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Abstract – Job-shop scheduling is an important but difficult 

problem arising in low-volume high-variety manufacturing. It is 
usually solved at the beginning of each shift with strict 
computational time requirements. For fast resolution of the 
problem, a promising direction is to formulate it in an Integer 
Linear Programming (ILP) form so as to take advantages of 
widely available ILP methods such as Branch-and-Cut (B&C). 
Nevertheless, computational requirements on ILP methods for 
existing ILP formulations are high. In this paper, a novel ILP 
formulation is presented. In the formulation, a set of binary 
indicator variables indicating whether an operation begins at a 
time slot on a machine group or not is selected as decision variables, 
and all constraints are innovatively formulated based on this set of 
variables. For fast resolution of large problems, our recent 
decomposition-and-coordination method “Surrogate Absolute-
Value Lagrangian Relaxation” (SAVLR) is enhanced by using a 3-
segment piecewise linear penalty function, which more accurately 
approximates a quadratic penalty function as compared to an 
absolute-value function. Testing results demonstrate that our new 
formulation drastically reduces the computational requirements 
of B&C as compared to our previous formulation. For large 
problems where B&C has difficulties, near-optimal solutions are 
efficiently obtained by using the enhanced SAVLR under the new 
formulation.  

Index terms–Manufacturing, job-shop scheduling, integer 
linear programming, decomposition and coordination 

I. INTRODUCTION 
ob shops are manufacturing systems designed for low-
volume/high-variety production [1]. In a job shop, machines 
are grouped based on their functionalities, and each group 

has limited capacities. A part may need to go through a 
sequence of operations, each can be processed by one or a few 
machine groups. A schedule is usually generated with strict 
computational time requirements, e.g., 10 to 20 minutes, at the 
beginning of a shift. The scheduling problem is subject to four 
types of constraints: part-to-machine assignment constraints, 
processing time requirements, operation precedence constraints, 
and machine capacity constraints. To have on-time delivery – 
the ultimate goal of job-shop scheduling, the objective function 
should be due date related, e.g., weighted tardiness penalties. 
The problem is difficult because of its combinatorial nature.  

For fast resolution of job-shop scheduling problems, a 
promising direction is to formulate them in an Integer Linear 
Programming (ILP) form so as to take advantages of widely 
available ILP methods such as Branch-and-Cut (B&C) [2]–[4]. 
Nevertheless, the efficiency of ILP methods is significantly 
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affected by problem formulations, and when a formulation 
contains large numbers of decision variables and constraints, 
the methods may experience difficulties [5]. Developing good 
formulations is thus of critical importance. This, however, is 
difficult in view of the many types of complicated constraints 
within job-shop scheduling problems.  

As will be reviewed in Section Ⅱ, an ILP formulation was 
presented in [6] based on our classic formulation [7], with 
recent extensions also reported in [8] and [9]. In [6], operation 
beginning times were selected as integer decision variables. 
Processing time requirements and operation precedence 
constraints were easily formulated based on them. To consider 
machine capacity constraints, an additional set of binary 
indicator variables was created to indicate the status of 
operations: if an operation is active on a machine group at a 
time slot (i.e., being processed), then the corresponding 
indicator variable equals one; and zero otherwise. These 
indicator variables depend on operation beginning times, and to 
describe such relationships, a large number of constraints is 
needed. Consequently, when considering large problems, the 
computational requirements of ILP methods are high. 

To overcome the above-mentioned difficulties, a novel ILP 
formulation will be developed in Section Ⅲ. In the formulation, 
a set of binary indicator variables indicating whether an 
operation begins at a time slot on a machine group or not is 
selected as decision variables. If an operation begins at a certain 
time slot on a machine group, then the corresponding indicator 
variable equals one; and zero otherwise. Based on these 
variables, all constraints, including machine capacity 
constraints, are innovatively formulated without introducing 
additional decision variables or constraints. The numbers of 
decision variables and constraints are significantly reduced as 
compared to those of [6]. Computational requirements of B&C 
are thus drastically reduced, as will be supported through 
numerical testing in Section V.  

Since our new formulation has low computational 
requirements, B&C can solve small- or medium-sized problems 
efficiently. For large problems, B&C may still suffer from poor 
performance. Our recent decomposition-and-coordination 
method “Surrogate Absolute-Value Lagrangian Relaxation” 
(SAVLR) is enhanced in Section Ⅳ. SAVLR exploits 
exponential reduction of complexity upon problem 
decomposition, and effectively coordinates subproblem 
solutions with accelerated convergence [10]. In the method, 
machine capacity constraints, which couple various parts 
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assigned to a machine group, are “relaxed.” Instead of using 
powerful quadratic penalty functions as in Augmented 
Lagrangian Relaxation [11], violations of these constraints are 
penalized by using an absolute-value function. This absolute-
value function is piece-wise linear with two segments, and is 
exactly linearized by introducing additional decision variables 
and constraints so as to use ILP solvers. The absolute-value 
function, however, is a poor approximation to a quadratic 
function, and the quadratic growth of penalties cannot be well 
captured. When the level of constraint violation is large, the 
absolute-value penalty function may not impose a sufficiently 
large penalty, especially at the early stage of optimization. To 
overcome this difficulty, the absolute-value penalty function is 
enhanced by using a 3-segment piecewise linear function, 
where the middle segment is a constant. This function better 
captures the quadratic growth of penalties as compared to the 
absolute-value function. In addition, it can be exactly linearized, 
and the numbers of additional decision variables and constraints 
are the same as those required by the absolute-value function. 
Extension to multiple-segment piecewise linear penalty 
functions is possible.  

To demonstrate the performance of our new formulation and 
the enhanced SAVLR (or SAVLRE for simplicity), three 
examples are presented in Section Ⅴ. The first and the second 
are for small- and medium-sized instances, respectively, and are 
solved by using B&C. The results demonstrate that our new 
formulation drastically reduces the computational requirements 
of B&C as compared with the original formulation of [6], and 
optimal solutions are efficiently obtained. The third example 
with four large instances is solved by using SAVLRE. Testing 
results demonstrate that the convergence of multipliers is 
improved by using the new 3-segment penalty function as 
compared to using the absolute-value penalty function, while 
computational requirements of each iteration are similar. Near-
optimal solutions are therefore obtained in a computationally 
efficient manner.  

II. LITERATURE REVIEW 
In this section, existing job-shop scheduling formulations are 

reviewed in subsection A. Solution methodologies are then 
discussed in subsection B. 
A. Problem formulations 

With complicated constraints, formulating a job-shop 
scheduling problem is difficult [1]. Integer Linear 
Programming (ILP) formulations were developed in [12]–[17]. 
In these formulations, the objective is usually to minimize the 
makespan, i.e., the time span from the very beginning to the end 
when all the parts are processed. The makespan, however, does 
not capture the on-time delivery performance, the paramount 
measure for job-shop scheduling. In fact, due dates are not even 
included in these formulations. Also, operations are assigned to 
individual machines, and overlapping of two operations on a 
machine is prohibited. In view that there are many possible 
sequences among the operations assigned to a machine, the 
number of such constraints are large. Also, practically, there are 
multiple machines of the same functionality in a job shop. The 
consideration of groups of machines with the same 
functionality is therefore a better modeling approach. 

In [7], one of our earlier papers, a separable nonlinear 
formulation was presented. Operation beginning times were 
selected as integer decision variables, indicating when each 
operation is to begin on an eligible machine group (as opposed 
to begin on an eligible machine). The objective is to minimize 
the total weighted tardiness. Machine capacity constraints limit 
the number of active operations (i.e., operations that are being 
processed) on a group. Consider for example a machine group 
with five machines available at a particular time slot. Then at 
most five operations can be active at that time slot. These 
machine capacity constraints that couple parts together and the 
objective function are part-wise additive. After machine 
capacity constraints are relaxed, the problem can be 
decomposed into part-wise subproblems, each with much-
reduced complexity.  
 In our recent work [6], an ILP formulation was developed 
based on [7]. In the formulation, operation beginning times 
were selected as integer decision variables. From these 
variables, processing time requirements and operation 
precedence constraints were easily formulated. The 
fundamental difficulty is the modeling of machine capacity 
constraints. An additional set of binary indicator variables was 
created to indicate if an operation is active or not on an eligible 
machine group at each time slot following the idea of [7]. Then 
the sum of these indicators over all relevant operations for a 
machine group should be less than or equal to the number of 
machines in that group available at each time slot. This set of 
indicator variables is related to operation beginning times. To 
describe such relationships, a significant number of additional 
constraints are needed. Therefore, although this formulation is 
linear, B&C might suffer from poor performance for large 
problems. Very recently, the formulation in [6] was tightened 
through a systematic approach by transforming the constraints 
to directly delineate the problem convex hull in [8], and the 
computational efficiency of B&C has thus been improved. 
B. Solution methodologies 

In this subsection, heuristics, branch-and cut, standard 
Lagrangian Relaxation, Surrogate Lagrangian Relaxation and 
Surrogate Absolute-Value Lagrangian Relaxation are briefly 
reviewed to solve job shop scheduling problems.  
Heuristics. Meta-heuristics such as Particle swarm [18], [19], 
Tabu search [20], [21] and evolutionary algorithms [22], [23] 
are frequently used to solve job-shop scheduling problems. 
These methods have the advantage of low computational 
requirements. However, convergence is difficult to guarantee, 
and the quality of solutions is difficult to quantify.  
Branch-and-Cut (B&C). Branch-and-Cut (B&C) has been 
used to solve ILP job-shop scheduling problems, e.g., [6], [15], 
[16]. The key idea of B&C is to find the convex hull of the 
problem through adding “valid cuts.” If the convex hull is found, 
then the optimal solution can be obtained by using Linear 
Programming (LP) methods. If the method fails to obtain the 
convex hull, or valid cuts are difficult to obtain or are 
ineffective, then time-consuming Branch-and-Bound is used. 
Since finding convex hulls itself is NP-hard, B&C may suffer 
from difficulties for large job-shop scheduling problems.  
Standard Lagrangian Relaxation. Another approach is 
Lagrangian Relaxation (LR) when applying to separable 
formulations such as that of [7]. In the method, after relaxing 
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coupling machine capacity constraints, the “relaxed problem” 
is decomposed into smaller subproblems, one for each part. 
Since subproblems have much-reduced sizes, their complexity 
is drastically reduced as compared to that of the original 
problem. Subproblem solutions are then coordinated through 
iterative updating of multipliers based on subgradients. 
However, the stepsizes used to update multipliers require the 
knowledge of the optimal dual value, which is not available. 
Although adaptive estimations of the optimal dual value are 
used in practice, these estimations are typically ineffective and 
may result in an excessive number of iterations. Moreover, the 
computational requirements of traditional LR are high because 
all subproblems need to be solved in order to update multipliers, 
and multipliers may suffer from the zigzagging difficulties in 
view of the characteristics of dual functions for ILP problems. 
Therefore, the performance of traditional LR is poor. 
Surrogate Lagrangian Relaxation and Surrogate Absolute-
Value Lagrangian Relaxation. By exploiting a contraction 
mapping concept, our recent “Surrogate Lagrangian Relaxation” 
(SLR) ([11]) was developed without requiring the knowledge 
of the optimal dual value to calculate stepsizes. Moreover, 
multipliers are updated without requiring all subproblems to be 
solved, thereby reducing the heavy computational requirements 
and the multiplier zigzagging issues. Thus, most of the major 
difficulties of traditional LR have been overcome. Convergence 
is further improved in the “Surrogate Absolute-Value 
Lagrangian Relaxation” (SAVLR) method in [10], where 
absolute-value penalty functions are used to penalize the levels 
of machine capacity violations in [6]. This penalty function can 
be exactly linearized, and subproblems are solved by using 
B&C.  

III. A NOVEL INTEGER LINEAR FORMULATION 
In this section, a novel ILP formulation for job-shop 

scheduling problems based on that of [6] is presented.  
Consider a job shop with M machine groups. The capacity of 

machine group m at time slot t is denoted as Mm,t for m ∈ [1, 
2, .., M] and t ∈ [1, 2, ..., T], where T is the total number of time 
slots and is assumed to be long enough to process all the parts. 
There are I parts, each with an arrival time ai and a due date di. 
Part i ∈ [1, 2, ..., I] needs to go through a sequence of Ji 
operations, and the jth operation of part i is denoted as (i, j) – a 
part-operation pair. Let the set of all part-operation pairs be 
denoted as S. An operation can be processed by one of the 
eligible machine groups Ui,j, and the processing time of 
operation (i, j) on machine group m is denoted as pi,j,m, which 
may be machine group dependent. It is assumed that processing 
cannot be interrupted, i.e., non-preemptive. In the following, 
decision variables are first introduced. Then four types of 
constraints, including part-to-machine assignment constraints, 
processing time requirements, operation precedence constraints, 
and machine capacity constraints, are formulated, followed by 
the objective function.  
a) Decision variables 

As reviewed in subsection II.A, operation beginning times 
are integer decision variables in the formulations of [6], [8], [9]. 
The fundamental difficulty of these formulations lies in the 
modeling of machine capacity constraints, where an additional 
set of binary indicator variables was created to indicate whether 

an operation is active on a machine group at each time slot or 
not, resulting in large numbers of additional variables and 
constraints. To overcome this difficulty, a set of binary 
indicator variables indicating whether an operation begins at a 
time slot on a machine group or not is selected as decision 
variables. If operation (i, j) is to begin on machine group m at 
time slot t, then bi,j,m,t equals one; and it equals zero otherwise. 
With this innovative selection of decision variables, part-to-
machine assignment constraints, i.e., each operation must be 
assigned to a unique machine group and to begin at a unique 
time slot, can be easily formulated. Processing time 
requirements and operation precedence constraints can also be 
delineated following those in [6], [8], [9]. More importantly, 
machine capacity constraints can be effectively modeled 
without introducing additional decision variables or constraints. 
In the following, these constraints are introduced. 
b) Part-to-machine assignment constraints 

Since each operation must be assigned to a unique machine 
group and to begin at a unique time slot, part-to-machine 
assignment constraints are modeled as follows:  

,

, ,

, , , 1, ( , ) .
i j

i j i j

u

i j m t
m U t l

b i j S
∀ ∈ =

= ∀ ∈∑ ∑             (1) 

In the above, the range [li,j, ui,j] contains the set of eligible 
operation beginning times for operation (i, j). Specifically, an 
operation cannot begin too early until there is enough time to 
complete all the proceeding operations, and it cannot begin too 
late so that there is not enough time to complete it and its 
subsequent operations. The method to calculate [li,j, ui,j] will be 
described later in (9) and (10).  
c) Processing time requirements 

From the operation beginning indicator variables, integer 
operation beginning times are obtained as 

,

, ,

, , , , ,
i j

i j i j

u

i j i j m t
m U t l

b t b
∀ ∈ =

= ⋅∑ ∑               (2) 

where the integer variable bi,j is the beginning time of operation 
(i, j). Since processing is non-preemptive, the completion time 
equals its beginning time plus the required processing time 
following equation (2) in [6], i.e.,  

,

, ,

, , , , , ,( ) 1,
i j

i j i j

u

i j i j m i j m t
m U t l

c t p b
∀ ∈ =

= + −∑ ∑           (3) 

where ci,j is the completion time of operation (i, j). Please note 
that {bi,j} and {ci,j} are introduced here for easy understanding 
and presentation. They are not decision variables and are not 
optimized in the solution process to be introduced in Section IV. 
d) Operation precedence constraints  

For each part, its operations need to be processed in a given 
sequence. Without loss of generality, operations for a part are 
numbered according to their precedence, and operation (i, j+1) 
cannot begin until operation (i, j) is completed, i.e.,  

{ }, 1 , , ( , ) ( , ) | ( , ) , ( , 1) .i j i jb c i j i j i j S i j S+ > ∀ ∈ ∈ + ∈    (4) 
Equation (4) can be re-written without {bi,j} or {ci,j} as:  

{ }

, ,

, , , ,

, +1, , , , , , ,( ) ,

( , ) ( , ) | ( , ) , ( , 1) .

i j i j

i j i j i j i j

u u

i j m t i j m i j m t
m U t l m U t l

t b t p b

i j i j i j S i j S
∀ ∈ = ∀ ∈ =

⋅ ≥ +

∀ ∈ ∈ + ∈

∑ ∑ ∑ ∑      (5) 
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e) Machine capacity constraints  
To formulate machine capacity constraints, it is noticed that 

if operation (i, j) is active on machine group m at time slot t, 
then its beginning time must be within the interval [t-pi,j,m+1, t]. 
Therefore, the status (active or not) of operation (i, j) on 
machine group m at time t, represented by δi,j,m,t, can be obtained 
by summing up the operation beginning indicator variables over 
[t-pi,j,m+1, t]:  

, , , ,

, , , , , ,
[ 1, ] [ , ]i j m i j i j

i j m t i j m k
k t p t l u

bδ
∀ ∈ − + ∩

= ∑ .          (6) 

Again, variables {δi,j,m,t} are introduced for easy understanding 
and presentation. They are not decision variables and are not 
optimized in the solution process.  

Based on (6), the number of active operations on machine 
group m at time slot t is obtained by summing up the statuses of 
all relevant operations that can be processed by the machine 
group. The machine capacity constraints can therefore be 
formulated as: 

, , , ,

, , , ,
( , ) [ 1, ] [ , ]

, , ,
m i j m i j i j

i j m k m t
i j O k t p t l u

b M t m
∈ ∀ ∈ − + ∩

≤ ∀ ∀∑ ∑      (7)  

where Om denotes the set of operations that can be processed by 
machine group m.  
f) The Objective function 

Following [6], [7], the objective function to be minimized is 
the total weighted tardiness. The tardiness of part i is the 
number of time slots being late, i.e., the number of time slots 
that the completion time of the last operation of part i exceeds 
the due date di. It is thus described by ,max( ,0)

ii J ic d− , where 
(i, Ji) is the last operation of part i. The total weighted tardiness 
is then formulated by summing up the weighted tardiness over 
all parts:  

,( ) max( ,0),
ii i J i

i
f c w c d≡ ⋅ −∑            (8) 

where wi is the weight or the importance of part i. Equation (8) 
can be easily re-written without {bi,j} or {ci,j}.  
g) Ranges of operation beginning times 

To reduce the decision space, possible beginning time slots 
of operation (i, j), i.e., [li,j, ui,j], need to be delineated. The values 
li,j and ui,j are derived at the data-preprocessing stage as follows. 
The earliest beginning time slot of the first operation of part i is 
the part arrival time, i.e., li,1 = ai. A subsequent operation cannot 
begin until there is enough time to complete all the proceeding 
operations, i.e.,  

,

1

, , ,
1

min ( ), 2.
i j

j

i j i i k mm Uk
l a p j

−

∈
=

= + ∀ ≥∑            (9) 

There is a minimization in (9) since processing times may 
depend on the selections of machine groups, which cannot be 
predetermined. The smallest processing times are used to give 
the maximal flexibility in selecting the beginning time slot. 
Similarly, an operation cannot begin too late so that there is not 
enough time to complete it and its subsequent operations. We 
therefore have:  

,
, , ,min ( ), .

i

i j

J

i j i k mm Uk j
u T p j

∈
=

= − ∀∑             (10) 

Here, the smallest processing times are also used. 

Based on the above, the job-shop scheduling problem can 
thus be described as:  

,

, ,

, , , , ,min max( ( ) 1 ,0) ,

. .(1), (5), (7).

i Ji

i i
i J i Ji i

u

i i J m i J m t ib i m U t l
w t p b d

s t
∀ ∈ =

  ⋅ + − − 
  
∑ ∑ ∑ (11) 

The above objective function with the nonlinear maximization 
operation can be linearized by introducing additional non-
negative integer decision variables {zi} following page 150 of 
[24] as: 

,
min ,i ib z i

w z ⋅ 
 
∑                  (12) 

subject to constraints (1), (5), (7) and additional inequalities 
,

, ,

, , , , ,( ) 1 , .
i Ji

i i
i J i Ji i

u

i J m i J m t i i
m U t l

t p b d z i
∀ ∈ =

+ − − ≤ ∀∑ ∑       (13) 

In view that part-to-machine assignment constraints (1) and 
operation precedence constrains (5) are only associated with 
individual parts, and machine capacity constraints (7) that 
couple operations together and the objective function (8) are 
part-wise additive, the above formulation is separable.  

 

IV. SOLUTION METHODOLOGY 
As will be demonstrated in Section V, B&C can solve small- 

or medium-sized problems based on the new formulation. For 
large problems, B&C may still suffer from difficulties because 
of the combinatorial nature of the problem. For fast resolution 
of such problems, Surrogate Absolute-Value Lagrangian 
Relaxation (SAVLR) [10] is enhanced in this section.  

In SAVLR, the problem is decomposed into subproblems by 
relaxing the coupling machine capacity constraints (7); and 
subproblem solutions are coordinated by iteratively updating 
multipliers. After the machine capacity constraints (7) are 
relaxed by using Lagrangian multipliers {λt,m}, the relaxed 
problem at iteration k is formed as: 

( ), , ,

, ,

, ,

( )
min  ,

( )

. .  (1), (5), (13),

k
i i t m t m t m

i t m

z b s
k

t m t m
t m

w z g b s

c g b s

s t

λ ⋅ + + +  
 
 +
  

∑ ∑∑

∑∑      (14) 

where 

, , , ,

, , , , ,
( , ) [ 1, ] [ , ]

( )
m i j m i j i j

t m i j m k m t
i j O k t p t l u

g b b M
∈ ∀ ∈ − + ∩

≡ −∑ ∑ ，    (15) 

and {st,m} are non-negative slack variables introduced to 
convert inequality constraints (7) to equality constraints. In (14), 
the absolute-value penalty function with the positive penalty 
coefficient c is used instead of a quadratic penalty function as 
in the Augmented Lagrangian Relaxation method ([11]) to 
facilitate the use of B&C. It is piecewise linear with two 
segments, and can be exactly linearized by introducing 
additional decision variables and constraints. However, since 
the absolute-value function is a poor approximation to a 
quadratic function, the quadratic growth characteristics of 
quadratic penalty functions cannot be well captured. When 
multipliers are far away from their optimal values and the levels 
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of constraint violations are large, especially at the early stage of 
optimization, the absolute-value penalty function might not be 
able to impose a sufficiently large penalty.  

To overcome the above-mentioned difficulty, our idea is to 
use a convex piecewise linear function with three segments to 
approximate the quadratic function. In Figure 1, a quadratic 
function is depicted in blue, and the absolute-value function is 
depicted in black. It can be seen that the absolute-value function 
is not a good approximation to the quadratic function. To 
improve approximation accuracy, take the following convex 
piecewise linear function with three segments as an example: 

( ) max(0, 4 3, 4 3),p x x x≡ − − −            (16) 
which is depicted in red in the figure. As can be seen, with three 
segments, the approximation accuracy is improved as compared 
to that of the absolute-value function, in particular for the 
interval [-4, 4]. For problem instances considered in Section Ⅴ, 
the capacity violation of a machine group at a time slot is 
generally less than 4 according to our testing. Therefore, the 
function (16) provides a good approximation to the quadratic 
function, and imposes sufficiently large penalties when the 
level of violation is 2 or above as compared to those imposed 
by the absolute-value function. 

A convex piecewise linear function such as (16) can be 
exactly linearized through introducing additional decision 
variables and constraints following the standard way discussed 
on page 150 of [24]. To linearize such a function, one additional 
decision variable is required, and the number of additional 
constraints equals the number of non-zero segments. For our 3-
segment function (16), the number of non-zero segments is two. 
Therefore, the numbers of additional decision variables and 
constraints required is equal to those required by the absolute-
value function. For other types of problems, the vertices, slopes 
and the number of segments of the function can be adjusted.  
 

 
Fig. 1 Illustration of the 3-segment piece-wise linear function, the absolute-

value function, and the quadratic function 
 

 With the new penalty function (16) replacing the absolute-
value penalty function, the solution process follows exactly that 
of [10]. The relaxed problem becomes: 

( )
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After introducing additional decision variables and constraints 
to linearize the penalty function, the relaxed problem (17) can 
be exactly linearized as 
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                       (18) 
where {rt,m} is the additional set of non-negative decision 
variables introduced by the linearization process. A subproblem 
for part i can then be formed from (18) by optimizing with 
respect to decision variables associated with that part while 
fixing decision variables associated with other parts at their 
previously obtained values , , ,{ }i j m tb . Specifically, it is:  
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with                       
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      (20) 

Since subproblem (19) has a much reduced dimension, solving 
it is much easier than solving the original problem.  

After solving a subproblem consisting one or a few parts at 
iteration k by using B&C, multipliers are updated based on 
surrogate subgradients to coordinate subproblem solutions as:  

( )1
, , , ,( ) , , .k k k

t m t m t m t ms g b s t mλ λ+ = + + ∀         (21) 
To guarantee the convergence of multipliers, the stepsize sk 

in (21) is updated following equations (18) and (19) in [10]. 
When the penalty coefficient ck is too large, the surrogate 
optimality condition (equation (14) in [10]) may not be satisfied, 
and solutions may get trapped at a local minimum. In this case, 
penalty coefficient ck is decreased following (21) in [10]. 
Finally, when the stepsize sk reduces below a certain threshold 
or when the CPU time reaches a pre-specified limit, the iterative 
multiplier updating process stops. 

Since machine capacity constraints (7) are relaxed, 
subproblem solutions, when put together, generally do not 
satisfy (7). Subproblem solutions are thus “repaired” by using 
heuristics, e.g., the one embedded within solver CPLEX. The 
idea is to optimize the decision variables associated with 
violated machine capacity constraints while fixing the 
remaining decision variables by using B&C. Specifically, if the 
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capacity of machine group m1 is violated at time slot t1, then the 
parts assigned to m1 to begin within the range 

[ ]1 1 1 2, ,t tψ β β= − +                (22) 
where β1 and β2 are small integer values, are selected as decision 
variables to satisfy (7). The remaining variables are fixed at 
their latest available values. Subproblem solutions are also 
repaired when the norm squared of constraint violations is less 
than or equal to a threshold γ, i.e.,  

( )2
, ,

,
( )t m t m

t m
g b s γ+ ≤∑ .              (23) 

This is to obtain multiple feasible solutions so that the one with 
the minimal cost will be selected as the solution.  

To measure the quality of feasible solutions, a lower bound 
is obtained as follows. Suppose at convergence, the final set of 
multipliers, the penalty coefficient, and subproblem solutions 
are obtained. All subproblems are solved again to optimality for 
the given set of multipliers and the penalty coefficient. If the 
resulting subproblem solutions are the same as those obtained 
at convergence, then the corresponding surrogate dual value is 
a dual value, and provides a lower bound to feasible costs. 
 

V. NUMERICAL RESULTS  
The new formulation and solution methodology are 

implemented by using MATLAB R2018a academic version and 
IBM CPLEX 12.8.0.0. Three examples are tested on a laptop 
with the Intel Xeon W-10855M processor with six cores at 4.3-
Ghz, 64GB of RAM at 2933-Mhz, and Windows 10. The first 
example is a small instance considered in [6]–[9], and the 
second example consists of several medium-sized problems. 
These two examples are solved by using B&C to demonstrate 
that our new formulation drastically reduces computational 
requirements of B&C as compared to the original formulation 
[6]. The third example consists of several large instances, and 
is solved by using our enhanced SAVLR (or SAVLRE for short) 
to demonstrate that near-optimal solutions can be efficiently 
obtained. 
Example 1: A small problem 

 This example consists of an instance with 127 parts, and is 
taken from Pratt & Whitney’s Development Operation shop 
solved in [6]–[9] to test problem formulations. The problem is 
solved by using B&C where optimization stops when the 
computational time reaches 3,600 seconds or the optimal 
solution is found. The feasible cost, the MIP gap, and the 
solving time are presented in Table Ⅰ. As can be seen, the 
optimal solution is efficiently obtained after 3.31s for the new 
formulation. For comparison purposes, the existing formulation 
[6] is also tested. A cost of 15,117 with a gap of 3.72% is 
obtained after 3,600s. The new formulation is thus much more 
efficient for B&C to solve than the existing one. 
 

Table Ⅰ Comparison of formulations: small size 
New formulation (B&C) Formulation [6] (B&C) 
Cost1 GAP2  Solving 

time (s) 
Cost1 GAP2  Solving 

time (s) 
14,872 0 3.31 15,117 3.72% 3600 

1: Total weighted tardiness 
2: MIP gap reported by the CPLEX solver 
 

As reviewed in Section Ⅱ, the formulation of [6] has been 
improved in [8] by using a systematic formulation tightening 
approach. As reported in Table Ⅴ of [8], after tightening, a 
feasible cost with 0.01% MIP gap was obtained by using B&C 
after 14.7s. The results thus fall within the range obtained by 
using our new formulation, and demonstrates the effectiveness 
of the formulation tightening approach. Tightening of our new 
formulation will be a future topic for investigation. 
Example 2: Medium-sized problems 

This example consists of three instances of 200, 250 and 300 
parts each. There are 20 machine groups, each with three to four 
machines. Each part requires one to seven operations, and each 
operation can be processed by one to three machine groups. The 
arrival time of each part is generated by using a uniform 
distribution U[1, 300], and the due date of each part equals its 
possible earliest completion time (i.e., its arrival time plus its 
smallest total processing time). As for tardiness weights, 30% 
of parts have a weight of 1, 65% of parts have a weight of 10, 
and 5% of parts have a weight of 100. The total number of time 
slots is 500, which is large enough to process all the parts. The 
stopping criteria are the same as in Example 1.  

The first instance is with 200 parts. By using B&C, the 
feasible cost, the MIP gap, and the solving time are presented 
in Table Ⅱ. As can be seen, the optimal solution is efficiently 
obtained after 12.77s. For comparison purposes, the existing 
formulation is also tested. No feasible solution can be obtained 
after 3,600s. The new formulation is thus much more efficient 
for B&C to solve than the existing one.  

The second instance is with 250 parts. As shown in Table II, 
the optimal solution is efficiently obtained after 33.91s for our 
new formulation. For the third instance with 300 parts, the 
optimal solution is obtained after 179.27s. With the existing 
formulation, no feasible solution can be obtained after 3,600s 
for both instances. 

 

Table Ⅱ Comparison of formulations: medium size 
Instance New formulation (B&C) Formulation [6] (B&C) 

Cost1 GAP  Solving 
time (s) 

Cost GAP  Solving 
time (s) 

200*202  377 0 12.77 no feasible solution is 
found after 3600 s  

250*20 593 0 33.91 no feasible solution is 
found after 3600 s 

300*20 609 0 179.27 no feasible solution is 
found after 3600 s 

1: Total weighted tardiness 
2: 200*20 means the instance with 200 parts and 20 machine groups 
 

To test the robustness of our new formulation with respect to 
non-constant capacities of machine groups, each machine is 
assumed to have a probability of 0.3% to break down at each 
time slot, and repairing takes four consecutive time slots. Based 
on this, ten breakdown scenarios are randomly generated, and 
other data are the same as those for the 300-part instance. The 
optimal solutions of all ten scenarios are efficiently obtained by 
using B&C. The average solving time is 319s, the minimal 
solving time is 166s, the maximal solving time is 890s, and the 
standard deviation is 214s. The results demonstrate the 
robustness of our new formulation with respect to non-constant 
machine capacities. 
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Example 3: Large problems 
This example consists of two instances of 500 and 600 parts 

with 10 machine groups, and two instances of 400 and 500 parts 
with 20 machine groups. The parts are grouped to form 10 
subproblems. Other data are generated following the method of 
Example 2 without machine breakdowns. The problems are 
solved by using our enhanced SAVLR (SAVLRE) with the new 
formulation. When the norm squared of machine capacity 
violations is less than or equal to 40, i.e., γ in (23) is 40, 
heuristics are used to find feasible solutions to the original 
problem, and the parameters β1 and β2 in (22) are equal to 5 and 
1, respectively. The algorithm stops when the CPU time reaches 
1,800s or the stepsize reduces below 0.05. 
 The first instance is with 500 parts and 10 machine groups. 
By using the SAVLRE, a solution with a cost of 4,210 is 
obtained after 813s, and another with cost of 3,942 after 1100s. 
The lower bound obtained is 3,659. The duality gap is thus 13.1% 
and 7.1%, respectively. The results demonstrate that high-
quality solutions can be efficiently obtained by using SAVLRE. 
For comparison purposes, B&C is also tested. Since the 
problem instance is large, no feasible solution is obtained after 
3,600s. The feasible cost, the gaps, and the CPU times of both 
SAVLRE and B&C presented above are summarized in the first 
row of Table Ⅲ. 

To examine the effects of the new penalty function, the norm 
squared of machine capacity violations at each minor iteration 
(i.e., after solving one subproblem) is depicted in red in Figure 
2. For comparison purposes, those of SAVLR are depicted in 
blue. As can be seen, the new method enjoys a faster reduction 
of the machine capacity violations than SAVLR. This is 
because our new 3-segments penalty function imposes larger 
penalties at the early stage of optimization.  
 

 
Fig. 2 the norm squared of constraint violations in each minor iteration  

 
According to our testing, at almost all iterations, the capacity 

violation of each machine group at each time slot is less than 4 
for both SAVLR and SAVLRE. Therefore, our 3-segmnent 
function (16) provides a good approximation to the quadratic 
function and sufficiently large penalties. Moreover, since the 
numbers of additional decision variables and constraints 
required by linearization are the same with those required by 
the absolute-value function, the computational requirements are 
similar with those of the absolute-value penalty function. CPU 
time per minor iteration is 3.91s on average for SAVLRE, and 
3.52s for SAVLR. Testing of 5- and 7-segment piecewise linear 

penalty functions has also been conducted, and the results are 
not satisfactory. This is because linearizing these functions 
requires too many additional constraints, resulting in 
significantly increases of subproblem solving times.  

To demonstrate the scalability of SAVLRE, three more 
instances are tested, and the results are also shown in Table Ⅲ. 
As can be seen, near-optimal solutions are effectively obtained 
by using SAVLRE, but not by using B&C. 

 
Table Ⅲ Comparison of methodologies: large problems  

Instance New formulation 
(SAVLRE+B&C) 

New formulation (B&C) 

Cost1 Lower 
Bound 

GAP 
 

CPU 
time 
(s) 

Cost GAP 
 

CPU 
time 
(s) 

500*102 3942 3659 7.1% 1100 no feasible solution is 
found after 3600 s 

600*10 7448 7008 5.9% 1261  no feasible solution is 
found after 3600 s 

400*20  2019 1907 5.5% 404  2773 30.91% 3600  
500*20  3967 3554 10.4

% 
872 no feasible solution is 

found after 3600 s 
1: Total weighted tardiness 
2: 500*10 means the instance with 500 parts and 10 machine groups  
 

VI. CONCLUSION 
In this paper, a novel ILP formulation is developed for job-

shop scheduling, resulting in a drastic reduction of 
computational requirements for B&C as compared to the 
formulation of [6]. SAVLR is also enhanced so that near-
optimal solutions can be efficiently obtained for large problems. 
These advancements will have major implications on 
formulating and resolution of other manufacturing scheduling 
problems and beyond. To further improve solution quality and 
computation efficiency, the future work will include the 
tightening of the new formulation.  
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