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A Low-Complexity Demodulation for Oversampled

LoRa Signal
Vincent Savaux

Abstract

This paper deals with a method of demodulation for oversampled LoRa signal. The usual maximum likelihood

(ML) based demodulation method for LoRa chirp spread spectrum (CSS) waveform is dedicated to signals sampled

at Nyquist rate, whereas considering oversampled signals may improve the performance of the LoRa demodulation

process. In this respect, when an oversampling rate (OSR) 2 is assumed, the method suggested in this paper consists

in applying two demodulation processes to the even and odd samples of the oversampled LoRa signal, and then

combining the results. This principle is then generalized to any OSR, and we show that the complexity of the

method is low since it only involves discrete Fourier transforms (DFT). Moreover, a performance analysis in terms

of symbol and bit error rate (SER and BER) is presented considering both additive white Gaussian noise (AWGN)

and Rayleigh channel models. Simulations show the relevance of the method and the performance analysis as a gain

of 3 dB is achieved by the demodulation at OSR 2 compared with OSR 1.

Keywords – LoRa, Demodulation, Maximum Likelihood, Low-complexity

I. I NTRODUCTION

In the recent years, the Internet of things (IoT) technologies, among which the low power wide area network

(LPWA) solutions, have enabled the connectivity of a constantly growing number of devices, offering digital

transformation across industry verticals [1]. Among the LPWAtechnologies, LoRa is one of the most deployed and

studied by both academic and industrial researchers, mainly because it offers the advantage of an easy deployment.

The LoRa waveform is originally based on the chirp spread spectrum (CSS) modulation, described by Winkler in

[2]. More generally, the physical layer (PHY) of LoRa is developed by Semtech, and the system has been promoted

by the LoRa Alliance, that specifies the LoRaWAN open protocol.

The PHY layer of LoRa as well as related signal processing algorithms and performance analyzes have been

extensively studied in the literature. Thus, the LoRa waveform and its main properties are described by the authors

of [3], [4]. In [5]–[9], theoretical symbol and bit error rate (SER and BER) expressions and approximations are

provided for different channel models. However, these performance analyzes are limited to LoRa signals sampled

at Nyquist rate, because the LoRa demodulation is inherentlydesigned to process signals sampled at oversampling

rate (OSR) 1 (i.e. Nyquist rate). For this reason, only few papers like [10] deal with demodulation of oversampled
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LoRa signals, whereas it is a straightforward strategy for performance improvement. In [10] a discrete Fourier

transform (DFT) of the size of the oversampled signal is applied, and the resulting spectrum is processed to take

advantage of the gain of energy brought by the oversampling.Despite this method requires a low computational

cost, the processing in the frequency domain leads to an increase of the observed noise level, making the technique

relevant only for OSR strictly larger than 2.

In this paper, we suggest a new demodulation method for oversampled LoRa signals combining both good per-

formance and low complexity. The principle of the method considering OSR 2, consists in splitting the oversampled

signal into two signals sampled at Nyquist rate, one containing the even samples, and the other one containing

the odd samples of the oversampled LoRa signal. Then, dedicated DFT are applied to each of the signals, and the

resulting responses are combined to apply the usual LoRa demodulation process. It is shown that such principle

can be extended to any OSR as well. The complexity of the suggested technique is limited as it only involves to

apply a number of DFT equal to the OSR. Furthermore, the theoretical achievable SER and BER performance is

derived considering both additive white Gaussian noise (AWGN) and Rayleigh channel models, and it is validated

through simulations. Thus, a gain of 3 dB is achieved by the suggested demodulation at OSR 2 compared with the

usual demodulation at Nyquist rate.

The rest of the paper is organized as follows: Section II presents a background on LoRa modulation and

demodulation. In Section III we introduce the new demodulation method for oversampled LoRa signal, as well as

the corresponding performance analysis. Simulations results show the relevance of the technique in Section IV, and

Section V concludes this paper.

Notations: The normal fontx is used for scalars, and the boldfacex for vectors and matrices. The lower-case

and the upper-casex andX indicates samples in time and frequency domains, respectively. The probability of an

eventE is denoted byP(E), andE{.} is the mathematical expectation.

II. L ORA SYSTEM MODEL

In this section, we describe the LoRa signal model and the corresponding demodulation et the receiver side.

Based on CSS, the modulation of LoRa signal consists in mapping abinary packet of sizeN = 2SF , whereSF is

the spreading factor, onto a LoRa symbol noteds(m), wherem = 0, 1, .., N−1 indicates the index of the modulated

chirp. Each symbol has a durationTs and a bandwidthBw such thatBwTs = N . We denote byro the OSR of the

signal (r = 1 means Nyquist rate), then for anyn = 0, 1, .., N ′ − 1 whereN ′ = rN , and for anySF value, the

modulated LoRa symbols(m) can be expressed by generalizing [4]-(13) as

s(m)[n] = exp
(

2jπ
n

ro

( n

2N ′ −
1

2
+

m

N
− u(

n

ro
−N +m)

))

, (1)

whereu(.) indicates the Heaviside step function. We assume a synchronized reception (see [11]–[14] for synchro-

nization in LoRa), and we consider that the propagation channel can be modeled as a one-tap block fading channel

h, therefore, for anyn = 0, 1, ..N ′ − 1, the received signalr[n] is given by
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r[n] = hs(m)[n] + w[n], (2)

wherew[n], n = 0, 1, .., N ′−1, are the independent and identically distributed (iid) samples of the complex additive

white Gaussian noise (AWGN) such thatw[n] ∼ CN (0, σ2), whereσ2 = E{|w[n]|2}. In the following, we assume

that channelh is either an AWGN channel (i.e. h = 1) or a Rayleigh channel (i.e. h =∼ CN (0, σ2
h)). In any case,

we define the signal-to-noise ratio as

SNR =
E{|hs(m)[n]|2}
E{|w[n]|2} =

E{|h|2}
σ2

. (3)

The basic principle of the LoRa demodulation process consistsin estimating the symbol indexm from the obser-

vation r[n], by means of the maximum likelihood (ML) estimator since it isoptimal in condition of synchronized

reception [5], [12], [13]. For OSRro = 1, the LoRa demodulation process is based on three mains steps:the

"dechirp" operation, consisting in removing the quadraticcomponent from the received LoRa symbol:

y[n] = r[n] exp
(

−2jπn(
n

2N
− 1

2
)
)

. (4)

Then, a discrete Fourier transform (DFT) is applied:

Y [k] =
1√
N

N−1∑

n=0

y[n]e
−2jπnk

N , (5)

wherek = 0, 1, .., N − 1. It should be noticed thatY [k] =
√
Nδ(k −m) +W [k] whenk = m, andY [k] = W [k]

when k 6= m, whereδ(k) is the Dirac impulse andW [k] are the noise samples in frequency domain. Moreover,

by property of the DFT, the noise samplesW [k] are all iid andW [k] ∼ CN (0, σ2). Finally, the ML estimator of

m yields

m̂ = arg max
k∈[[0,N ]]

|Y [k]|2, (6)

where |Y [k]|2 is called the periodogram ofy[n]. The symbol error rate (SER) performance corresponding to the

LoRa demodulation has been largely studied in from [6]–[8]. Thus, given the channel gainh, it can be expressed

as

Ps|h = P(m̂ 6= m|h) (7)

= −
N−1∑

k=1

(−1)k
(
N−1
k

)

k + 1
exp

(

− kN |h|2
(k + 1)σ2

)

. (8)

From (8), the SER performance of the LoRa signal in AWGN channel issimply obtained throughP awgn
s = Ps|h=1,

and the SER of the LoRa signal over Rayleigh channel, denoted byP
ray
s , is given by averagingPs|h weighted by

the Rayleigh distributionf|h|2(x) =
e
−

x

σ2
h

σ2
h

such as follows
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P ray
s =

∫ +∞

0
f|h|2(x)Ps|hdx (9)

= −
N−1∑

k=1

(−1)k
(
N−1
k

)
σ2

kNσ2
h + (k + 1)σ2

. (10)

The BERPb is, in turn, obtained from the SER throughPb =
2SF−1

2SF−1Ps. Besides the performance analysis, we also

gives the complexity of the LoRa demodulation in terms of complex multiplications: we deduce from (4), (5), and

(6) that these operations requireN , N log(N), andN operations, respectively.

In [10], the demodulation of LoRa has been extended to any OSRro > 1. Similar to the case OSRro = 1, the

"dechirp" operation becomes

y[n] = r[n] exp
(

−2jπ
n

ro
(

n

2N ′ −
1

2
)
)

, (11)

where n = 0, 1, .., N ′ − 1. A DFT of size N ′ is then applied toy[n] in (11). The resulting spectrumY [k],

k = 0, 1, .., N ′ − 1, highlights two peaks at the positionsk = m and k = m − N + N ′, and with amplitudes

Y [k = m] = ro(N−m)√
N ′

δ(k −m) +W [m] andY [k = m−N +N ′] = rom√
N ′

δ(k −m+N −N ′) +W [m−N +N ′].

As a consequence, it is suggested in [10] to sum these peaks through

Ỹ [k] = Y [k] + Y [(ro − 1)N + k]. (12)

It must be noticed that̃Y [k] =
√
N ′δ(k − m) + W̃ [k] when k = m, and Ỹ [k] = W̃ [k] when k 6= m, where

W̃ [k] = W [k]+W [(ro−1)N+k] are the combined noise samples in frequency domain. Finally,the ML estimators

of the indexm then leads to

m̂ = arg max
k∈[[0,N ]]

|Ỹ [k]|2. (13)

The SER performance of the LoRa demodulation proposed in [10], for any OSRr > 1 is given by

Ps|h = −
N−1∑

k=1

(−1)k
(
N−1
k

)

k + 1
exp

(

− kN ′|h|2
2(k + 1)σ2

)

, (14)

where the term2σ2 in the denominator within the exponential comes fromE{|W [k]+W [(ro−1)N+k]|2} = 2σ2. It

can be deduced from (14) that an OSRro = 2 leads to the same SER as in (8) usingro = 1, and then a performance

improvement of the method in [10] is only effective forro > 2 compared with the usual LoRa demodulation at

OSR ro = 1. More generally, the largerN ′ (through the OSRro), the lower the SER, but to the cost of increase

of complexity. In the following, we introduce a new low-complex LoRa demodulation method that outperforms the

usual demodulation for any OSRro ≥ 2.
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Fig. 1. Principle of the suggested demodulation for LoRa signal at OSRr = 2.

III. N EW DEMODULATION OF OVERSAMPLED LORA SIGNAL

A. OSR ro = 2

We first present the proposed LoRa demodulation method for OSRro = 2 before generalizing to any OSR. The

principle is illustrated in Fig. 1: the received signalr[n] sampled at OSRro = 2 is split into two downsampled

signals, one consisting in the even samples and the other oneconsisting in the odd samples (illustrated by the

delayz−1 in Fig. 1) of the received oversampled signal. Then, specific "dechirp" and DFT processes are applied,

and the resulting signals are combined to apply the usual LoRademodulation (i.e. the ML estimator ofm). In the

following, the steps of the suggested LoRa demodulation are detailed.

1) OSR ro = 2, n Even: For n even, we noten = 2p, with p = 0, 1, .., N − 1. In that case, the ML estimator

of m applied to the observationsr[2p] reduces to the aforementioned case corresponding to OSR 1, such as shown

as follows:

m̂ = arg max
k∈[[0,N ]]

∣
∣
∣

1√
N

N−1∑

p=0

r[2p]s(k)[2p]∗
∣
∣
∣

2
(15)

= arg max
k∈[[0,N ]]

∣
∣
∣

1√
N

N−1∑

p=0

r[2p] exp
(

−2jπp
( p

N ′ −
1

2
+

k

N
− u(p−N + k)

))
∣
∣
∣

2
, (16)

and sinceexp(2jπpu(p−N + k)) = 1 for any p andk values, we obtain:

m̂ = arg max
k∈[[0,N ]]

∣
∣
∣

1√
N

N−1∑

p=0

r[2p]s(0)[2p]∗ exp
(

−2jπ
pk

N

)∣
∣
∣

2
(17)

= arg max
k∈[[0,N ]]

∣
∣
∣Y [k]

∣
∣
∣

2
. (18)
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2) OSR ro = 2, n Odd: For n odd, we noten = 2p+1, with p = 0, 1, .., N − 1. In that case, the ML estimator

of m applied to the observationr[2p+ 1] yields:

m̂ = arg max
k∈[[0,N ]]

∣
∣
∣

1√
N

N−1∑

p=0

r[2p+ 1]s(k)[2p+ 1]∗
∣
∣
∣

2
(19)

= arg max
k∈[[0,N ]]

∣
∣
∣

1√
N

N−1∑

p=0

r[2p+ 1] exp
(

−2jπ
2p+ 1

2

(2p+ 1

2N ′ − 1

2
+

k

N
− u(

2p+ 1

2
−N + k)

))
∣
∣
∣

2
. (20)

Then, sinceexp(2jπpu(2p+1
2 −N + k)) = 1 for any p andk values, and

∣
∣
∣exp

(

−jπ k
N

)∣
∣
∣ = 1 we obtain:

m̂ = arg max
k∈[[0,N ]]

∣
∣
∣

1√
N

N−1∑

p=0

r[2p+ 1]s(0)[2p+ 1]∗ exp
(

−jπ
k

N

)

exp
(

jπu(
2p+ 1

2
−N + k)

)

exp
(

−2jπ
pk

N

)∣
∣
∣

2
(21)

= arg max
k∈[[0,N ]]

∣
∣
∣

exp
(

−jπ k
N

)

√
N

N−1∑

p=0

r[2p+ 1]s(0)[2p+ 1]∗ exp
(

jπu(
2p+ 1

2
−N + k)

)

exp
(

−2jπ
pk

N

)∣
∣
∣

2
(22)

= arg max
k∈[[0,N ]]

∣
∣
∣Y

′[k]
∣
∣
∣

2
, (23)

whereY ′[k] is the DFT ofr[2p+1]s(0)[2p+1]∗ exp
(

jπu(2p+1
2 −N + k)

)

. Alternatively, we can rewriteY ′[k] in

(23) by noticing that

exp
(

jπu(
2p+ 1

2
−N + k)

)

=







1, if 2p+1
2 −N + k < 0

−1, if 2p+1
2 −N + k ≥ 0

. (24)

ThenY ′[k] in (23) can be expressed in a matrix notation as

Y′ =
















1 1 1 · · · 1 1

1 ω ω2 · · · ωN−2 −ωN−1

1 ω2 ω4 · · · −ω2(N−2) −ω2(N−1)

...
...

...
. . .

...
...

1 −ωN−1 −ω2(N−1) · · · −ω(N−1)2
















︸ ︷︷ ︸

F’

y (25)

whereY′ and y are theN × 1 vectors containing the samplesY ′[k] and r[2p + 1]s(0)[2p + 1]∗, respectively, and

ω = e−2j π

N . Furthermore, it must be emphasized thatF’ is similar to the DFT matrix, as it only differs from the usual

DFT matrix by signs. Thus (25) can be computed with the same complexity (in terms of complex multiplications)

as the usual DFT, namelyN log(N).
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3) OSR ro = 2, Combining Even and Odd n: Once bothY [k] andY ′[k] have been obtain from the oversampled

signaly[n], it is possible to combine these results to improve the LoRa demodulation. To this end, the ML estimation

of m becomes:

m̂ = arg max
k∈[[0,N ]]

∣
∣
∣Y [k] + exp

(

−jπ
k

N

)

Y ′[k]
︸ ︷︷ ︸

Ỹ [k]

∣
∣
∣

2
. (26)

Thus, it results that̃Y [k] = 2
√
Nδ(k−m) +W [k] + e−jπ k

N W ′[k] whenk = m, andỸ [k] = W [k] + e−jπ k

N W ′[k]

whenk 6= m. SinceE{|W [k] + e−jπ k

N W ′[k]|2} = 2σ2, the SER of the suggested demodulation leads to

Ps|h = −
N−1∑

k=1

(−1)k
(
N−1
k

)

k + 1
exp

(

− 2kN |h|2
(k + 1)σ2

)

. (27)

From (27) we notice that the ratio2kN |2|2
(k+1)σ2 within the exponential is twice larger than the ratiokN |2|2

(k+1)σ2 in (8).

Since the larger the ratio, the lower the SER, we deduce that the suggested method at OSRro = 2 actually

outperforms the usual LoRa demodulation at OSRro = 1. Note that the SER in AWGN and Rayleigh channel can

be straightforwardly obtained as previously,i.e. P awgn
s = Ps|h=1, and

P ray
s =

∫ +∞

0
f|h|2(x)Ps|hdx (28)

= −
N−1∑

k=1

(−1)k
(
N−1
k

)
σ2

2kNσ2
h + (k + 1)σ2

. (29)

Moreover the complexity of the suggested demodulation is only twice that of OSRro = 1, since the processes

for even and oddn samples are similar.

B. Generalizing for any OSR

We can generalizing the principle of the demodulation described in Fig. 1 to any OSR. For anyro ≥ 1, the

oversampled LoRa signal is split intoro branches, such that we denoten = rop + q the indexes of the samples

of the downsampled signal in theq-th branch, wherep = 0, 1, .., N − 1, q = 0, 1, ro − 1. In that case, the ML

estimator ofm applied to the observationr[rop+ q] yields:

m̂ = arg max
k∈[[0,N ]]

∣
∣
∣

1√
N

N−1∑

p=0

r[rop+ q]s(k)[rop+ q]∗
∣
∣
∣

2
(30)

= arg max
k∈[[0,N ]]

∣
∣
∣

1√
N

N−1∑

p=0

r[rop+ q] exp
(

−2jπ
rop+ q

ro

(rop+ q

2N ′ − 1

2
+

k

N
− u(

rop+ q

ro
−N + k)

))
∣
∣
∣

2
. (31)

Then, sinceexp(2jπpu( rop+1
ro

−N + k)) = 1 for any p andk values, and
∣
∣
∣exp

(

−2jπ qk
roN

)∣
∣
∣ = 1 we obtain:
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m̂ = arg max
k∈[[0,N ]]

∣
∣
∣

1√
N

N−1∑

p=0

r[rop+ q]s(0)[rop+ q]∗ exp
(

−2jπ
rop+ q

ro

( k

N
− u(

rop+ q

ro
−N + k)

))
∣
∣
∣

2
(32)

= arg max
k∈[[0,N ]]

∣
∣
∣

exp
(

−2jπ qk
Nro

)

√
N

N−1∑

p=0

r[rop+ q]s(0)[rop+ q]∗ exp
(

2jπ
q

ro
u(

rop+ q

ro
−N + k)

)

exp
(

−2jπ
pk

N

)∣
∣
∣

2
(33)

= arg max
k∈[[0,N ]]

∣
∣
∣Y

(ro)[k]
∣
∣
∣

2
, (34)

whereY (q,ro)[k] is the DFT ofr[rop+ q]s(0)[rop+ q]∗ exp
(

2jπ q
ro
u( rop+q

ro
−N + k)

)

. Once again, we can rewrite

(34) by noticing that

exp
(

2jπ
q

ro
u(

rop+ q

ro
−N + k)

)

=







1, if rop+q
ro

−N + k < 0

e
2jπ q

ro , if rop+q
ro

−N + k ≥ 0

. (35)

ThenY (q,ro)[k] in (34) can be expressed in a matrix notation as

Y(q,ro) =
















1 1 1 · · · 1 1

1 ω ω2 · · · ωN−2 e
2jπ q

ro ωN−1

1 ω2 ω4 · · · e
2jπ q

ro ω2(N−2) e
2jπ q

ro ω2(N−1)

...
...

...
. . .

...
...

1 e
2jπ q

ro ωN−1 e
2jπ q

ro ω2(N−1) · · · e
2jπ q

ro ω(N−1)2
















︸ ︷︷ ︸

F(q,ro)

y, (36)

where the complexity of the matrix multiplication straightforwardly reduces to that of the DFT ifro ∈ {1, 2, 4}.

For other values ofro, dedicated algorithms for matrix multiplication may be necessary, which limits the ease of

implementation. Then, similarly to (26) we can combine the results from thero branches to apply the ML estimator

as follows:

m̂ = arg max
k∈[[0,N ]]

∣
∣
∣

ro−1∑

q=0

exp
(

−2jπ
qk

Nro

)

Y (q,ro)[k]
∣
∣
∣

2
. (37)

IV. SIMULATIONS RESULTS

The simulation results have been obtained using Matlab for the Monte-Carlo results, and using Python 3 with

the librariesnumpy and gmpy for the computation of the theoretical results (27) and (29)since it requires a high

computation precision due to the binomial coefficient. In allsimulations, the bandwidth of the LoRa signal is set

to Bw = 125 kHz, the OSR for the new method isro = 2, and compared with the usual method at OSRro = 11.

Moreover, when a Rayleigh channel is considered, the channel gain is set toσ2
h = 1.

1The code corresponding the theoretical achievable SER at OSR 1 can befound at https://github.com/b-com/ber_LoRa
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Fig. 2 shows the SER performance versus SNR (dB) of the LoRa demodulation at OSR 1 for both the even and

the odd samples (corresponding to (18) and (23), respectively), compared with the suggested demodulation at OSR

2 (26). In Fig. 2-(a), the AWGN channel is considered, and the SNR varies in the range[−15,−5] dB, and in Fig.

2-(b), the Rayleigh channel is considered, and the SNR variesin the range[−23, 10] dB. We observe in both Figs.

2-(a) and (b) that the SER performance of the LoRa demodulation at OSR 1 is the same for both the even and

the odd samples. Moreover, a gain of 3 dB is achieved by the suggested method at OSR 2 compared with OSR

1. This is consistent with the analysis, as we noticed that theratio 2kN |2|2
(k+1)σ2 within the exponential in (27) is twice

larger than the ratiokN |2|2
(k+1)σ2 in (8), corresponding to a 3 dB gain.

Fig. 3 compares the SER performance results versus SNR (dB) of thesuggested demodulation obtained through

analysis ((27) and (29)) and through simulations for SF 7, 8, and 9, and considering AWGN (a), and Rayleigh (b)

channel models. In any configuration, we observe that the theoretical results match the simulations ones, therefore

validating the suggested performance analysis. Furthermore, a gain of about 3dB is achieve between the performance

of "SF N" compared with "SF N-1", which is consistent with the usual demodulation at OSR 1.

V. CONCLUSION

In this paper, we have introduced a new demodulation method for oversampled LoRa signal. The principle consists

in splitting the received signal into downsampled signals,processing them using dedicated DFT, then combining

them and finally applying a usual LoRa demodulation to the combined signals. The advantages of the suggested

method lie in the improvement of the demodulation performance compared with the usual one performed at OSR

1, while keeping a low computational cost. Furthermore, a performance analysis in term of SER is developed,

which is validated through simulations. Future works will investigate the impact of non-ideal reception including

synchronization mismatch on the performance of the demodulation.
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