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A Low-Complexity Demodulation for Oversampled

LoRa Signal

Vincent Savaux

Abstract

This paper deals with a method of demodulation for oversathpbRa signal. The usual maximum likelihood
(ML) based demodulation method for LoRa chirp spread spet{CSS) waveform is dedicated to signals sampled
at Nyquist rate, whereas considering oversampled signaisimprove the performance of the LoRa demodulation
process. In this respect, when an oversampling rate (OS&p&sumed, the method suggested in this paper consists
in applying two demodulation processes to the even and odgles of the oversampled LoRa signal, and then
combining the results. This principle is then generalizedahy OSR, and we show that the complexity of the
method is low since it only involves discrete Fourier tramsfs (DFT). Moreover, a performance analysis in terms
of symbol and bit error rate (SER and BER) is presented cernisigl both additive white Gaussian noise (AWGN)
and Rayleigh channel models. Simulations show the relevahthe method and the performance analysis as a gain
of 3 dB is achieved by the demodulation at OSR 2 compared wER Q.
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I. INTRODUCTION

In the recent years, the Internet of things (IoT) technolegamong which the low power wide area network
(LPWA) solutions, have enabled the connectivity of a constagtowing number of devices, offering digital
transformation across industry verticals [1]. Among the LPW8hnologies, LoRa is one of the most deployed and
studied by both academic and industrial researchers, yna@dause it offers the advantage of an easy deployment.
The LoRa waveform is originally based on the chirp spread spec{CSS) modulation, described by Winkler in
[2]. More generally, the physical layer (PHY) of LoRa is deyed by Semtech, and the system has been promoted
by the LoRa Alliance, that specifies the LoRaWAN open protocol.

The PHY layer of LoRa as well as related signal processing dlgos and performance analyzes have been
extensively studied in the literature. Thus, the LoRa wavefand its main properties are described by the authors
of [3], [4]. In [5]-[9], theoretical symbol and bit error @t(SER and BER) expressions and approximations are
provided for different channel models. However, thesegrerince analyzes are limited to LoRa signals sampled
at Nyquist rate, because the LoRa demodulation is inherelegygned to process signals sampled at oversampling
rate (OSR) li(e. Nyquist rate). For this reason, only few papers like [10]Ideith demodulation of oversampled
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LoRa signals, whereas it is a straightforward strategy fafopmance improvement. In [10] a discrete Fourier
transform (DFT) of the size of the oversampled signal is agpléd the resulting spectrum is processed to take
advantage of the gain of energy brought by the oversampbegpite this method requires a low computational
cost, the processing in the frequency domain leads to araserof the observed noise level, making the technique
relevant only for OSR strictly larger than 2.

In this paper, we suggest a new demodulation method for angrked LoRa signals combining both good per-
formance and low complexity. The principle of the method ddeisng OSR 2, consists in splitting the oversampled
signal into two signals sampled at Nyquist rate, one coirtgithe even samples, and the other one containing
the odd samples of the oversampled LoRa signal. Then, dedi&dt@& are applied to each of the signals, and the
resulting responses are combined to apply the usual LoRadldatmn process. It is shown that such principle
can be extended to any OSR as well. The complexity of the suggyésthnique is limited as it only involves to
apply a number of DFT equal to the OSR. Furthermore, the theateichievable SER and BER performance is
derived considering both additive white Gaussian noise GNY and Rayleigh channel models, and it is validated
through simulations. Thus, a gain of 3 dB is achieved by th@esigd demodulation at OSR 2 compared with the
usual demodulation at Nyquist rate.

The rest of the paper is organized as follows: Section Il ptssanbackground on LoRa modulation and
demodulation. In Section Il we introduce the new demodatatnethod for oversampled LoRa signal, as well as
the corresponding performance analysis. Simulationstgeshbw the relevance of the technique in Section IV, and
Section V concludes this paper.

Notations: The normal fontr is used for scalars, and the boldfacdor vectors and matrices. The lower-case
and the upper-case and X indicates samples in time and frequency domains, resgéctiVhe probability of an

eventE is denoted byP(E), andE{.} is the mathematical expectation.

II. LoRA SYSTEM MODEL

In this section, we describe the LoRa signal model and theespanding demodulation et the receiver side.
Based on CSS, the modulation of LoRa signal consists in mappbigaay packet of sizéV = 25" whereSF is
the spreading factor, onto a LoRa symbol not€t), wherem = 0, 1, .., N —1 indicates the index of the modulated
chirp. Each symbol has a durati@y and a bandwidtiB,, such thatB,, T, = N. We denote by, the OSR of the
signal ¢ = 1 means Nyquist rate), then for amy= 0,1,.., N' — 1 where N’ = rN, and for anySF value, the
modulated LoRa symbai(™) can be expressed by generalizing [4]-(13) as
1 m

" .n,n n
s )[n]:eXp(2‘77TE(2N’_§+N_U(E_N+m)))’

(1)

wherew(.) indicates the Heaviside step function. We assume a synidemneception (see [11]-[14] for synchro-
nization in LoRa), and we consider that the propagation chlarem be modeled as a one-tap block fading channel

h, therefore, for any: = 0, 1,..N’ — 1, the received signal|n| is given by



r[n] = hs™[n] + wln), (2)

wherew([n|, n = 0,1,.., N'—1, are the independent and identically distributed)(samples of the complex additive
white Gaussian noise (AWGN) such thafn] ~ CA (0, 02), whereo? = E{|w[n]|?}. In the following, we assume
that channeh is either an AWGN channei.e. h = 1) or a Rayleigh channei.e. h =~ CN/(0, cr%)). In any case,
we define the signal-to-noise ratio as

E{lhs"™[n]*} _ E{|h[*}
SN TRy o2 ©

The basic principle of the LoRa demodulation process congigtstimating the symbol index from the obser-

vation r[n], by means of the maximum likelihood (ML) estimator since ibfgimal in condition of synchronized
reception [5], [12], [13]. For OSR, = 1, the LoRa demodulation process is based on three mains steps:

"dechirp" operation, consisting in removing the quadraticnponent from the received LoRa symbol:

yln] = rln)exp(~2jmn (G~ 2)). @

Then, a discrete Fourier transform (DFT) is applied:

—2jmnk

1 N—1 .
Y[k]z—NZy[nJe N (5)
n=0

wherek = 0,1,.., N — 1. It should be noticed that' [k] = vV No(k — m) + W[k] whenk = m, andY [k] = W k]
when k # m, whered(k) is the Dirac impulse andiV'[k] are the noise samples in frequency domain. Moreover,
by property of the DFT, the noise samplgg[k] are alliid and W [k] ~ CN (0, c2). Finally, the ML estimator of

m Yields

m = arg max|Y[k]|%, (6)
ke[0,N]

where|Y [k]|? is called the periodogram of[n]. The symbol error rate (SER) performance corresponding to the
LoRa demodulation has been largely studied in from [6]-[8]ug§,igiven the channel gaila it can be expressed

as

Py, = P(m # m|h) (7)
N—-1 N—-1
_ D) kN|h[?
- ; Py eXp(_(k+1)a2)' ®

From (8), the SER performance of the LoRa signal in AWGN channsihiply obtained througtPé?" = Py,
and the SER of the LoRa signal over Rayleigh channel, denotel; %Y, is given by averaging’,;, weighted by

the Rayleigh distributiory|, > (z) = % such as follows



+o0
Prov — /0 figs (2) Pup (©)

e w0
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The BERPF, is, in turn, obtained from the SER through = 55— Fs. Besides the performance analysis, we also
gives the complexity of the LoRa demodulation in terms of claxpnultiplications: we deduce from (4), (5), and
(6) that these operations requifé, N log(N), and N operations, respectively.

In [10], the demodulation of LoRa has been extended to any @SR 1. Similar to the case OSR, = 1, the

"dechirp" operation becomes

y[n| =rn| exp( 2jm— (27\[, - %)) (11)

wheren = 0,1,.., N’ — 1. A DFT of size N’ is then applied toy[n] in (11). The resulting spectrun [k],
k = 0,1,..,N' — 1, highlights two peaks at the positiois= m andk = m — N + N’, and with amplitudes
Vil =m] = = §(k —m) + Wm] andY [k = m — N + N'] = Z226(k —m + N — N') + W[m — N + N'].
As a consequence, it is suggested in [10] to sum these peaksgyth

Y[k] = Y[k] + Y[(ro — 1)N + K. (12)

It must be noticed that’[k] = vV N'6(k — m) + W[k] whenk = m, andY[k] = W[k] whenk # m, where
W[k] = W[k]+W][(r,—1)N +k] are the combined noise samples in frequency domain. FinlaéyML estimators

of the indexm then leads to

m = arg max|Y[k]|%. (13)
ke[0,N]

The SER performance of the LoRa demodulation proposed in [10krig OSRr > 1 is given by

N-1/_ {yk(N-1 N2
where the tern2o? in the denominator within the exponential comes flBfW [k] + W |[(r,—1)N +k]|*} = 202, It
can be deduced from (14) that an O8R= 2 leads to the same SER as in (8) usigg= 1, and then a performance
improvement of the method in [10] is only effective fey > 2 compared with the usual LoRa demodulation at
OSRr, = 1. More generally, the largeN’ (through the OSR-,), the lower the SER, but to the cost of increase
of complexity. In the following, we introduce a new low-colep LoRa demodulation method that outperforms the

usual demodulation for any OSR > 2.
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Fig. 1. Principle of the suggested demodulation for LoRa signal at @SR.

I1l. NEw DEMODULATION OF OVERSAMPLED LORA SIGNAL
A . OR7r, =2

We first present the proposed LoRa demodulation method for ©SR2 before generalizing to any OSR. The
principle is illustrated in Fig. 1: the received signah] sampled at OSR, = 2 is split into two downsampled
signals, one consisting in the even samples and the othecamssting in the odd samples (illustrated by the
delay z~! in Fig. 1) of the received oversampled signal. Then, specifichiup" and DFT processes are applied,
and the resulting signals are combined to apply the usual ld#Raodulationi¢e. the ML estimator ofm). In the
following, the steps of the suggested LoRa demodulation ataildd.

1) OSR r, = 2, n Even: For n even, we noter = 2p, with p =0,1,.., N — 1. In that case, the ML estimator
of m applied to the observation$2p| reduces to the aforementioned case corresponding to OSRH asusshown

as follows:

m = arg max‘L N_lr[Qp]s(’“) [2p]* ’ (15)
ke[0o,N] \/N p—0
N-1
1 _op 1k 2
= arg max|—— ri2plexp| —2jmp(— — =+ —= —ulp— N +k , (16)
ke[0,N] ‘\/ﬁ = 2p) ( (N’ 3 T >))
and sinceexp(2jmpu(p — N + k)) = 1 for any p and k values, we obtain:
N—-1
1 N 2ANE:
m = arg max|—— r[2p]s D [2p]* exp( —2jm— a7)
ke[o,N] ’\/szo 2p)s™2p] < N>‘
2
= arg max’Y[k}) : (18)

ke[0o,N]



2) ORr, =2, n Odd: Forn odd, we noten =2p+1, withp =0,1,.., N — 1. In that case, the ML estimator
of m applied to the observation2p + 1] yields:

N-1
1 2
m = arg max‘— r[2p + 1]s®[2p 4+ 1)* (19)
kefo,N] 'VIN =0
N-1
1 2041 2p+1 1 Kk 2p+1 2
= arg max‘— r[2p + 1] eXp(72]7T —— 4+ — —y —N+k) )‘ . (20)
kEII(LN]] \/N p:o 2 ( 2N/ 2 N 2 )

Then, sinceexp(2jmpu(?%= — N + k)) = 1 for any p andk values, anqexp<—jw%>‘ — 1 we obtain:

N—-1
2
m = arg max 1 r[2p + 1]5(0) [2p + 1] exp(—jﬂ'£> exp (jwu(Qp 1 N + k:)) exp (—2j7rp—k) ‘(21)
kelo.N] VN o= N N
-k _
GXP<—]7TN> Nl 2p+1 Pk |2
= arg max|———= r2p+1 s 2p + 1]" exp|( jru — N+Ek))expl—2jm— (22)
e S e S e )
2
= arg max Y’[k]‘ : (23)
ke[0,N]

whereY’[k] is the DFT ofr[2p + 1]s([2p + 1]* exp (jwu(@ -N+ k)). Alternatively, we can rewrit&”’[k] in
(23) by noticing that

1 Lif 28— N+ k<0
—N+k)): . (24)
—1,if 22 - N +£k>0

( o 2p+
exp( jmu(

ThenY’[k] in (23) can be expressed in a matrix notation as

1 1 1 1 1
1 w w2 WwN-2 _WN-1

Y/ — 1 (4)2 w4 . _WQ(N—Q) _WQ(N—l) y (25)
1 —WN-1 _ 2(N-1) . (N1

whereY’ andy are theN x 1 vectors containing the sampl&€[k] andr[2p + 1]s(9[2p + 1]*, respectively, and
w = e~ %~ . Furthermore, it must be emphasized tRats similar to the DFT matrix, as it only differs from the usual
DFT matrix by signs. Thus (25) can be computed with the same ity (in terms of complex multiplications)

as the usual DFT, namelyy log(N).



3) OSRr, = 2, Combining Even and Odd n: Once bothY [k] andY’[k] have been obtain from the oversampled
signaly[n], it is possible to combine these results to improve the LoRaodielation. To this end, the ML estimation

of m becomes:

m = ilg[oTv?x)Y[k] + exp(—jw%)Y’[k] ‘2 (26)

e
Thus, it results that’[k] = 2V N&(k — m) + W[k] + e 9"~ W'[k] whenk = m, and Y [k] = W[k] 4+ e 9™~ W'[k]
whenk # m. SinceE{|W[k] + e 7"~ W'[k]|2} = 202, the SER of the suggested demodulation leads to

N-1 N-1
VY 2kN|h[?
P == 2 (g e) (@7)

From (27) we notice that the ratlé% within the exponential is twice larger than the ra%ig\ﬂ in (8).
Since the larger the ratio, the lower the SER, we deduce thatupgested method at OSR = 2 actually
outperforms the usual LoRa demodulation at OSR= 1. Note that the SER in AWGN and Rayleigh channel can

be straightforwardly obtained as previouslg P{“9" = P,;,_;, and
+oo
PsT(ly = /0 f‘mz(%)Ps‘hdiU (28)
1)k(N 1)0.2

B Z szah (k +1)02 (29)

Moreover the complexity of the suggested demodulanon Ig twice that of OSRr, = 1, since the processes

for even and odch samples are similar.

B. Generalizing for any OSR

We can generalizing the principle of the demodulation dbedrin Fig. 1 to any OSR. For any, > 1, the
oversampled LoRa signal is split intg branches, such that we denote= r,p + ¢ the indexes of the samples
of the downsampled signal in thgeth branch, where» = 0,1,..,. N — 1, ¢ = 0,1,r, — 1. In that case, the ML
estimator ofm applied to the observatiorr,p + ¢] yields:

N-1
1 2
= arg maX(— rirop + q)s®™[rop + q)* (30)
kelo.N] VN T
N—-1
1 _roptqropt+q 1k Top +q ’2
— S o ) S (P Nk . (31
ifegﬂof?v?x ~ OT[TerQ]eXp( I (2N’ 5Ty~ " + ))) (31)

Then, sinceexp(2jmpu( =t "p“ — N +k)) =1 for anyp and k values, an#exp(— q'jv)‘ =1 we obtain:




=2

. 1 . . Topt+q kK rop +q 2
m = arg max|—— Y  r[rep+ qlsOfrop + " exp( —2jm — u ~ N +k) ‘ (32)
ke[O,Nﬂ \/N =0 ( To (N To ))
gk
e”(_%wﬂT)Nq g Top+q Pk 2
= arg max - rrop + q)5 O [rop + " exp ( 2jm—u (=2 — N +k))exp —2j7r—(>#3)
kG[[O,N] \/N =0 ( To To ) < N
2
= arg max Y(“)[k]’ , (34)
ke[0,N]

whereY (@7)[k] is the DFT ofr[r,p + |5 [rop + ¢]* exp (2jw%u(%ﬁq ~ N+ k:)). Once again, we can rewrite
(34) by noticing that

1, if %H—N+k<0
exp 2jm-Ly M—N—i—k = ’ . (35)
(2

"o o e if TPt N 4 k>0
b To pu—

Then Y(Wo)[k] in (34) can be expressed in a matrix notation as

1 1 1 o 1 1
1 w w2 . WwN-2 Q20m N-1
v(@re) — |4 w2 W o 62j7r%w2(N_2) ezjﬂ%wQ(N_l) V. (36)
1 erTrinfl erTrﬁWQ(Nfl) . ezjwiw(N*1)2
F(a:m0)

where the complexity of the matrix multiplication straifgrvardly reduces to that of the DFT if, € {1,2,4}.
For other values of-,, dedicated algorithms for matrix multiplication may be @ssary, which limits the ease of

implementation. Then, similarly to (26) we can combine tteuts from ther, branches to apply the ML estimator

as follows:

ro—1
b — \ _9; ﬁ CE 2 37
m igoﬁzﬁ\x‘gexp( ZJWN%)Y [ ]’ . (37)

IV. SIMULATIONS RESULTS

The simulation results have been obtained using Matlab ferMionte-Carlo results, and using Python 3 with
the librariesnumpy and gmpy for the computation of the theoretical results (27) and @8age it requires a high
computation precision due to the binomial coefficient. Insathulations, the bandwidth of the LoRa signal is set
to B,, = 125 kHz, the OSR for the new method ig = 2, and compared with the usual method at OSR= 11.

Moreover, when a Rayleigh channel is considered, the chayame is set tOO'}QL =1.

1The code corresponding the theoretical achievable SER at OSR 1 danmrizkat https://github.com/b-com/ber_LoRa



Fig. 2 shows the SER performance versus SNR (dB) of the LoRa deatmiuht OSR 1 for both the even and
the odd samples (corresponding to (18) and (23), respé&gtiempared with the suggested demodulation at OSR
2 (26). In Fig. 2-(a), the AWGN channel is considered, and th&® $hiries in the rangé-15, —5] dB, and in Fig.
2-(b), the Rayleigh channel is considered, and the SNR vari#ee range —23, 10] dB. We observe in both Figs.
2-(a) and (b) that the SER performance of the LoRa demodulatiéddSR 1 is the same for both the even and
the odd samples. Moreover, a gain of 3 dB is achieved by thgestgd method at OSR 2 compared with OSR
1. This is consistent with the analysis, as we noticed tharatie 2+NI2°

(k+1)02
larger than the ratiq% in (8), corresponding to a 3 dB gain.

within the exponential in (27) is twice

Fig. 3 compares the SER performance results versus SNR (dB) stifgested demodulation obtained through
analysis ((27) and (29)) and through simulations for SF 7,n8, @ and considering AWGN (a), and Rayleigh (b)
channel models. In any configuration, we observe that therd¢kieal results match the simulations ones, therefore
validating the suggested performance analysis. Furthernaagain of about 3dB is achieve between the performance

of "SF N" compared with "SF N-1", which is consistent with theialsdemodulation at OSR 1.

V. CONCLUSION

In this paper, we have introduced a new demodulation methiooviersampled LoRa signal. The principle consists
in splitting the received signal into downsampled signpl®cessing them using dedicated DFT, then combining
them and finally applying a usual LoRa demodulation to the caetbisignals. The advantages of the suggested
method lie in the improvement of the demodulation perforceaocompared with the usual one performed at OSR
1, while keeping a low computational cost. Furthermore, doperance analysis in term of SER is developed,
which is validated through simulations. Future works wiléstigate the impact of non-ideal reception including

synchronization mismatch on the performance of the denatidal
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