
A Novel Integer Linear Programming Formulation for Job-Shop
Scheduling Problems
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY-NC-SA 4.0

SUBMISSION DATE / POSTED DATE

01-03-2021 / 03-03-2021

CITATION

Liu, Anbang; Luh, Peter; Yan, Bing; Bragin, Mikhail (2021): A Novel Integer Linear Programming Formulation
for Job-Shop Scheduling Problems. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.14135075.v1

DOI

10.36227/techrxiv.14135075.v1

https://www.techrxiv.org
https://dx.doi.org/10.36227/techrxiv.14135075.v1

1

 2 5
Abstract – Job-shop scheduling is an important but difficult

problem arising in low-volume high-variety manufacturing. It is
usually solved at the beginning of each shift with strict
computational time requirements. For fast resolution of the
problem, a promising direction is to formulate it in an Integer
Linear Programming (ILP) form so as to take advantages of
widely available ILP methods such as Branch-and-Cut (B&C).
Nevertheless, computational requirements on ILP methods for
existing ILP formulations are high. In this paper, a novel ILP
formulation is presented. In the formulation, a set of binary
indicator variables indicating whether an operation begins at a
time slot on a machine group or not is selected as decision variables,
and all constraints are innovatively formulated based on this set of
variables. For fast resolution of large problems, our recent
decomposition-and-coordination method “Surrogate Absolute-
Value Lagrangian Relaxation” (SAVLR) is enhanced by using a 3-
segment piecewise linear penalty function, which more accurately
approximates a quadratic penalty function as compared to an
absolute-value function. Testing results demonstrate that our new
formulation drastically reduces the computational requirements
of B&C as compared to our previous formulation. For large
problems where B&C has difficulties, near-optimal solutions are
efficiently obtained by using the enhanced SAVLR under the new
formulation.

Index terms–Manufacturing, job-shop scheduling, integer
linear programming, decomposition and coordination

I. INTRODUCTION
ob shops are manufacturing systems designed for low-
volume/high-variety production [1]. In a job shop, machines
are grouped based on their functionalities, and each group

has limited capacities. A part may need to go through a
sequence of operations, each can be processed by one or a few
machine groups. A schedule is usually generated with strict
computational time requirements, e.g., 10 to 20 minutes, at the
beginning of a shift. The scheduling problem is subject to four
types of constraints: part-to-machine assignment constraints,
processing time requirements, operation precedence constraints,
and machine capacity constraints. To have on-time delivery –
the ultimate goal of job-shop scheduling, the objective function
should be due date related, e.g., weighted tardiness penalties.
The problem is difficult because of its combinatorial nature.

For fast resolution of job-shop scheduling problems, a
promising direction is to formulate them in an Integer Linear
Programming (ILP) form so as to take advantages of widely
available ILP methods such as Branch-and-Cut (B&C) [2]–[4].
Nevertheless, the efficiency of ILP methods is significantly

This work is supported in part by National Innovation Center of High Speed

Train R&D project “Modeling and comprehensive intelligent optimization for
new high efficiency urban rail transit system” under grant No. CX/KJ-2020-
0006.

Anbang Liu is with the Center for Intelligent and Networked System
(CFINS), Department of Automation, Tsinghua University, Beijing 10084,
China (e-mail: liuab19@mails.tsinghua.edu.cn).

affected by problem formulations, and when a formulation
contains large numbers of decision variables and constraints,
the methods may experience difficulties [5]. Developing good
formulations is thus of critical importance. This, however, is
difficult in view of the many types of complicated constraints
within job-shop scheduling problems.

As will be reviewed in Section Ⅱ, an ILP formulation was
presented in [6] based on our classic formulation [7], with
recent extensions also reported in [8] and [9]. In [6], operation
beginning times were selected as integer decision variables.
Processing time requirements and operation precedence
constraints were easily formulated based on them. To consider
machine capacity constraints, an additional set of binary
indicator variables was created to indicate the status of
operations: if an operation is active on a machine group at a
time slot (i.e., being processed), then the corresponding
indicator variable equals one; and zero otherwise. These
indicator variables depend on operation beginning times, and to
describe such relationships, a large number of constraints is
needed. Consequently, when considering large problems, the
computational requirements of ILP methods are high.

To overcome the above-mentioned difficulties, a novel ILP
formulation will be developed in Section Ⅲ. In the formulation,
a set of binary indicator variables indicating whether an
operation begins at a time slot on a machine group or not is
selected as decision variables. If an operation begins at a certain
time slot on a machine group, then the corresponding indicator
variable equals one; and zero otherwise. Based on these
variables, all constraints, including machine capacity
constraints, are innovatively formulated without introducing
additional decision variables or constraints. The numbers of
decision variables and constraints are significantly reduced as
compared to those of [6]. Computational requirements of B&C
are thus drastically reduced, as will be supported through
numerical testing in Section V.

Since our new formulation has low computational
requirements, B&C can solve small- or medium-sized problems
efficiently. For large problems, B&C may still suffer from poor
performance. Our recent decomposition-and-coordination
method “Surrogate Absolute-Value Lagrangian Relaxation”
(SAVLR) is enhanced in Section Ⅳ. SAVLR exploits
exponential reduction of complexity upon problem
decomposition, and effectively coordinates subproblem
solutions with accelerated convergence [10]. In the method,
machine capacity constraints, which couple various parts

Peter B. Luh and Mikhail A. Bragin are with the Department of Electrical
and Computer Engineering, University of Connecticut, Storrs, CT 06269-4157,
USA (e-mail: peter.luh@uconn.edu and mikhail.bragin@uconn.edu.).

Bing Yan is with the Department of Electrical and Microelectronic
Engineering at Rochester Institute of Technology, Rochester, NY 14623, USA
(e-mail: bxyeee@rit.edu).

A Novel Integer Linear Programming
Formulation for Job-Shop Scheduling Problems

Anbang Liu, Peter B. Luh, Life Fellow, Bing Yan, Member, IEEE, Mikhail A. Bragin, Member, IEEE

J

2

assigned to a machine group, are “relaxed.” Instead of using
powerful quadratic penalty functions as in Augmented
Lagrangian Relaxation [11], violations of these constraints are
penalized by using an absolute-value function. This absolute-
value function is piece-wise linear with two segments, and is
exactly linearized by introducing additional decision variables
and constraints so as to use ILP solvers. The absolute-value
function, however, is a poor approximation to a quadratic
function, and the quadratic growth of penalties cannot be well
captured. When the level of constraint violation is large, the
absolute-value penalty function may not impose a sufficiently
large penalty, especially at the early stage of optimization. To
overcome this difficulty, the absolute-value penalty function is
enhanced by using a 3-segment piecewise linear function,
where the middle segment is a constant. This function better
captures the quadratic growth of penalties as compared to the
absolute-value function. In addition, it can be exactly linearized,
and the numbers of additional decision variables and constraints
are the same as those required by the absolute-value function.
Extension to multiple-segment piecewise linear penalty
functions is possible.

To demonstrate the performance of our new formulation and
the enhanced SAVLR (or SAVLRE for simplicity), three
examples are presented in Section Ⅴ. The first and the second
are for small- and medium-sized instances, respectively, and are
solved by using B&C. The results demonstrate that our new
formulation drastically reduces the computational requirements
of B&C as compared with the original formulation of [6], and
optimal solutions are efficiently obtained. The third example
with four large instances is solved by using SAVLRE. Testing
results demonstrate that the convergence of multipliers is
improved by using the new 3-segment penalty function as
compared to using the absolute-value penalty function, while
computational requirements of each iteration are similar. Near-
optimal solutions are therefore obtained in a computationally
efficient manner.

II. LITERATURE REVIEW
In this section, existing job-shop scheduling formulations are

reviewed in subsection A. Solution methodologies are then
discussed in subsection B.
A. Problem formulations

With complicated constraints, formulating a job-shop
scheduling problem is difficult [1]. Integer Linear
Programming (ILP) formulations were developed in [12]–[17].
In these formulations, the objective is usually to minimize the
makespan, i.e., the time span from the very beginning to the end
when all the parts are processed. The makespan, however, does
not capture the on-time delivery performance, the paramount
measure for job-shop scheduling. In fact, due dates are not even
included in these formulations. Also, operations are assigned to
individual machines, and overlapping of two operations on a
machine is prohibited. In view that there are many possible
sequences among the operations assigned to a machine, the
number of such constraints are large. Also, practically, there are
multiple machines of the same functionality in a job shop. The
consideration of groups of machines with the same
functionality is therefore a better modeling approach.

In [7], one of our earlier papers, a separable nonlinear
formulation was presented. Operation beginning times were
selected as integer decision variables, indicating when each
operation is to begin on an eligible machine group (as opposed
to begin on an eligible machine). The objective is to minimize
the total weighted tardiness. Machine capacity constraints limit
the number of active operations (i.e., operations that are being
processed) on a group. Consider for example a machine group
with five machines available at a particular time slot. Then at
most five operations can be active at that time slot. These
machine capacity constraints that couple parts together and the
objective function are part-wise additive. After machine
capacity constraints are relaxed, the problem can be
decomposed into part-wise subproblems, each with much-
reduced complexity.
 In our recent work [6], an ILP formulation was developed
based on [7]. In the formulation, operation beginning times
were selected as integer decision variables. From these
variables, processing time requirements and operation
precedence constraints were easily formulated. The
fundamental difficulty is the modeling of machine capacity
constraints. An additional set of binary indicator variables was
created to indicate if an operation is active or not on an eligible
machine group at each time slot following the idea of [7]. Then
the sum of these indicators over all relevant operations for a
machine group should be less than or equal to the number of
machines in that group available at each time slot. This set of
indicator variables is related to operation beginning times. To
describe such relationships, a significant number of additional
constraints are needed. Therefore, although this formulation is
linear, B&C might suffer from poor performance for large
problems. Very recently, the formulation in [6] was tightened
through a systematic approach by transforming the constraints
to directly delineate the problem convex hull in [8], and the
computational efficiency of B&C has thus been improved.
B. Solution methodologies

In this subsection, heuristics, branch-and cut, standard
Lagrangian Relaxation, Surrogate Lagrangian Relaxation and
Surrogate Absolute-Value Lagrangian Relaxation are briefly
reviewed to solve job shop scheduling problems.
Heuristics. Meta-heuristics such as Particle swarm [18], [19],
Tabu search [20], [21] and evolutionary algorithms [22], [23]
are frequently used to solve job-shop scheduling problems.
These methods have the advantage of low computational
requirements. However, convergence is difficult to guarantee,
and the quality of solutions is difficult to quantify.
Branch-and-Cut (B&C). Branch-and-Cut (B&C) has been
used to solve ILP job-shop scheduling problems, e.g., [6], [15],
[16]. The key idea of B&C is to find the convex hull of the
problem through adding “valid cuts.” If the convex hull is found,
then the optimal solution can be obtained by using Linear
Programming (LP) methods. If the method fails to obtain the
convex hull, or valid cuts are difficult to obtain or are
ineffective, then time-consuming Branch-and-Bound is used.
Since finding convex hulls itself is NP-hard, B&C may suffer
from difficulties for large job-shop scheduling problems.
Standard Lagrangian Relaxation. Another approach is
Lagrangian Relaxation (LR) when applying to separable
formulations such as that of [7]. In the method, after relaxing

3

coupling machine capacity constraints, the “relaxed problem”
is decomposed into smaller subproblems, one for each part.
Since subproblems have much-reduced sizes, their complexity
is drastically reduced as compared to that of the original
problem. Subproblem solutions are then coordinated through
iterative updating of multipliers based on subgradients.
However, the stepsizes used to update multipliers require the
knowledge of the optimal dual value, which is not available.
Although adaptive estimations of the optimal dual value are
used in practice, these estimations are typically ineffective and
may result in an excessive number of iterations. Moreover, the
computational requirements of traditional LR are high because
all subproblems need to be solved in order to update multipliers,
and multipliers may suffer from the zigzagging difficulties in
view of the characteristics of dual functions for ILP problems.
Therefore, the performance of traditional LR is poor.
Surrogate Lagrangian Relaxation and Surrogate Absolute-
Value Lagrangian Relaxation. By exploiting a contraction
mapping concept, our recent “Surrogate Lagrangian Relaxation”
(SLR) ([11]) was developed without requiring the knowledge
of the optimal dual value to calculate stepsizes. Moreover,
multipliers are updated without requiring all subproblems to be
solved, thereby reducing the heavy computational requirements
and the multiplier zigzagging issues. Thus, most of the major
difficulties of traditional LR have been overcome. Convergence
is further improved in the “Surrogate Absolute-Value
Lagrangian Relaxation” (SAVLR) method in [10], where
absolute-value penalty functions are used to penalize the levels
of machine capacity violations in [6]. This penalty function can
be exactly linearized, and subproblems are solved by using
B&C.

III. A NOVEL INTEGER LINEAR FORMULATION
In this section, a novel ILP formulation for job-shop

scheduling problems based on that of [6] is presented.
Consider a job shop with M machine groups. The capacity of

machine group m at time slot t is denoted as Mm,t for m ∈ [1,
2, .., M] and t ∈ [1, 2, ..., T], where T is the total number of time
slots and is assumed to be long enough to process all the parts.
There are I parts, each with an arrival time ai and a due date di.
Part i ∈ [1, 2, ..., I] needs to go through a sequence of Ji
operations, and the jth operation of part i is denoted as (i, j) – a
part-operation pair. Let the set of all part-operation pairs be
denoted as S. An operation can be processed by one of the
eligible machine groups Ui,j, and the processing time of
operation (i, j) on machine group m is denoted as pi,j,m, which
may be machine group dependent. It is assumed that processing
cannot be interrupted, i.e., non-preemptive. In the following,
decision variables are first introduced. Then four types of
constraints, including part-to-machine assignment constraints,
processing time requirements, operation precedence constraints,
and machine capacity constraints, are formulated, followed by
the objective function.
a) Decision variables

As reviewed in subsection II.A, operation beginning times
are integer decision variables in the formulations of [6], [8], [9].
The fundamental difficulty of these formulations lies in the
modeling of machine capacity constraints, where an additional
set of binary indicator variables was created to indicate whether

an operation is active on a machine group at each time slot or
not, resulting in large numbers of additional variables and
constraints. To overcome this difficulty, a set of binary
indicator variables indicating whether an operation begins at a
time slot on a machine group or not is selected as decision
variables. If operation (i, j) is to begin on machine group m at
time slot t, then bi,j,m,t equals one; and it equals zero otherwise.
With this innovative selection of decision variables, part-to-
machine assignment constraints, i.e., each operation must be
assigned to a unique machine group and to begin at a unique
time slot, can be easily formulated. Processing time
requirements and operation precedence constraints can also be
delineated following those in [6], [8], [9]. More importantly,
machine capacity constraints can be effectively modeled
without introducing additional decision variables or constraints.
In the following, these constraints are introduced.
b) Part-to-machine assignment constraints

Since each operation must be assigned to a unique machine
group and to begin at a unique time slot, part-to-machine
assignment constraints are modeled as follows:

,

, ,

, , , 1, (,) .
i j

i j i j

u

i j m t
m U t l

b i j S
∀ ∈ =

= ∀ ∈∑ ∑ (1)

In the above, the range [li,j, ui,j] contains the set of eligible
operation beginning times for operation (i, j). Specifically, an
operation cannot begin too early until there is enough time to
complete all the proceeding operations, and it cannot begin too
late so that there is not enough time to complete it and its
subsequent operations. The method to calculate [li,j, ui,j] will be
described later in (9) and (10).
c) Processing time requirements

From the operation beginning indicator variables, integer
operation beginning times are obtained as

,

, ,

, , , , ,
i j

i j i j

u

i j i j m t
m U t l

b t b
∀ ∈ =

= ⋅∑ ∑ (2)

where the integer variable bi,j is the beginning time of operation
(i, j). Since processing is non-preemptive, the completion time
equals its beginning time plus the required processing time
following equation (2) in [6], i.e.,

,

, ,

, , , , , ,() 1,
i j

i j i j

u

i j i j m i j m t
m U t l

c t p b
∀ ∈ =

= + −∑ ∑ (3)

where ci,j is the completion time of operation (i, j). Please note
that {bi,j} and {ci,j} are introduced here for easy understanding
and presentation. They are not decision variables and are not
optimized in the solution process to be introduced in Section IV.
d) Operation precedence constraints

For each part, its operations need to be processed in a given
sequence. Without loss of generality, operations for a part are
numbered according to their precedence, and operation (i, j+1)
cannot begin until operation (i, j) is completed, i.e.,

{ }, 1 , , (,) (,) | (,) , (, 1) .i j i jb c i j i j i j S i j S+ > ∀ ∈ ∈ + ∈ (4)
Equation (4) can be re-written without {bi,j} or {ci,j} as:

{ }

, ,

, , , ,

, +1, , , , , , ,() ,

(,) (,) | (,) , (, 1) .

i j i j

i j i j i j i j

u u

i j m t i j m i j m t
m U t l m U t l

t b t p b

i j i j i j S i j S
∀ ∈ = ∀ ∈ =

⋅ ≥ +

∀ ∈ ∈ + ∈

∑ ∑ ∑ ∑ (5)

4

e) Machine capacity constraints
To formulate machine capacity constraints, it is noticed that

if operation (i, j) is active on machine group m at time slot t,
then its beginning time must be within the interval [t-pi,j,m+1, t].
Therefore, the status (active or not) of operation (i, j) on
machine group m at time t, represented by δi,j,m,t, can be obtained
by summing up the operation beginning indicator variables over
[t-pi,j,m+1, t]:

, , , ,

, , , , , ,
[1,] [,]i j m i j i j

i j m t i j m k
k t p t l u

bδ
∀ ∈ − + ∩

= ∑ . (6)

Again, variables {δi,j,m,t} are introduced for easy understanding
and presentation. They are not decision variables and are not
optimized in the solution process.

Based on (6), the number of active operations on machine
group m at time slot t is obtained by summing up the statuses of
all relevant operations that can be processed by the machine
group. The machine capacity constraints can therefore be
formulated as:

, , , ,

, , , ,
(,) [1,] [,]

, , ,
m i j m i j i j

i j m k m t
i j O k t p t l u

b M t m
∈ ∀ ∈ − + ∩

≤ ∀ ∀∑ ∑ (7)

where Om denotes the set of operations that can be processed by
machine group m.
f) The Objective function

Following [6], [7], the objective function to be minimized is
the total weighted tardiness. The tardiness of part i is the
number of time slots being late, i.e., the number of time slots
that the completion time of the last operation of part i exceeds
the due date di. It is thus described by ,max(,0)

ii J ic d− , where
(i, Ji) is the last operation of part i. The total weighted tardiness
is then formulated by summing up the weighted tardiness over
all parts:

,() max(,0),
ii i J i

i
f c w c d≡ ⋅ −∑ (8)

where wi is the weight or the importance of part i. Equation (8)
can be easily re-written without {bi,j} or {ci,j}.
g) Ranges of operation beginning times

To reduce the decision space, possible beginning time slots
of operation (i, j), i.e., [li,j, ui,j], need to be delineated. The values
li,j and ui,j are derived at the data-preprocessing stage as follows.
The earliest beginning time slot of the first operation of part i is
the part arrival time, i.e., li,1 = ai. A subsequent operation cannot
begin until there is enough time to complete all the proceeding
operations, i.e.,

,

1

, , ,
1

min (), 2.
i j

j

i j i i k mm Uk
l a p j

−

∈
=

= + ∀ ≥∑ (9)

There is a minimization in (9) since processing times may
depend on the selections of machine groups, which cannot be
predetermined. The smallest processing times are used to give
the maximal flexibility in selecting the beginning time slot.
Similarly, an operation cannot begin too late so that there is not
enough time to complete it and its subsequent operations. We
therefore have:

,
, , ,min (), .

i

i j

J

i j i k mm Uk j
u T p j

∈
=

= − ∀∑ (10)

Here, the smallest processing times are also used.

Based on the above, the job-shop scheduling problem can
thus be described as:

,

, ,

, , , , ,min max(() 1 ,0) ,

. .(1), (5), (7).

i Ji

i i
i J i Ji i

u

i i J m i J m t ib i m U t l
w t p b d

s t
∀ ∈ =

  ⋅ + − − 
  
∑ ∑ ∑ (11)

The above objective function with the nonlinear maximization
operation can be linearized by introducing additional non-
negative integer decision variables {zi} following page 150 of
[24] as:

,
min ,i ib z i

w z ⋅ 
 
∑ (12)

subject to constraints (1), (5), (7) and additional inequalities
,

, ,

, , , , ,() 1 , .
i Ji

i i
i J i Ji i

u

i J m i J m t i i
m U t l

t p b d z i
∀ ∈ =

+ − − ≤ ∀∑ ∑ (13)

In view that part-to-machine assignment constraints (1) and
operation precedence constrains (5) are only associated with
individual parts, and machine capacity constraints (7) that
couple operations together and the objective function (8) are
part-wise additive, the above formulation is separable.

IV. SOLUTION METHODOLOGY
As will be demonstrated in Section V, B&C can solve small-

or medium-sized problems based on the new formulation. For
large problems, B&C may still suffer from difficulties because
of the combinatorial nature of the problem. For fast resolution
of such problems, Surrogate Absolute-Value Lagrangian
Relaxation (SAVLR) [10] is enhanced in this section.

In SAVLR, the problem is decomposed into subproblems by
relaxing the coupling machine capacity constraints (7); and
subproblem solutions are coordinated by iteratively updating
multipliers. After the machine capacity constraints (7) are
relaxed by using Lagrangian multipliers {λt,m}, the relaxed
problem at iteration k is formed as:

(), , ,

, ,

, ,

()
min ,

()

. . (1), (5), (13),

k
i i t m t m t m

i t m

z b s
k

t m t m
t m

w z g b s

c g b s

s t

λ ⋅ + + +  
 
 +
  

∑ ∑∑

∑∑ (14)

where

, , , ,

, , , , ,
(,) [1,] [,]

()
m i j m i j i j

t m i j m k m t
i j O k t p t l u

g b b M
∈ ∀ ∈ − + ∩

≡ −∑ ∑ ， (15)

and {st,m} are non-negative slack variables introduced to
convert inequality constraints (7) to equality constraints. In (14),
the absolute-value penalty function with the positive penalty
coefficient c is used instead of a quadratic penalty function as
in the Augmented Lagrangian Relaxation method ([11]) to
facilitate the use of B&C. It is piecewise linear with two
segments, and can be exactly linearized by introducing
additional decision variables and constraints. However, since
the absolute-value function is a poor approximation to a
quadratic function, the quadratic growth characteristics of
quadratic penalty functions cannot be well captured. When
multipliers are far away from their optimal values and the levels

5

of constraint violations are large, especially at the early stage of
optimization, the absolute-value penalty function might not be
able to impose a sufficiently large penalty.

To overcome the above-mentioned difficulty, our idea is to
use a convex piecewise linear function with three segments to
approximate the quadratic function. In Figure 1, a quadratic
function is depicted in blue, and the absolute-value function is
depicted in black. It can be seen that the absolute-value function
is not a good approximation to the quadratic function. To
improve approximation accuracy, take the following convex
piecewise linear function with three segments as an example:

() max(0, 4 3, 4 3),p x x x≡ − − − (16)
which is depicted in red in the figure. As can be seen, with three
segments, the approximation accuracy is improved as compared
to that of the absolute-value function, in particular for the
interval [-4, 4]. For problem instances considered in Section Ⅴ,
the capacity violation of a machine group at a time slot is
generally less than 4 according to our testing. Therefore, the
function (16) provides a good approximation to the quadratic
function, and imposes sufficiently large penalties when the
level of violation is 2 or above as compared to those imposed
by the absolute-value function.

A convex piecewise linear function such as (16) can be
exactly linearized through introducing additional decision
variables and constraints following the standard way discussed
on page 150 of [24]. To linearize such a function, one additional
decision variable is required, and the number of additional
constraints equals the number of non-zero segments. For our 3-
segment function (16), the number of non-zero segments is two.
Therefore, the numbers of additional decision variables and
constraints required is equal to those required by the absolute-
value function. For other types of problems, the vertices, slopes
and the number of segments of the function can be adjusted.

Fig. 1 Illustration of the 3-segment piece-wise linear function, the absolute-

value function, and the quadratic function

 With the new penalty function (16) replacing the absolute-
value penalty function, the solution process follows exactly that
of [10]. The relaxed problem becomes:

()

()
()

, , ,

, , , ,

, ,

()

min ,0, 4 () 3,
max

4 () 3

. . (1), (5), (13).

k
i i t m t m t m

i t m

z b s t m t mk

t m t m t m

w z g b s

g b s
c

g b s

s t

λ 
⋅ + + + 

 
  + −  
  − + −  

∑ ∑∑

∑∑ (17)

After introducing additional decision variables and constraints
to linearize the penalty function, the relaxed problem (17) can
be exactly linearized as

()

()
()

, , , ,, , ,

, , ,

, , ,

min () ,

. . (1), (5), (13),

4 () 3 , , ,

4 () 3 , , ,

k k
i i t m t m t m t mz b s r i t m t m

t m t m t m

t m t m t m

w z g b s c r

s t

g b s r t m

g b s r t m

λ ⋅ + + + 
 

+ − ≤ ∀

− + − ≤ ∀

∑ ∑∑ ∑∑

 (18)
where {rt,m} is the additional set of non-negative decision
variables introduced by the linearization process. A subproblem
for part i can then be formed from (18) by optimizing with
respect to decision variables associated with that part while
fixing decision variables associated with other parts at their
previously obtained values , , ,{ }i j m tb . Specifically, it is:

()
()

, , , ,

,

, , ,

, , , , ,
:(,) [1,] [,]

, , ,

, , ,

min ,

. . (1), (5), (13),

4 () 3 , , ,

4 () 3 , , ,

m i j m i j i j

k
i i t m

t m

z b s r
k
t m i j m k t m

t m j i j O k t p t l u

i
t m t m t m

i
t m t m t m

w z c r

b s

s t

g b s r t m

g b s r t m

λ
∈ ∀ ∈ − + ∩

 
⋅ + + 

 
   +     

+ − ≤ ∀

− + − ≤ ∀

∑∑

∑∑ ∑ ∑

 (19)
with

, , , ,

', , ', ',

, , , ,
:(,) [1,] [,]

', , , ,
(',) : ' [1,] [,]

()

.

m i j m i j i j

m i j m i j i j

i
t m i j m k

j i j O k t p t l u

i j m k m t
i j O i i k t p t l u

g b b

b M

∈ ∀ ∈ − + ∩

∈ ≠ ∀ ∈ − + ∩

≡ +

−

∑ ∑

∑ ∑ 

 (20)

Since subproblem (19) has a much reduced dimension, solving
it is much easier than solving the original problem.

After solving a subproblem consisting one or a few parts at
iteration k by using B&C, multipliers are updated based on
surrogate subgradients to coordinate subproblem solutions as:

()1
, , , ,() , , .k k k

t m t m t m t ms g b s t mλ λ+ = + + ∀ (21)
To guarantee the convergence of multipliers, the stepsize sk

in (21) is updated following equations (18) and (19) in [10].
When the penalty coefficient ck is too large, the surrogate
optimality condition (equation (14) in [10]) may not be satisfied,
and solutions may get trapped at a local minimum. In this case,
penalty coefficient ck is decreased following (21) in [10].
Finally, when the stepsize sk reduces below a certain threshold
or when the CPU time reaches a pre-specified limit, the iterative
multiplier updating process stops.

Since machine capacity constraints (7) are relaxed,
subproblem solutions, when put together, generally do not
satisfy (7). Subproblem solutions are thus “repaired” by using
heuristics, e.g., the one embedded within solver CPLEX. The
idea is to optimize the decision variables associated with
violated machine capacity constraints while fixing the
remaining decision variables by using B&C. Specifically, if the

6

capacity of machine group m1 is violated at time slot t1, then the
parts assigned to m1 to begin within the range

[]1 1 1 2, ,t tψ β β= − + (22)
where β1 and β2 are small integer values, are selected as decision
variables to satisfy (7). The remaining variables are fixed at
their latest available values. Subproblem solutions are also
repaired when the norm squared of constraint violations is less
than or equal to a threshold γ, i.e.,

()2
, ,

,
()t m t m

t m
g b s γ+ ≤∑ . (23)

This is to obtain multiple feasible solutions so that the one with
the minimal cost will be selected as the solution.

To measure the quality of feasible solutions, a lower bound
is obtained as follows. Suppose at convergence, the final set of
multipliers, the penalty coefficient, and subproblem solutions
are obtained. All subproblems are solved again to optimality for
the given set of multipliers and the penalty coefficient. If the
resulting subproblem solutions are the same as those obtained
at convergence, then the corresponding surrogate dual value is
a dual value, and provides a lower bound to feasible costs.

V. NUMERICAL RESULTS
The new formulation and solution methodology are

implemented by using MATLAB R2018a academic version and
IBM CPLEX 12.8.0.0. Three examples are tested on a laptop
with the Intel Xeon W-10855M processor with six cores at 4.3-
Ghz, 64GB of RAM at 2933-Mhz, and Windows 10. The first
example is a small instance considered in [6]–[9], and the
second example consists of several medium-sized problems.
These two examples are solved by using B&C to demonstrate
that our new formulation drastically reduces computational
requirements of B&C as compared to the original formulation
[6]. The third example consists of several large instances, and
is solved by using our enhanced SAVLR (or SAVLRE for short)
to demonstrate that near-optimal solutions can be efficiently
obtained.
Example 1: A small problem

 This example consists of an instance with 127 parts, and is
taken from Pratt & Whitney’s Development Operation shop
solved in [6]–[9] to test problem formulations. The problem is
solved by using B&C where optimization stops when the
computational time reaches 3,600 seconds or the optimal
solution is found. The feasible cost, the MIP gap, and the
solving time are presented in Table Ⅰ. As can be seen, the
optimal solution is efficiently obtained after 3.31s for the new
formulation. For comparison purposes, the existing formulation
[6] is also tested. A cost of 15,117 with a gap of 3.72% is
obtained after 3,600s. The new formulation is thus much more
efficient for B&C to solve than the existing one.

Table Ⅰ Comparison of formulations: small size
New formulation (B&C) Formulation [6] (B&C)
Cost1 GAP2 Solving

time (s)
Cost1 GAP2 Solving

time (s)
14,872 0 3.31 15,117 3.72% 3600

1: Total weighted tardiness
2: MIP gap reported by the CPLEX solver

As reviewed in Section Ⅱ, the formulation of [6] has been
improved in [8] by using a systematic formulation tightening
approach. As reported in Table Ⅴ of [8], after tightening, a
feasible cost with 0.01% MIP gap was obtained by using B&C
after 14.7s. The results thus fall within the range obtained by
using our new formulation, and demonstrates the effectiveness
of the formulation tightening approach. Tightening of our new
formulation will be a future topic for investigation.
Example 2: Medium-sized problems

This example consists of three instances of 200, 250 and 300
parts each. There are 20 machine groups, each with three to four
machines. Each part requires one to seven operations, and each
operation can be processed by one to three machine groups. The
arrival time of each part is generated by using a uniform
distribution U[1, 300], and the due date of each part equals its
possible earliest completion time (i.e., its arrival time plus its
smallest total processing time). As for tardiness weights, 30%
of parts have a weight of 1, 65% of parts have a weight of 10,
and 5% of parts have a weight of 100. The total number of time
slots is 500, which is large enough to process all the parts. The
stopping criteria are the same as in Example 1.

The first instance is with 200 parts. By using B&C, the
feasible cost, the MIP gap, and the solving time are presented
in Table Ⅱ. As can be seen, the optimal solution is efficiently
obtained after 12.77s. For comparison purposes, the existing
formulation is also tested. No feasible solution can be obtained
after 3,600s. The new formulation is thus much more efficient
for B&C to solve than the existing one.

The second instance is with 250 parts. As shown in Table II,
the optimal solution is efficiently obtained after 33.91s for our
new formulation. For the third instance with 300 parts, the
optimal solution is obtained after 179.27s. With the existing
formulation, no feasible solution can be obtained after 3,600s
for both instances.

Table Ⅱ Comparison of formulations: medium size
Instance New formulation (B&C) Formulation [6] (B&C)

Cost1 GAP Solving
time (s)

Cost GAP Solving
time (s)

200*202 377 0 12.77 no feasible solution is
found after 3600 s

250*20 593 0 33.91 no feasible solution is
found after 3600 s

300*20 609 0 179.27 no feasible solution is
found after 3600 s

1: Total weighted tardiness
2: 200*20 means the instance with 200 parts and 20 machine groups

To test the robustness of our new formulation with respect to
non-constant capacities of machine groups, each machine is
assumed to have a probability of 0.3% to break down at each
time slot, and repairing takes four consecutive time slots. Based
on this, ten breakdown scenarios are randomly generated, and
other data are the same as those for the 300-part instance. The
optimal solutions of all ten scenarios are efficiently obtained by
using B&C. The average solving time is 319s, the minimal
solving time is 166s, the maximal solving time is 890s, and the
standard deviation is 214s. The results demonstrate the
robustness of our new formulation with respect to non-constant
machine capacities.

7

Example 3: Large problems
This example consists of two instances of 500 and 600 parts

with 10 machine groups, and two instances of 400 and 500 parts
with 20 machine groups. The parts are grouped to form 10
subproblems. Other data are generated following the method of
Example 2 without machine breakdowns. The problems are
solved by using our enhanced SAVLR (SAVLRE) with the new
formulation. When the norm squared of machine capacity
violations is less than or equal to 40, i.e., γ in (23) is 40,
heuristics are used to find feasible solutions to the original
problem, and the parameters β1 and β2 in (22) are equal to 5 and
1, respectively. The algorithm stops when the CPU time reaches
1,800s or the stepsize reduces below 0.05.
 The first instance is with 500 parts and 10 machine groups.
By using the SAVLRE, a solution with a cost of 4,210 is
obtained after 813s, and another with cost of 3,942 after 1100s.
The lower bound obtained is 3,659. The duality gap is thus 13.1%
and 7.1%, respectively. The results demonstrate that high-
quality solutions can be efficiently obtained by using SAVLRE.
For comparison purposes, B&C is also tested. Since the
problem instance is large, no feasible solution is obtained after
3,600s. The feasible cost, the gaps, and the CPU times of both
SAVLRE and B&C presented above are summarized in the first
row of Table Ⅲ.

To examine the effects of the new penalty function, the norm
squared of machine capacity violations at each minor iteration
(i.e., after solving one subproblem) is depicted in red in Figure
2. For comparison purposes, those of SAVLR are depicted in
blue. As can be seen, the new method enjoys a faster reduction
of the machine capacity violations than SAVLR. This is
because our new 3-segments penalty function imposes larger
penalties at the early stage of optimization.

Fig. 2 the norm squared of constraint violations in each minor iteration

According to our testing, at almost all iterations, the capacity

violation of each machine group at each time slot is less than 4
for both SAVLR and SAVLRE. Therefore, our 3-segmnent
function (16) provides a good approximation to the quadratic
function and sufficiently large penalties. Moreover, since the
numbers of additional decision variables and constraints
required by linearization are the same with those required by
the absolute-value function, the computational requirements are
similar with those of the absolute-value penalty function. CPU
time per minor iteration is 3.91s on average for SAVLRE, and
3.52s for SAVLR. Testing of 5- and 7-segment piecewise linear

penalty functions has also been conducted, and the results are
not satisfactory. This is because linearizing these functions
requires too many additional constraints, resulting in
significantly increases of subproblem solving times.

To demonstrate the scalability of SAVLRE, three more
instances are tested, and the results are also shown in Table Ⅲ.
As can be seen, near-optimal solutions are effectively obtained
by using SAVLRE, but not by using B&C.

Table Ⅲ Comparison of methodologies: large problems

Instance New formulation
(SAVLRE+B&C)

New formulation (B&C)

Cost1 Lower
Bound

GAP

CPU
time
(s)

Cost GAP

CPU
time
(s)

500*102 3942 3659 7.1% 1100 no feasible solution is
found after 3600 s

600*10 7448 7008 5.9% 1261 no feasible solution is
found after 3600 s

400*20 2019 1907 5.5% 404 2773 30.91% 3600
500*20 3967 3554 10.4

%
872 no feasible solution is

found after 3600 s
1: Total weighted tardiness
2: 500*10 means the instance with 500 parts and 10 machine groups

VI. CONCLUSION
In this paper, a novel ILP formulation is developed for job-

shop scheduling, resulting in a drastic reduction of
computational requirements for B&C as compared to the
formulation of [6]. SAVLR is also enhanced so that near-
optimal solutions can be efficiently obtained for large problems.
These advancements will have major implications on
formulating and resolution of other manufacturing scheduling
problems and beyond. To further improve solution quality and
computation efficiency, the future work will include the
tightening of the new formulation.

REFERENCES
[1] M. Pinedo, Scheduling, vol. 29. Springer, 2012.
[2] M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the

resolution of large-scale symmetric traveling salesman problems,”
SIAM review, vol. 33, no. 1, pp. 60–100, 1991.

[3] R. Gomory, “An algorithm for the mixed integer problem,” RAND
CORP SANTA MONICA CA, 1960.

[4] R. E. Gomory, “Solving linear programming problems in integers,”
Combinatorial Analysis, vol. 10, pp. 211–215, 1960.

[5] L. A. Wolsey and G. L. Nemhauser, Integer and combinatorial
optimization, vol. 55. John Wiley & Sons, 1999.

[6] B. Yan, M. A. Bragin, and P. B. Luh, “Novel formulation and
resolution of job-shop scheduling problems,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3387–3393, 2018.

[7] D. J. Hoitomt, P. B. Luh, and K. R. Pattipati, “A practical approach
to job-shop scheduling problems,” IEEE transactions on Robotics
and Automation, vol. 9, no. 1, pp. 1–13, 1993.

[8] B. Yan, M. Bragin, and P. Luh, “An Innovative Formulation
Tightening Approach for Job-Shop Scheduling,” 2021, TechRxiv.
Preprint. https://doi.org/10.36227/techrxiv.12783893.v1

[9] B. Yan, M. A. Bragin, and P. B. Luh, “Tightened Formulation and
Resolution of Energy-Efficient Job-Shop Scheduling,” in 2020 IEEE
16th International Conference on Automation Science and
Engineering (CASE), 2020, pp. 741–746.

[10] M. A. Bragin, P. B. Luh, B. Yan, and X. Sun, “A scalable solution
methodology for mixed-integer linear programming problems arising
in automation,” IEEE Transactions on Automation Science and
Engineering, vol. 16, no. 2, pp. 531–541, 2018.

8

[11] D. P. Bertsekas, Nonlinear programming, Third Edit. Athena
Scientific, Belmont, MA, 2016.

[12] J. C.-H. Pan and J.-S. Chen, “Mixed binary integer programming
formulations for the reentrant job shop scheduling problem,”
Computers & Operations Research, vol. 32, no. 5, pp. 1197–1212,
2005.

[13] C. Özgüven, Y. Yavuz, and L. Özbakır, “Mixed integer goal
programming models for the flexible job-shop scheduling problems
with separable and non-separable sequence dependent setup times,”
Applied Mathematical Modelling, vol. 36, no. 2, pp. 846–858, 2012.

[14] V. Roshanaei, A. Azab, and H. ElMaraghy, “Mathematical modelling
and a meta-heuristic for flexible job shop scheduling,” International
Journal of Production Research, vol. 51, no. 20, pp. 6247–6274,
2013.

[15] M. Karimi-Nasab and M. Modarres, “Lot sizing and job shop
scheduling with compressible process times: A cut and branch
approach,” Computers & Industrial Engineering, vol. 85, pp. 196–
205, 2015.

[16] S. Chansombat, P. Pongcharoen, and C. Hicks, “A mixed-integer
linear programming model for integrated production and preventive
maintenance scheduling in the capital goods industry,” International
Journal of Production Research, vol. 57, no. 1, pp. 61–82, 2019.

[17] L. Meng, C. Zhang, Y. Ren, B. Zhang, and C. Lv, “Mixed-integer
linear programming and constraint programming formulations for
solving distributed flexible job shop scheduling problem,”
Computers & Industrial Engineering, vol. 142, p. 106347, 2020.

[18] G. Zhang, X. Shao, P. Li, and L. Gao, “An effective hybrid particle
swarm optimization algorithm for multi-objective flexible job-shop
scheduling problem,” Computers & Industrial Engineering, vol. 56,
no. 4, pp. 1309–1318, 2009.

[19] M. Nouiri, A. Bekrar, A. Jemai, S. Niar, and A. C. Ammari, “An
effective and distributed particle swarm optimization algorithm for
flexible job-shop scheduling problem,” Journal of Intelligent
Manufacturing, vol. 29, no. 3, pp. 603–615, 2018.

[20] S. Dauzère-Pérès and J. Paulli, “An integrated approach for modeling
and solving the general multiprocessor job-shop scheduling problem
using tabu search,” Annals of Operations Research, vol. 70, pp. 281–
306, 1997.

[21] M. Saidi-Mehrabad and P. Fattahi, “Flexible job shop scheduling
with tabu search algorithms,” The international journal of Advanced
Manufacturing technology, vol. 32, no. 5–6, pp. 563–570, 2007.

[22] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic
design of scheduling policies for dynamic multi-objective job shop
scheduling via cooperative coevolution genetic programming,” IEEE
Transactions on Evolutionary Computation, vol. 18, no. 2, pp. 193–
208, 2013.

[23] X.-N. Shen and X. Yao, “Mathematical modeling and multi-objective
evolutionary algorithms applied to dynamic flexible job shop
scheduling problems,” Information Sciences, vol. 298, pp. 198–224,
2015.

[24] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

