be well captured. When 
multipliers are far away from their optimal values and the levels 
of constraint violations are large, especially at the early stage of 
optimization, the absolute-value penalty function might not be 
able to impose a sufficiently large penalty.  

To overcome the above-mentioned difficulty, our idea is to 
use a convex piecewise linear function with three segments to 
approximate the quadratic function. In Figure 1, a quadratic 
function is depicted in blue, and the absolute-value function is 
depicted in black. It can be seen that the absolute-value function 
is not a good approximation to the quadratic function. To 
improve approximation accuracy, take the following convex 
piecewise linear function with three segments as an example: 

( ) max(0,4 3, 4 3),p x x x≡ − − −            (21) 
which is depicted in red in the figure. As can be seen, with three 
segments, the approximation accuracy is improved as compared 
to that of the absolute-value function, in particular for the 
interval [-4, 4]. For problem instances considered in Section V, 
the violation of the capacity for a machine group at a time slot 
is generally less than 4 according to our testing. Therefore, 
function (21) provides a good approximation to the quadratic 
function, and imposes sufficiently large penalties when the 
level of violation is 2 or above as compared to those imposed 
by the absolute-value function. 
 

 
Fig. 1 Illustration of the 3-segment piece-wise linear function, the absolute-

value function, and the quadratic function 
A convex piecewise linear function such as (21) can be 

exactly linearized through introducing additional decision 
variables and constraints following the standard way as 
discussed on page 150 of [19]. To linearize such a function, one 
additional decision variable is required, and the number of 

additional constraints equals the number of non-zero segments. 
For our 3-segment function (21), the number of non-zero 
segments is two. Therefore, the numbers of additional decision 
variables and constraints required are equal to those required by 
the absolute-value function. In general, the number of segments, 
the vertices, and the slopes of the function can be adjusted. 
Nevertheless, more segments do not mean better performance, 
since more additional constraints are required by linearization. 
 With the new penalty function (21) replacing the absolute-
value penalty function, the solution process follows exactly that 
of [9]. The relaxed problem becomes: 

( )

( )
, , ,

, ,
, ,
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After linearizing the penalty function following page 150 of 
[19], a subproblem for part i can be formed by optimizing with 
respect to decision variables associated with that part while 
fixing decision variables associated with other parts at their 
previously obtained values.  

After solving a subproblem consisting one or a few parts at 
iteration k by using B&C, multipliers are updated based on 
surrogate subgradients to coordinate subproblem solutions as:  

( )1
, , , ,( ) , , .k k k

t m t m t m t ms g b s t mλ λ+ = + + ∀        (23) 
To guarantee the convergence of multipliers, the stepsize sk in 
(23) is updated following (18) and (19) of [9]. If the penalty 
coefficient ck is too large, the surrogate optimality condition 
((14) in [9]) may not be satisfied, and solutions may get trapped 
at a local minimum. In this case, ck is decreased following (21) 
in [9]. Finally, when the stepsize sk reduces below a certain 
threshold or when the CPU time (consists of data and model 
loading, solving, and solution outputting time) reaches a pre-
specified limit, the iterative multiplier updating process stops. 

Since machine capacity constraints (7) are relaxed, 
subproblem solutions, when put together, generally do not 
satisfy (7). To obtain a solution feasible to the original problem 
(11), subproblem solutions are “repaired” when the norm 
squared of constraint violations is less than or equal to a 
threshold γ, i.e., 

( )2
, ,

,
( ) .t m t m

t m
g b s γ+ ≤∑               (24) 

Repairing is done by optimizing the decision variables 
associated with violated machine capacity constraints while 
fixing the remaining decision variables by using B&C. This will 
be done several times to obtain multiple feasible solutions. At 
the convergence of multipliers, surrogate dual value provides a 
lower bound to feasible costs, and subproblem solutions are 
repaired to obtain the last feasible solution. The feasible 
solution with the minimal cost is then the final solution. 
 

V. NUMERICAL RESULTS  
The new formulation and solution methodology are 

implemented by using MATLAB R2018a and CPLEX 12.8.0.0. 
Three examples are tested on a laptop with the Intel Xeon W-
10855M processor at 4.3-Ghz, 64GB of RAM, and Windows 
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10. The first example is a small instance considered in [6]–[8], 
and the second example consists of several medium-sized 
problems. These two examples are solved by using B&C to 
numerically demonstrate the advantages of our new formulation. 
The third example consists of several large instances, and is 
solved by using our SAVLRE to demonstrate that near-optimal 
solutions can be efficiently obtained. 
Example 1: A small problem 

 This example consists of an instance with 127 parts, and was 
taken from Pratt & Whitney’s Development Operation shop 
solved in [6]–[8] to test problem formulations. There are 19 
machine groups, each with one to six machines, and for each 
machine group, the number of machines contained is a constant 
with respect to time slot t. The problem is solved by using B&C. 
The solving time, which equals total CPU time minus data and 
model loading and solution outputting time, was used as the 
stopping criteria for B&C. It was used in [6] and [8] as well. In 
this example, optimization stops when the solving time reaches 
3,600 seconds, or when the optimal solution is found. The 
feasible cost, the MIP gap, and the solving time of both the new 
formulation and the previous formulation (13) are presented in 
Table I. It can be seen that the new formulation enjoys better 
solution quality with much reduced computational 
requirements.  
 

Table I Comparison of formulations: small size 
New formulation (B&C) Formulation [8] (B&C) 
Cost1 GAP2  Solving 

time (s) 
Cost1 GAP2  Solving 

time (s) 
14,872 0 3.31 15,117 3.72% 3600 

1: Total weighted tardiness 
2: MIP gap reported by the CPLEX solver 
 

As reviewed in Section II, the formulation (13) has been 
improved by using a systematic formulation tightening 
approach. As reported in Table 2 of [8], after tightening, a 
feasible cost with 0.01% MIP gap was obtained by using B&C 
after 14.7s. The results thus fall within the range obtained by 
using our new formulation. 
Example 2: Medium-sized problems 

This example consists of six instances with 200 to 400 parts, 
and 10 to 30 machine types. Each part requires one to seven 
operations, and each operation can be processed by one to three 
machine groups. The arrival time of each part is generated by 
using a uniform distribution U[1, 300], and the due date of each 
part equals its possible earliest completion time (i.e., its arrival 
time plus its smallest total processing time). As for tardiness 
weights, 30% of parts have a weight of 1, 65% of parts have a 
weight of 10, and 5% of parts have a weight of 100. The total 
number of time slots is 500, which is large enough to complete 
all the parts, and satisfies condition (17). The stopping criteria 
are the same as in Example 1.  

Scenarios without machine breakdowns are considered first, 
where capacities of machine groups are constant over the 
planning horizon. The feasible costs, the MIP gaps, and the 
solving times by using B&C are presented in Table Ⅱ. It can be 
seen that the new formulation significantly improves the 
solution quality and drastically reduces computational 
requirements of B&C as compared to the original formulation  

To test the robustness of our new formulation with respect to 
non-constant capacities of machine groups, each machine is 

assumed to have a probability of 0.3% to break down at each 
time slot, and repairing takes four consecutive time slots. Based 
on this, ten scenarios are randomly generated, and other data are 
the same as those for the 300-part instance. The optimal 
solutions of all ten scenarios are efficiently obtained by using 
B&C. The average solving time is 319s, with the minimal 166s, 
the maximal 890s, and the standard deviation 214s. The results 
demonstrate the robustness of our new formulation with respect 
to non-constant machine capacities. 

 

Table II Comparison of formulations: medium size 
Instance New formulation (B&C) Formulation 

[8] (B&C) 
Cost GAP  Solving 

time (s) 
LP Cost3 Cost 

 
LP 
Cost3 

200*201  377 0 12.77 374.41 Fail2 0 
250*20 593 0 33.91 572.17 Fail 0 
300*20 609 0 179.27 558.55 Fail 0 
300*10 621 0 156.14 538.47 Fail 0 
400*10 1147 0 1395.13 1010.23 Fail 0 
300*30 1129 0 188.16 832.01 Fail 0 

1: 200*20 means the instance with 200 parts and 20 machine groups 
2: No feasible solution is found after 3600s 
3: The optimal cost of the corresponding LP-relaxed problem 
 

The optimal costs of the corresponding LP-relaxed problems 
are also presented in Table II. As can be seen, the optimal costs 
of the LP-relaxed formulations of our new model are much 
larger than those of the previous formulation of [8]. This is 
because the solution set of the LP-relaxed problem of the new 
formulation is a proper subset of that of the previous 
formulations (13). Here, the LP cost of the previous formulation 
(13) is zero. This is because after relaxing integrality constraints, 
operation statuses {δi,j,m,t} of (13) can no longer be correctly 
determined by the “big-M” inequalities (13c) and (13d). For the 
data set tested, there exist solutions with operation beginning 
times equal to the earliest possible beginning times while 
satisfying machine capacity constraints, leading to zero total 
weighted tardiness.  
Example 3: Large problems 

This example consists of five instances with 400 to 600 parts, 
and 10 to 30 machine types. The parts are grouped to form 10 
subproblems. Other data are generated following the method of 
Example 2 without machine breakdowns. The problems are 
solved by using SAVLRE with the new formulation. When the 
norm squared of machine capacity violations is less than or 
equal to 40, i.e., γ in (24) is 40, heuristics are used to find 
feasible solutions to the original problem. The algorithm stops 
when the CPU time reaches 1,800s or the stepsize reduces 
below 0.05. The feasible cost, the gaps, and the CPU times of 
both SAVLRE and B&C are presented in Table III. 
 The first instance is with 500 parts and 10 machine groups. 
By using SAVLRE, a solution with a cost of 4,210 is obtained 
after 813s, and 3,942 after 1100s. The duality gap is 13.1% and 
7.1%, respectively. The results demonstrate that high-quality 
solutions are efficiently obtained by using SAVLRE. For 
comparison purposes, B&C is also tested. Since the problem 
instance is large, no feasible solution is obtained after 3,600s.  

To examine the effects of the new penalty function, the norm 
squared of machine capacity violations at each minor iteration 
(i.e., after solving one subproblem) is depicted in red in Figure 
2. For comparison purposes, those of SAVLR are depicted in 
blue. As can be seen, the new method enjoys a faster reduction 
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of the machine capacity violations than SAVLR. This is 
because our 3-segmnent function (21) provides a good 
approximation to the quadratic function and sufficiently large 
penalties. Moreover, since the numbers of decision variables 
and constraints required to linearize (21) are the same as those 
required by the absolute-value function, the computational 
requirements are similar to those of the absolute-value function. 
The average CPU time per minor iteration is 3.91s for SAVLRE, 
and 3.52s for SAVLR. Testing of 5- and 7-segment piecewise 
linear penalty functions has also been conducted, and the results 
were not satisfactory. This is because linearizing these 
functions requires additional constraints, resulting in significant 
increases of subproblem solving times.  

 

 
Fig. 2 the norm squared of constraint violations in each minor iteration  

 
For the instance with 600 jobs and 10 machine types, a cost 

of 7448 with a gap of 5.9% is obtained by SAVLRE after 1261s. 
A cost of 7503 with a gap of 6.8% is obtained slower by 
SAVLR after 1403s. To demonstrate the scalability of 
SAVLRE, three more instances are tested, and the results are 
shown in Table III.  

It is difficult to compare our results with many of the results 
obtained by using heuristic methods in the literature since their 
codes and data are generally not available. Nevertheless, let us 
comment on the results of the “shift bottleneck” methods of 
[15], [16]. The largest instance considered there has 200 parts 
and 30 machines, and the corresponding “ratio” (the average 
gap between feasible costs and their lower bounds) is 10.2%. 
These results fall within the range obtained by using our method, 
demonstrating the scalability and quality of our optimization-
based method. 

 
Table III Comparison of methodologies: large problems  

Instance New formulation (SAVLRE+B&C) New formulation 
(B&C) 

Cost Lower 
Bound 

GAP 
 

CPU 
time (s) 

Cost Solving 
time (s) 

500*10 3942 3659 7.1% 1100 Fail 
600*10 7448 7008 5.9% 1261  Fail 
400*20  2019 1907 5.5% 404  2773 

(30.91%) 
3600  

500*20  3967 3554 10.4% 872 Fail 
500*30 6387 5835 8.6% 843 Fail 

 

VI. CONCLUSION 
In this paper, a novel ILP formulation is developed for job-

shop scheduling. As compared to the previous formulation of 
[6],[8], the new formulation has much reduced numbers of 
decision variables and constraints. Moreover, a brand new way 

to compare the tightness of formulations is developed, and our 
new formulation is proven to be tighter. Therefore, solution 
quality is much improved, while the computational 
requirements are much reduced. SAVLR is also enhanced so 
that near-optimal solutions can be efficiently obtained for large 
problems. These advancements will have major implications on 
formulating and resolution of other manufacturing scheduling 
problems and beyond. To further improve solution quality and 
computation efficiency, tightening of the new formulation will 
be further investigated.  
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