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A Dual-Flow Attentive Network with Feature
Crossing for Chained Trip Purpose Inference

Suxing Lyu, Tianyang Han, Peiran Li, Xingyu Luo, and Takahiko Kusakabe*

Abstract—Trip purpose is essential information supporting
tasks in intelligent transportation systems, such as travel be-
haviour comprehension, location-based service, and urban plan-
ning. The observation of trip purpose is a necessary aspect of
travel surveys. However, owing to the sampling volume, survey
budget, and survey frequency, relying solely on travel surveys
in the era of big data is a difficult task. There has long been
a demand for an accurate, generalizable, and robust inference
method for trip purposes. Although existing studies contributed
significant efforts to improve the trip purpose inference, the
potential of leveraging the trip chain is insufficient. The spatial
correlations and chaining patterns hidden in travelled zones
are worthy of further exploration. The unequal importance
within trip chains has not been clearly represented. Additionally,
complex activity-zone mutual interdependence has not been
considered in previous models. Herein, we propose a framework-
Dual-Flow Attentive Network with Feature Crossing (DACross),
specifically for inferring the chained trip purpose. We form
trip chains innovatively that treat trip activities and travelled
geographic zones as two chains with mutual interactions. We pro-
pose DACross, which consists of two parallel attentive branches
and a co-attentive feature crossing module, for fully learning
the intra- and inter-chain dependencies. We conducted extensive
experiments on four large-scale real-world datasets to evaluate
not only the performance of DACross but also the generalizability
of the proposed framework among different cities and scenarios.
Notably, the Experimental results prove the overall superiority
of the proposed DACross.

Index Terms—Travel behaviour, trip purpose inference, deep
learning, intelligent transportation systems.

I. INTRODUCTION

TRip purpose plays a critical role in human mobility,
which has been recognised as a crucial behavioural

pattern [1]. In this perspective, trip purpose can contribute
to urban planning and mobility information systems by fa-
cilitating travel behaviour analysis. From the perspective of
urban planners and policymaking, travel behaviour is tightly
correlated with the urban structure [2] and socio-demographic
attributes of travellers [3], [4]. Fine-grained information and
modelling in travel behaviour studies are expected to better
estimate and forecast travel demand, which is essential for
addressing urban planning-related issues [5], such as site selec-
tion and infrastructure function evaluation. On the other hand,
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modern mobility information systems, by determining the
motivation that enables people to travel, can improve transport
mode detection [6], origin-destination (OD) extraction [7], and
destination prediction [8], [9], and past studies have proved
that only knowing the when and where is not sufficient.

Although the trip purpose represents important information
and has considerable potential for use, the long-standing issue
has been that the trip purpose is challenging to observe. Since
the 1980s [10], behavioural surveys (particularly the travel
diary surveys) have been the most reliable way to acquire trip
purposes. As an essential item asked in the questionnaires of
diary travel surveys, trip purposes in daily travel are deter-
mined through inquiry and subsequently recorded. Moreover,
by leveraging mobile devices, researchers conducted a variant
of travel diary surveys, termed the Prompted Recall (PR) sur-
veys [6], [11], [12], which segment trips from mobile records
and ask respondents to answer their trip purposes online to
improve the survey quality [13]. Currently, PR surveys provide
more realistic records and continuously contribute to travel
surveys; nevertheless, the difficulties of conducting broad
and continuous long-term observation using these specially
designed surveys are yet to be solved. As early as 2001,
researchers began a proof-of-concept study examining the
feasibility of deriving trip purpose from movement data [14].
This study shows that for accurate trip-purpose inference,
mobile movement data can be an efficient replacement for
traditional travel surveys, which can respond passively to
the demand for broad and long-term observation. Hence, the
research on methods to infer trip purpose accurately has long
been motivated.

In past research, considerable efforts have been invested to
develop an accurate means for trip purpose inference. For
instance, importing precise and abundant extra information
was approved as meaningful in this context. In this case,
precise geographical contexts, such as the commercial point
of interest (POI) distributions and geo-located social me-
dia records, were considered [15]–[17]. Moreover, acquiring
travellers’ long-term travel histories and detailed personal
attributes has significantly improved the task [18]. These data
augmentation methods cannot always be satised in real-world
scenarios, as they could be cost-intensive for and pose privacy-
sensitive issues to the target. Therefore, instead of importing
complicated data pre-requirement, we focused on investigating
the modelling framework in this study.

There have been two types of modelling frameworks, the
trip-level and trip chain-level (Fig. 1). The trip-level methods
are constructed on the assumption that each trip is inde-
pendent. The independent assumption ignores the contextual
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Fig. 1. Sketch of the three modelling concepts for trip purpose inference.

patterns in the chain. Hereof, there could be counterintuitive
orders of trip purposes, for example, Home → Work →
Home → Work. In recent years, the trip chain-level methods
have received more attention; however, compared with the
trip-level methods, these methods have rarely been studied as
only a few studies have been reported. The trip chain-level
methods attach importance to the chaining behaviour, which
is an approved significant benefit to our task [19].

Regardless of the trip- or trip chain-level methods, pre-
vious studies have rarely considered separating the be-
havioural contexts (trips) and geographical contexts (zones)1.
Considering the most essential definition, the trip purpose
inference can be established on the three-element tuple
(Origin,Trip,Destination). Most of the previous studies
simply concatenated all of three together, nevertheless, we
consider this approach will result in an insufficient usage of
the inherent feature patterns. In particular, concatenating three
elements together will flatten the hierarchical structure that
a trip naturally represents a behavioural connection between
two functional zones. Moreover, in this manner, the chaining
patterns in zones will be changed to be subsidiary to trips,
where rich information of both spatial and temporal views in
chained zones [20] will be lost.

To overcome the aforementioned issues and achieve our
targets, we propose a new modelling concept implemented
on deep learning technologies, which are seen to be effective
and efficient for extracting high-level features [21]–[24]. The
proposed modelling concept is based on the chained tuple
relations, termed the dual-flow architecture, in which we
processed the chained zones and trips simultaneously. We
consequently introduce a framework-Dual-Flow Attentive Net-
work with Feature Crossing (DACross), for chained trip pur-
pose inference. The DACross primarily takes account into 1)
augmenting the usage of zone information by modelling zones’
geographical adjacencies in graphs and maintaining the zones’
self-organised chain in order of daily travel, and 2) importing
the unequal importance within chains (the intradependencies)
and the mutual interactions between trips and zones (the

1Note that a trip refers to a unit of movement activity made while moving
from the origin to the destination. Correspondingly, a zone denotes the choice
of the geographic area or boundary in the real world.

interdependencies) by the attentive methods. The DACross was
designed to not rely on traveller information for achieving
relatively accurate trip-purpose inference, which is convenient
to apply and adaptable to real-world application scenarios.
Moreover, we decided to build our model on existing travel
surveys, which are the largest and most complete datasets so
far, following the diary-like format. Although compared to the
emergent passively collected movement data, the volume of
travel surveys is relatively small, model evaluations on these
small data are crucial to bridge the gap to big data [25] up.
Finally, we organise our contributions as follows:

• We initiated an attempt to better exploit the information
of zones and to provide a new perspective, i.e., dual-
flow architecture, of general modelling for trip purpose
inference, which was solely based on the essential three-
element tuples.

• We proposed a new framework, DACross, for chained
trip-purpose inference. DACross consisted of two equally
important branches with a co-attentive feature crossing
module, which leveraged interdependencies within the
trip chain.

• We conducted extensive experiments using four large-
scale real-world datasets. Furthermore, we evaluated the
practicability of DACross through comprehensive anal-
ysis. The results showed that the proposed DACross
outperformed various comparative studies.

The paper is organised as followings. In Section II, we
report a comprehensive literature review with further explana-
tion of our research motivations. The necessary definitions and
terms are introduced in Section III. The detailed framework
construction is described in Section IV. In Section V and VI,
we introduce the details of the experiments and summarise
the results on quantitative and qualitative analysis. Finally, we
conclude the paper in Section VII.

II. TRIP PURPOSE INFERENCE REVIEW

The trip purpose inference has been a long-standing topic.
Nowadays, there has been considerable evolved progress on
this topic. We primarily described the related works by the evo-
lutionary tendency of methods and modelling concepts. During
the early stage, deterministic rule-based methods [11], [14],
[26]–[28] were initially developed. Such rule-based methods
heavily relied on the design of complicated rules to determine
the trip purposes with the search and query functions of
the Geographic Information System (GIS). These rule-based
methods usually can only correspond to a few categories
of trip purposes. Subsequently, in some special cases, given
the long-time travel trajectory histories or travel surveys as
prior references, the Bayesian methods [17], [29], [30] were
proposed for modelling trip purposes from a probabilistic view.
These methods were developed for specific transport modes,
and thus, were difficult to generalise to whole-day travel.

In the past decade, machine learning-based methods have
[6], [12], [15], [16], [18], [31], [32] became mainstream, as
data conditions have improved correspondingly. These meth-
ods were established on the trip-level modelling, and attention
was paid for importing the extra information to improve the
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performance. Owing to the elaborated data pre-requirement
and heavy feature engineering, the models’ practicability is
constrained. Moreover, the trip chain-level formulation has
become popular in recent years. The Hidden Markov model
(HMM) and variants [8], [21], [22], [33]–[35] are widely
applied for chained trip purpose inference. [19] validated
the significant benefits considering the trip sequence on trip
purpose inference. However, current studies of the trip chains-
level modelling are yet to be sufficient. For instance, the
unsupervised learning for specific transport modes [22], [33]
still kept the difficulty to be applied on the whole day travel as
relatively a few numbers of trip purposes can be inferred. The
poor performance of inferring long and complex trip chain
[21] was validated. The reliable and generalised trip chain-
level inference is temporarily absent.

Most recently, a few studies have focused on implementing
deep learning technologies for inferring the trip purpose. The
burgeoning development of deep neural networks leads to a
flexible way for extracting high-level features in a data-driven
manner. Thus, it can be easily extended to fit various scenarios.
For instance, the studies [21], [22] of the trip chain-level
formulation consist of parts of deep neural networks to ensure
abundant high-level features as the inputs to the following
HMM. [24] proposed a framework to leverage Check-in and
POI semantics, which were applied to the taxi trip purpose
inference. The potential merits of using deep neural networks
prompted our study, focusing on the trip chain-level modelling
by the proposed DACross framework. Moreover, we argue
that the unequal importance of chained trip purposes has not
been explicitly considered in previous studies; nevertheless,
the unequal importance has long been explored and discussed.
For instance, in terms of trip generation [36], there are
priorities for different trip purposes, and several compulsory
purposes primarily decide the composition of a trip chain [37].
Furthermore, discretionary purposes are distributed among the
travellers’ schedules and the time budget between compulsory
purposes. This concept was also sustained under the destina-
tion choice [38], which can be correlated to the travelled zone
order. Therefore, we propose the DACross, which reflects the
unequal importance of attentive modelling intra- and inter-
dependencies in deep learning. The DACross is constructed to
leverage the inherent chaining patterns within the trip chain
and eventually provide a whole-day travel inference under
the naive data condition, which is critical to practicability in
real-world scenarios. Based on our previous study [23], we
maintain the mining of graph-constructed zone information
and dive into the dual-flow architecture.

III. PRELIMINARIES

We first define the graph for geographic adjacency and
the method of chaining the trip. Utilizing this strategy, the
formulation of the chained trip-purpose inference task can be
obtained. Herein, we use the terms sequence and chain to
express the same meaning.

Definition 1 Geographic Adjacency Graph: Given a cer-
tain research area (such as a city), we partitioned the area
into numerous small zones by using administrative boundaries,

street blocks, and mesh grids. We defined these small zones as
a set of nodes V . Regarding the adjacent relationships among
the zones, we defined the pairs of adjacencies as a set of edges
E . Consequently, we present the geographic adjacency graph
as G(V, E). For each node v in the graph, a vector xv ∈ Rdv

denotes its attributes, such as numbers of POIs and categories
of land use. Our geographic adjacency graph has no weights
on edges and no limitations on their directions. Thus, given
an edge eij between vi and vj , eij only denotes the adjacent
relationship, where eij ≡ eji.

Definition 2 Trip Chain: Within a certain period and given
a specific traveller p, a trip chain refers to the scheduling
of micro-level activities of the traveller in time and space.
We defined two sequences of observations, a sequence of
trips T (p) = {t(p)1 , ..., t

(p)
N } and a sequence of travelled zones

V(p) = {v(p)1 , ..., v
(p)
M }|V(p) ⊂ V , which compose a trip

chain C(p) = (T (p),V(p)). Specifically, as each single trip
t
(p)
i bridges the origin v

(p)
i and the destination v

(p)
i+1, we have

M = N + 1. When a traveller finishes a trip at the same
zone, v(p)i ≡ v

(p)
i+1 is established. Similar to the node vector,

the vector xt ∈ Rdt denotes the trip’s attributes, such as travel
speed, distance, duration, and travel mode.

Problem: Chained Trip Purpose Inference. Given a
geographic adjacency graph G = {V, E} and trip chain
C(p) = (T (p),V(p)), the goal of our task is to train a deep
neural network f(·) for inferring the trip chaining purposes,
{y(p)1 , ..., y

(p)
N } = f(G, C(p)).

IV. METHODOLOGY

A. Framework Overview

An overview of the DACross framework is shown in Figure
2. In accordance with the dual-flow concept, we split a trip
chain into batches of trips and zones and treat them equally.
In this manner, we processed the travelled zones delicately
and enriched their feature representations. Through feature
crossing, we further enhanced two branches with the full usage
of inter-trip chain dependencies to improve the robustness of
the inference. We describe four modules designed for specific
objectives as follows:
Input Feature Embedding: We started with coarse-level
feature embedding before entering the principal modules.
Initially, raw feature vectors of trips and zones may have
different dimensions and belong to different latent feature
spaces, which are troublesome for later processing. Hence,
they are organised to have the same dimensions in this module.
Moreover, inspired by [23], [24], [39], we employed a 1-layer
Graph Neural Network (GNN), specifically, a Graph Attention
Network (GAT) [40], to capture zones with adjacent relevance
to their neighbours. The GAT can emphasise most useful
information on neighbours through the attention mechanism.
Moreover, the objective of this module is to roughly aggregate
adjacent spatial information into the travelled zones.
Intra-Sequence Encoders: We instantiated the shared se-
quential encoder of Transformer [41] twice (marked as the
1st encoder and 2nd encoder in the Fig. 2). As mentioned
before, multiple trip purposes in a trip chain are considered to
have different importance and priority [36], [37]. This should
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Fig. 2. The overview framework of the proposed DACross. The blue colour scheme denotes the procedures of trips, and the red colour scheme denotes the
zones. The yellow colour scheme denotes the shared or common procedures. We implemented an encoder that differed from the locations of the Layer Norm
from [41], in which it was proved to have a better training efficiency [48].

also be true for the regional sequence. Certain zones are not
crucial for the chain, but they occur when the traveller just
drops in. These encoders are responsible for capturing the
intra-relevance and intra-attractiveness. The first encoder is
designed for lightly encoding feature matrices from the input
embeddings in which these matrices only contain the infor-
mation inside themselves. Therefore, we did not consider any
interactions between trips and zones within the first encoder.
After enhancing the inter-chain interactive information, the
second encoder is designed for the same targets as the first
encoder but devotes itself to capture the changed information.
Inter-Trip Chain Feature Crossing: This module is inspired
by the co-attentive structures, which have been utilised widely
for Natural Language Processing (NLP) tasks, such as Q&A
[42], [43] and machine comprehension [44]. These tasks,
besides NLP [45], generally contain multiple sources as inputs,
and their objectives ultimately lead to a synthetic output that
judges, evaluates, or answers a binary label or a similarity
score. As inherent correlations may exist across multiple in-
puts, the co-attention mechanism can markup mutual effective
information to improve the performance. In our scenario, we
argue that within the same trip chain, the occurrence of a
certain trip purpose may be indirectly related to travelled
zones. Referring to [46], we propose a parametric co-attentive
feature crossing module. This module practises our modelling
perspective and concurrently enhances the information of
inherent correlations through addition.
Tree-Structure Aggregation: Following our previous work
[23], this module seeks to organise and aggregate trips and
zones for outputs. The natural tree structure that bridges the
origin and the destination of the trip is suitable for utilizing
Tree-LSTM [47].

B. Dual-Flow Attentive Network with Feature Crossing

1) Input Feature Embedding: We first introduced the pro-
cessing using GAT to aggregate geographic adjacent informa-
tion. The GAT linearly transforms node feature vectors and
pairs the target node and neighbours to calculate attention
scores. The 1-layer GAT with multi-head attention mechanism
can be formulated as:

αk
ij =

exp(σ(ak[W Ik

3 xv
i ;W

Ik

3 xv
j ]))!

l∈Ni

exp(σ(ak[W Ik

3 xv
i ;W

Ik

3 xv
l ]))

(1)

Consequently, in our case, for each zone v(p) ∈ V(p), the
aggregated zone vector is as follows:

hv = σ(
1

K

K"

k=1

"

j∈N (v(p))

αk
ijW

Ik

3 xv) (2)

, where N (·) denotes the 1st order sampling function. From
the perspective of a graph, the index i denotes the target
node (zone), and the index j denotes the 1st order neighbours
(including the target node i) to the target node. In our case,
we set the parameter matrices ak and W Ik

3 with dimensions
of R2dm and Rdv×dm , respectively. For convenience, we only
applied average operation in Equation 2, regardless of the
optional concatenation operation reported in [40].

For each trip t(p) ∈ T (p), we fed it into a feed-forward
network (FFN) as:

ht = σ(W I
1 x

t + bI
1)W

I
2 + bI

2 (3)

, where W I
1 ,W

I
2 ∈ Rdt×4dm ,R4dm×dm are trainable ma-

trices for the input feature extraction of trips, and bI1, b
I
2 ∈

R4dm ,Rdm denote biases. The simple 2-layer FFN can project
raw trip features to the same space with the outputs from GAT.

Consequently, the vectors ht
i,h

v
i ∈ Rdm are prepared.

Throughout this article, σ denotes nonlinearity functions (e.g.
ReLU, ELU, and LeakyReLU). The index k = 1, ...,K
denotes the k-th head when multi-head setting is available,
and [; ] denotes the concatenation operation.

2) Intra-Sequence Encoder without Interdependence: In
the implementation, specifically, we employed the encoder
architecture from Transformer, which fully leveraged the intra-
sequence self-attention mechanism. Similar to GAT, the self-
attention mechanism can be beneficial from a multi-head
setting. Following the notations in the origin, given an input
matrix X ∈ RL×dm , the single sequential encoder layer is
calculated as:
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#

$
Qk

Kk

V k

%

& = X

#

'$
WQk

WKk

W V k

%

(& (4)

Attk(Qk,Kk,V k) = softmax(
QkKk⊤

√
dk

)V k (5)

MultiHead(X) = [Attk; |k = 1, ...,K]WO (6)

X ′ = σ(MultiHead(X)W1 + b1)W2 + b2 (7)

, where WQk

,WKk

,W V k ∈ Rdm×dk are linear transfor-
mation weights for the k-th head with dk = dm

K1
. WO ∈ Rdm

is the weight of organizing outputs from multiple heads. We
set the weights of Equation 7 as W1 ∈ Rdm×2dm and W1 ∈
R2dm×dm . Finally, we summarised Equations 4-7 into a single
functional layer. A complete sequential encoder consecutively
stacks multiple encoder layers. We set the number of layers
as a controllable hyper-parameter L1. Correspondingly, for
notation simplification, we represent the stacked encoder as:

T ′ = Encoder1(T )

R′ = Encoder1(R)
(8)

, where the trip matrix T ∈ RN×dm and zones matrix
R ∈ RM×dm are composed of ht

i, i = 1, ..., N and hv
j , j =

1, ...,M , respectively.
3) Inter-Trip Chain Feature Crossing: The module is in-

spired by the co-attention mechanisms, specifically, the para-
metric co-attentive computation [42]. Instead of directly cal-
culating the dot-product of two matrices, we acquired the
affinity feature map A using a learnable weight matrix WA ∈
Rdm×dm . Following the multi-head settings to capture various
aspects, the k-th head’s affinity feature map Ak ∈ RN×M is
defined as

Ak = tanh(T ′WAk

R′⊤) (9)

Consequently, the Ak is used to indicate mutual effects. We
process these mutual attention weights as:

HTk

= σ(Ak⊤(T ′W Tk

)) (10)

HRk

= σ(Ak(R′WRk

)) (11)

At the k-th head, the trip-to-zone features are represented as
HTk ∈ RM×dc , and correspondingly the zone-to-trip features
are represented as HRk ∈ RN×dc . W Tk

,WRk ∈ Rdm×dc are
the weights for linear transformations. In this manner, we have
acquired mutual correlated information already. In a multi-
head setting, there are several aspects drawing trip-to-zone or
opposite correlations. For simplicity, we desire to aggregate
them together. Thus, we composed co-attentive features of all
heads into two 3-dimensional tensors HT ∈ RM×Kc×dc and
HR ∈ RN×Kc×dc , respectively.

T ′′ = σ([T ′; Pooling(HR)]W TO + bTO) (12)

R′′ = σ([R′; Pooling(HT )]WRO + bRO) (13)

The pooling operations are applied on the 3rd dimension
to aggregate various aspects. Subsequently, through a resid-
ual connection, we concatenated aggregated features back
to the original inputs. Two 1-layer FFNs are set for fus-
ing features. Hereof, we prepare T ′′ and R′′, which con-
tain each other’s information that enhances the interactions.
W TO,WRO ∈ R(dm+dc)×dm and bTO,bRO ∈ R(dm+dc) are
trainable weights and biases. For computational efficiency, we
set dc = dm×scale

Kc
. scale, and the number of heads Kc are set

as hyper-parameters.
4) Inference Composition by Intra-Sequence Encoder:

After the inter-trip chain feature crossing, intra-chain de-
pendencies should be changed frequently. Moreover, we in-
stantiated the other shared Encoder2(·) using Equation 8 to
complete intra-sequence inference composition. Similar to the
aforementioned step, we also introduced a hyper-parameter L2

to control the number of stacked layers.
5) Tree-Structure Aggregation: By splitting matrices T ′′′

and R′′′ back into vectors, we could acquire the pro-
cessed trip vectors {ht′

1 , ...,h
t′

N} ∈ Rdm and zone vectors
{hv′

1 , ...,hv′

M} ∈ Rdm . For each trip vector ht′

i and its zones
{hv′

i ,hv′

i+1}, we aggregated the output vector hO
i ∈ Rdr as:

hR
i = hv′

i + hv′

i+1 (14)

hOI
i = σ

)
WOIht′

i +UOIhR
i + bOI

*
(15)

hOF
i = σ

)
WOFht′

i +UOFhv′

i + bOF
*

hOF
i+1 = σ

)
WOFht′

i +UOFhv′

i+1 + bOF
* (16)

hOO
i = σ

)
WOOht′

i +UOOhR
i + bOO

*
(17)

hOU
i = tanh

)
WOUht′

i +UOUhR
i + bOU

*
(18)

hOC
i = hOI

i ⊙ hOU
i +

"

j∈[i,i+1]

hOF
j ⊙ cj (19)

hO
i = hOO

i ⊙ tanh(hOC
i ) (20)

, where W ∗,U∗,b∗ denote the parameterised matrices of
the Tree-LSTM unit, and they have the same dimensions as
dagg . Once the aggregations are processed, they are projected
by a linear transformation, which confirms that the final
outputs have the same dimension as the number of classes.

C. Training

In our scenario, the trips are set as chained. Consequently,
during the training process, we aimed to keep this setting
consistently. The training loss should be estimated regarding
the rationality of the whole chain. Hence, the Conditional Ran-
dom Field (CRF) [49], [50] was added in the end to maintain
the chaining pattern throughout. Instead of acquiring distinct
accumulated Cross Entropy loss values, we constrained the
chaining pattern via CRF-Loss as:
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Dataset Geo-Adjacency Graph Trip Chain Zone
#nodes #edges avg of degrees #trips #chains length avg of length avg of area (km2) median of area (km2) avg of #POIs median of #POIs

Tokyo 23 3,192 9,772 3.06 78,449 30,152 [1,22] 2.60 0.20 0.17 15.47 8
Downtown Yokohama 1,780 5,348 3.00 31,531 12,386 [1,23] 2.55 0.27 0.16 10.64 5

Twin Cities 8,600 27,018 3.14 186,099 43,829 [1,38] 4.24 45.91 2.37 4.92 2
Chicago Metropolitan Area 6,669 21,705 3.25 57,277 17,193 [1,30] 3.33 3.12 0.51 1.50 1

TABLE I
STATISTICAL INFORMATION OF THE EXPERIMENTED DATASETS.

S(x,y) =

N"

i=1

(Ai−1,i + Pi,yi) (21)

, where S(·) is a score function, x denotes the set of inputs
of the DACross, and y corresponds to the true consecutive path
of the labels, {y(p)1 , ..., y

(p)
N }. Herein, A is a weight matrix

of the CRF, named the transition matrix. P is the emission
matrix, which is obtained from the linearly projected outputs
at the last step. Consequently, the probability of the true path
among all possible paths is as follows:

p(y|x) = exp(S(x,y))!
y′∈Y

exp(S(x,y′))
(22)

Particularly, the goal of optimization is to minimise the
CRF-Loss function.

L = −lnp(y|x) (23)

V. EMPIRICAL EXPERIMENTS

In this section, we describe the details of the experimental
settings, such as the datasets utilised in this study, baselines,
and hyper-parameter settings.

A. Datasets

We used a total of four large datasets for our experiments.
We collected these datasets from three actual large-scale travel
surveys. Two of the datasets were used for training, validation,
and testing, whereas the other two datasets were used only
for testing. We randomly chose 20% of the trip chains to
form the test set. A total of 10% of the remaining trip chains
were randomly selected again to form the validation set. The
remaining trip chains formed our training set. The datasets
used only for testing were set as the control groups, which
were completely used to evaluate the model performance in
terms of generalizability. Statistical information and details
about these datasets are presented in Table I.

The first two datasets, Tokyo 23 (23 special wards of Tokyo)
and Downtown Yokohama, are a part of the dataset of the
Greater Tokyo Area, which is the most populated and largest
economic metropolitan area in the world. We constructed these
datasets using the 2018 Person Trip (PT) Survey2 in Japan
with approximately one million residents as respondents. Twin
Cities contains trips between two large cities, Minneapolis,
the most populated city in the state, and its neighbour to
the east, Saint Paul, the state capital. We formulated the
dataset using the Travel Behavior Inventory household (TBI)3

2https://www.mlit.go.jp/toshi/tosiko/toshi tosiko tk 000031.html
3https://msptravelstudy.org/mspweb/pages/home?locale=en

survey from October 2018 through September 2019. Chicago
Metropolitan Area is a major urban area in the midwestern
United States; it is among the forty largest urban areas in
the world. We prepared this dataset using the My Daily
Travel Survey (MDTS)4 considering the period of 2018-2019.
Furthermore, to ensure fairness for all datasets, we collected
POIs from OpenStreetMap as the raw features for nodes in
the geographic adjacency graph. Notably, we could observe
the vast average number of zone areas in the Twin Cities.
This was owing to the large non-residential zones between
the two cities and the broad lake area zones; otherwise, the
dense urban zones have a median of 2.37 km2 only.

B. Baselines

To fairly evaluate the effectiveness of DACross, we compare
comprehensive baselines as follows.

Conventional machine learning methods: Conventional ma-
chine learning methods have mostly been implemented in
previous research. These methods include

• Random forest (RF): This is the most common model
used in trip-based prediction considering no chaining
patterns [6], [15].

• Bayesian neural network (BNN): This is a variation of
the neural network, which contains a prior probabilistic
distribution on the weights. [16] utilised it to address the
inherent uncertainty of trips.

• Support vector machine (SVM): This is the second
most common comparative method for trip-level infer-
ence [16], [32]. We implemented the Radial Basis Func-
tion (RBF) kernel in this study.

• XGBoost: This was utilised for cycle’s trip purpose
inference problem [32].

• Hidden Markov model (HMM): This is a probabilistic
model. [8], [21] applied it for chaining purpose inference.

Modified deep learning methods: Modified deep learning
methods are adjusted according to the specified tasks. Two
universal changes were made during their modifications: 1) we
retained the input feature embedding instead of their original
word embeddings, as our tasks are not meant for NLP, and
2) we replaced the output layers of the original models with
the tree aggregation module in which we maintained our
modelling concept, the dual-flow architecture.

• Multilayer perceptron (MLP): This is the basic struc-
tural element of 2-layer fully connected neural networks,
which have the same meaning as the Artificial neural
network (ANN) in the previous study [12].

• Bi-LSTM+CRF [49] (dual-flow): This was originally
proposed for the sequential tagging of NLP. As our task

4https://www.cmap.illinois.gov/data/transportation/travel-survey
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was similar to sequential tagging, we implemented it as
the baseline, which did not involve feature crossing.

• Bi-LSTM+CRF (trip chain-level): This is a modified
variant of the Bi-LSTM+CRF (dual-flow). All features
are concatenated together to a single branch Bi-LSTM.

• ESIM [46]: This framework was proposed for the Natural
Language Inference (NLI) task. As we borrowed ideas
and insights from ESIM, we decided to use it for our task.
It represents the architecture that implements dual-flow
processing and co-attention enhancement. We trained it
using the CRF loss.

C. Metrics

We evaluated all methods by means of the F1 scores
and Micro- and Macro-views to investigate the unitary and
category-specific performance. The Micro-F1 score is the
harmonic mean of the values of precision and recall [51].
Compared to the general accuracy metric, the Micro-F1 score
takes accounts into the balance of both precision and recall
and into the imbalance class distribution, which is realistic
to the trip purpose distribution. In the same manner, the
Micro-F1 score was evaluated in a unitary way regardless of
diversities among classes. We could evaluate the robust overall
performance by the Micro-F1 score. By using the universal
definitions of precision and recall, the Micro-F1 score can be
defined as follows:

F1 = 2× Precision×Recall

Precision+Recall
(24)

Assuming a total of C classes, acquiring the average of the
sum of each class’s Micro-F1 score yields the Macro-F1 score
as:

Macro− F1 =
1

C

"

c∈C

Fc
1 (25)

The Macro-F1 score (averaged Micro-F1 scores [52]) was
used to evaluate the balance between classes. The Macro-
F1 score is an important indicator reflecting the fine-grain
performance, which evaluates whether methods can optimally
handle all types of trip purposes.

VI. RESULTS & DISCUSSION

In this study, we propose a framework for trip purpose
inference, which does not rely on traveller information but is
robust, practicable, and accurate. In the following sub-sections,
the experimental results of the proposed model are presented
to verify if it achieves the pre-defined expectations.

A. Performance Analysis

The overall performance of the proposed DACross model
was evaluated against the baseline models, and the results
are summarised in Table II. We firstly trained and then tested
the model performance on the Tokyo 23 and the Twin Cities
datasets, and subsequently, tested the model again on the
Downtown Yokohama and the Chicago Metropolitan Area
datasets. The average values of the performance metrics after

ten runs are reported. As the RF is the most implemented
model in literature, we set it as the standard, and calculated
the ratios of improvement relative to the RF. From the results,
the following features were observed:

Fig. 3. Overall accuracy changes with the trip chain length. The number
of samples decreases as the length increases. To ensure the validity of the
plot, trip chain lengths with an inadequately small number of samples were
removed. At least 20 samples were used for each trip chain length.

• The proposed DACross model outperformed all the mod-
els, except in the Macro-F1 score of the Twin Cities
dataset. The relatively weak result may have resulted
from the overfitting problems of the RF, which constantly
underperformed on two generalization tests. We observed
the highest accuracy losses of RF on the generalization
test of the Twin Cites dataset compared to the Chicago
Metropolitan Area dataset. Setting the results of RF as
standard, the highest relative improvements of +20.81%
and +36.51% were observed for the Chicago Metropoli-
tan Area dataset. Thus, the superiority of the proposed
DACross model was proved. In particular, the DACross
model performed optimally on trip chains in unknown
cities.

• The performance of SVM, HMM, and BNN is apparently
worse than that of the other models. We consider that
they are less suitable in our predefined scenario, which
requires that the mining of trip chain is fully based
on trips and zones. In previous studies, [16], [21], [32]
implemented these three methods with elaborate feature
selection or also with abundant respondent attributes.
Moreover, to retain uncertainties during learning, BNN
can be captious to its inputs. For instance, [16] collected
more precise POIs from Google Maps and social media
as the features of zones. However, the HMM shows
more acceptable accuracy losses of generalization tests
than those of BNN and SVM. Trip chaining patterns are
helpful to prevent generalization losses.

• The performance of the BiLTSM+CRF (dual-flow) and
ESIM models are similar and suboptimal compared to
the top-tier models. The dual-flow variant of the BiL-
STM+CRF weakly outperforms the conventional trip
chain-level variant. As we modified them to adapt to
our modelling concepts, we consider that the equally
important dual-flow architecture is beneficial. Moreover,
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Method
JP US

Micro-F1 Macro-F1 Micro-F1 Macro-F1
Tokyo 23 Downtown Yokohama Tokyo 23 Downtown Yokohama Twin Cities Chicago Metropolitan Area Twin Cities Chicago Metropolitan Area

RF 76.15 71.32 52.86 46.82 65.42 54.12 54.05 32.21
BNN 72.15 67.96 43.03 42.01 54.82 54.57 34.13 27.93
SVM 73.31 66.33 47.70 42.27 57.18 51.52 39.96 32.21

XGBoost 77.73 71.87 56.48 49.12 64.46 55.18 53.95 34.52
HMM 73.88 69.47 47.09 43.33 52.52 56.73 34.89 35.32
MLP 69.28 63.72 40.01 35.23 49.62 45.85 34.64 24.28

Bi-LSTM+CRF (dual-flow) 79.44 75.96 56.02 52.82 64.69 65.16 48.40 43.31
Bi-LSTM+CRF (trip chain-level) 78.62 75.90 54.89 52.80 65.03 64.77 48.51 42.47

ESIM 76.68 75.66 55.58 52.65 63.92 64.98 48.40 43.46
DACross 80.09 77.55 58.86 55.79 65.84 65.38 50.27 43.97

Relative %Improvement (RF) +5.17 +8.74 +11.69 +19.16 +0.64 +20.81 -6.99 +36.51
Relative %Improvement (HMM) +8.41 +11.63 +24.99 +28.76 +25.36 +15.25 +44.08 +24.49

TABLE II
PERFORMANCE EVALUATION.

deep learning-based models usually perform better than
conventional machine learning models on generalisation
tests, except the naive MLP. The MLP performed the
worst model, suggesting that the absence of an appropri-
ate model structure does not lead to performance gains.

B. Length-related & Purpose-specific Accuracy

We conducted a detailed analysis on the basis of the
test results of Twin Cities, as the Twin Cities holds longer
trip chains than the others. As trip chains could increase in
complexity with increasing length, we evaluated the accuracy
related to the chain length. Fig 3 shows that the accuracy
changes with length. In the shorter length interval [1, 5),
all models perform similarly, as within this interval the trip
chains are not severely complicated. When the length range
increases to [5, 9), MLP, SVM, BNN, and HMM start to
fall behind the other models. When the length reaches 12 or
more, our modified deep learning model starts to outperform
conventional machine learning models. Simultaneously, the
proposed DACross performs better in complicated trip chains.
This phenomenon is reasonable as the longer the trip chain,
the richer will be the interactions that the DACross can
capture. The proposed DACross is effective for the long-chain
inference, which was difficult to obtain in previous studies
[21].

In addition to the aforementioned observations, we visu-
alised purpose-specific accuracy matrices, as shown in Fig 4.
The results are summarised as follows:

• The trip purposes, Work and Home, constantly show high
accuracies, as they have strong and regular behavioural
patterns within trip chains. Moreover, they are more
distinguishable than the other purposes.

• Observably, certain sets of trip purposes can eas-
ily confuse the model prediction. This may result
from the close proximity of semantics in the feature
space. For instance, the sets of [Business,Work] and
[Recreation, Shopping(,Meal)]. This also demonstrates
that our proposed model can learn natural representations
of purposes.

• The Education can often be confused with Work, as
they almost have the same behavioural pattern. However,
when compared to our previous results [23], we achieved
a huge improvement (+21%). As we imported the intra-
and inter- chain dependencies, the model could identify
these two dependencies by referring to subsequent trips.

Fig. 4. Sub-class accuracy matrices of Tokyo 23 and Twin Cities, normalised
by rows.

• The problem of recognizing Health and Others persists.
These two are less distinguishable than the others and
are difficult to classify optimally using the current model
design and inputs.

C. Ablation Studies

To verify the functionalities of modules, we conducted
ablation studies to analyse the effects of the proposed DACross
framework as follows:

• DACross-c: All encoders were dropped, and only the co-
attentive feature crossing module was left to evaluate
whether capturing intra-sequence dependencies would be
beneficial. The evident decrease is affected by the loss
of capturing intra-sequence correlations, which appear to
hold influence.

• DACross-e: The second encoder Encoder2 and co-
attentive feature crossing module were dropped in which
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only the first encoder was applied for capturing the intra-
sequence dependencies. The performance was seriously
impaired by the loss of feature crossing and enhance-
ment. Moreover, this sub-network architecture was the
same as the Transformer Encoder+CRF in our scenario.
We verified that only intra-chain dependencies were not
sufficiently strong to support better performance.

• DACross-e2: The second encoder Encoder2 was com-
pletely dropped to evaluate whether compositing intra-
sequence dependencies again after feature crossing would
be beneficial. We noticed that the second encoder demon-
strated significant impact, which proved the existence of
a dramatic change in features after feature crossing.

• DACross-e1: The first encoder Encoder1 was dropped to
evaluate whether enhancing intra-sequence dependencies
before feature crossing would be beneficial. The results
show that the first encoder could slightly decrease the
model accuracies but not as significantly as the second
encoder Encoder2.

• DACross-emb: The input feature embedding module was
dropped. We observed the most serious accuracy loss in
this case. Moreover, the processing of raw inputs was
much impactful.

• DACross-t: The Tree-LSTM was dropped and replaced
by concatenating all three elements together. Slight ac-
curacy decrease was observed of which we consider the
prior modules were sufficiently effective.

Variant Micro-F1 Macro-F1
Tokyo 23 Twin Cities Tokyo 23 Twin Cities

DACross 80.09 65.84 58.86 50.27
-c 79.07 64.08 57.00 48.51
-e 79.49 62.79 56.93 47.77
-e2 79.55 63.33 57.46 47.98
-e1 79.98 64.19 58.68 48.63

-emb 71.41 55.08 43.29 38.21
-t 80.00 64.46 58.48 48.37

TABLE III
RESULTS OF THE ABLATION STUDIES.

D. Hyper-Parameter Sensitivity Analysis

Considering the relatively wide range of selections of hyper-
parameters, we focused on analyzing the combinatorial hyper-
parameter trends among primary modules. Figure 5 presents
experimental results on the Twin Cities dataset. We used
subscripts c, 1, and 2 to denote the hyper-parameters of the
feature crossing module, the first, and the second encoders,
respectively. Kc is the number of heads of the co-attentive
feature crossing module. L1 and L2 denote the number of
layers of the first and second encoders, respectively.
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Fig. 5. Parameter sensitivity analysis on the Twin Cites dataset.

1) Ratio of scale/Kc: We input the selections [1, 2, 4] of
Kc and [0.5, 1, 2] of scale, and average results to obtain Figure
5a. Observably, the ratios between 0.5 to 2 differ slightly.
Recall that the dimensions of the inner single layer FFN was
set to dc =

dm×scale
Kc

. When dm is over four times larger than
dc, the co-attentive feature crossing module cannot capture
sufficient interdependencies.

2) Ratio of L1/L2: As two encoders are responsible for
processing different information, their diversities are worthy of
an investigation. We set L1 to [1, 2, 4, 8] and set the number of
L2 lower, equal, or higher than L1. The results in Figure 5b,
suggest that empirically L1 ≤ L2 performs better. The first
encoder contributes to capturing intra-sequence correlations
without crossing. Thus, it might process less information than
the second encoder, relatively, in which L1 ≤ L2 is beneficial.

E. Zone Scale Sensitivity Analysis

As the different ways of splitting zones can lead to diverse
results, we investigated the influences by evaluating the pro-
posed DACross on four scales of the administrative boundaries
in Japan (Fig. 6). The finest scale, cho-me, is the default setting
in our experiments.

Fig. 6. Four scales of splitting zones in Tokyo 23.

As shown in the Table IV, aggregating zones into the small
scale does not affect the loss of performance greatly, but the
number of zones declines 12 times than that of the current
value. However, the medium and large scales present heavy
loss of both of Micro- and Macro-F1 scores. Although the
larger zone can lead to more inclusion of POIs, excessive POIs
will conversely injure the model’s discernibility as more noises
are imported. From a practical point of view, we suggest that
a zone of 1-2 km2 is sufficient for the acceptable inference
accuracy.

Scale #zones avg of #POIs Micro-F1 Macro-F1
Cho-me 3,192 15.47 80.09 58.86

Small 266 185.94 80.26 58.70
Medium 24 2060.83 78.75 55.31

Large 8 6182.50 74.74 47.10

TABLE IV
RESULTS OF THE ZONE SCALE CHANGES.
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F. Feature Sensitivity Analysis

To further explore the factors affecting model performance,
in this section, a more complete dataset of POIs is introduced
and previously absent traveller information is added back for
feature combination analysis in the Tokyo 23 dataset. We
conduct extensive experiments to reveal the impacts, which
cannot be avoided in the real-world applications.
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Fig. 7. Missing data test using Telepoint POI dataset in Tokyo 23.

1) Impact of geographic contextual information: We inves-
tigated whether the absence of POIs affected the inference
performance of the well-trained model, considering that the
missing data problem is common in most real-world applica-
tions. In this experiment, we simulated the inference scenarios
with missing data. A detailed POI dataset, Telepoint Pack DB
provided by ZENRIN CO., was newly imported. This dataset
collected POIs from approximately 320,000 telephone directo-
ries. Each record in the dataset contains detailed information,
such as phone numbers, coordinates, addresses, categories, and
names. We could roughly recognise that the Telepoint dataset
contained complete POI information in the Tokyo 23 dataset.
There are 433 second-class categories of POIs. Following the
same criterion used to process OpenStreetMap, we acquired
distributions of the numbers of various categorical POIs as the
node features of our predefined geographic adjacent graph.
Subsequently, we repeated random elimination of POIs for
simulating the absence of POIs under different conditions from
10% to 90% missing.

We performed two types of comparative experiments on
the DACross and variants of BiLSTM+CRF: 1) The missing-
to-complete experiment was used to assess the damage to
models that were trained on the missing data conditions, and
2) the complete-to-missing experiment was used to evaluate
the models robustness to the missing data conditions after
a round of training on the full dataset. The Test results are
illustrated in Fig 7. When no missing data exists, the Micro-
and Macro-F1 scores are 80.39% (+0.37%) and 59.93%
(+1.82%), respectively. From the results of the missing-to-
complete experiment, we observed that the dual-flow architec-
ture was more susceptible to missing data, probably because
more noise was imported from the separated branch of chained
zones. Furthermore, we found that the DACross suffered

more decline than the model without feature crossing, as the
feature crossing further imported noises into the other branch.
From the results of the complete-to-missing experiment, we
observed much flatter decline of all approaches, but the dual-
flow architecture presented a relatively better tolerance to
missing data conditions. When the missing ratio approached
70%, we acquired similar results, 79.85% and 58.82%, with
OSM. Moreover, we observed that the missing data influenced
the values of Macro-F1 scores more than the Micro-F1 scores.
The loss of geographic contextual information can actually
damage the fine-grain inference performance of the model.

2) Impact of feature combination: We categorise raw fea-
tures into 4 types, which are activity-related, OD-related,
traveller-related, and time-related features. Further details are
listed in Appendix. A. We explored potential influence under
the combinations between 4-type of features, and the results
are presented in this section. The RF and HMM are the most
commonly implemented models for the task of inferring the
trip purpose. Thus, we selected them as typical standards of
trip-level modelling and trip chain-level modelling. The results
of the DACross model are listed in Table I, and the relative
improvements are shown in Fig 8. We summarise the findings
as follows:
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Fig. 8. Percentage relative improvement of F1 scores refer to DACross.

• The combination of Activity+OD+Time is the same as
the initial settings, and the values are compared in Table
I. After adding back the traveller-related information, no
obvious improvements were observed. On one hand, RF
and HMM can slightly outperform the proposed DACross
model. Traveller-related information is intuitively mean-
ingful for enhancing fine-grain inference. On the other
hand, the result also proves that the DACross model
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is suitable for our pre-defined expectation in scenarios
where traveller information is missing.

• Time-related information is effective for trip purpose
inference. The combinations with time-related informa-
tion consistently perform better than those without time-
related information. This finding proves that the as-
signment of trip purposes is strongly time-related [37].
Furthermore, based on the evidence, the combinations in-
cluding Traveller+Time can lead to the optimal results.
In this manner, we assume that temporal patterns exist as
the background mechanism affecting trip generation.

G. Qualitative Analysis

Fig. 9. Visualization of attention weights acquired from the picked trip chain.

We focused on qualitative visualization analysis, and the
results are presented in this section. First, we explored whether
two encoders can emphasise distinguishable trip purposes. To
achieve this, we observed a trip chain that has 11 lengths from
the test set in the Tokyo 23 dataset. We visualised two attention
weights from Encoder1 and Encoder2, as shown in Fig 9.
At the third head of Encoder1, correlations between nearby
trips are underlined. Moreover, the trips in the latter half of
trip chain show tight relations to the last trip Home. Such
phenomenon is also observed from Encoder2. We argue that
the previous hypothesis [36] that the composition of a trip
chain is primarily decided by several compulsory trips can be
validated in this manner.

By using the CRF loss set-up, we explored the trip purpose
transition matrices (Fig 10) for comparing behavioural differ-
ences in two cities. In both the Tokyo 23 and Twin Cities
datasets, there are great probabilities that Business and Work
activities are triggered after each other. Residents in the Twin
Cities are more likely to prefer ongoing recreational activities
Recreation, Shopping than the residents in Tokyo 23.

H. Discussion

We explored the diversities across the datasets, and the
possible reasons that led to differences are listed as follows:

• Sampling: The TBI and MDTS were collected from
travel dairies through a hybrid way. Most responses
were recorded by PR survey that we mentioned in the
introduction section. Only partial responses were not
conducted online. Thus, the data sampling used here is
more realistic compared to that of the PT survey. The PT
survey sent survey letters to residents and asked them to

record one typical day. From the statistical information in
Table I, the lengths of trip chains are obviously different.
PR surveys can contribute to realistic sampling. However,
they make inference far more difficult. This could be one
of the possible reasons that reduced the performance of
the proposed model on the Twin Cites and the Chicago
Metropolitan Area datasets.

• Uniformity: The PT survey only asks respondents an
assumed typical day, but the TBI and MDTS processed
travel dairies are mostly collected from mobile GPS
records within multiple days. There could be trip chains
belonging to the same respondents. Our modelling con-
cept does not include the usage of uniformity. In this
study, we designed DACross initially from [23], for
which we did not consider abundant datasets. Although
such disadvantages exist, the DACross can still be an
outstanding approach among the baselines.

• Weekday&Weekend: The TBI and MDTS also collected
trip chains during weekends or holidays. Generally, travel
behaviour on weekends is different from that on week-
days [53]. Moreover, we do not exactly discriminate
holidays [54] from the TBI survey, and it might account
for the differences.

• POIs: Observably, the distribution of POIs in the Twin
Cities and the Chicago Metropolitan Area are much
sparser (nearly 10 times from Fig 11) than in Tokyo 23
and Yokohama. We contemplate that there could be more
noise and less useful information about zones. Under
extreme situations, given a trip chain, there are no POIs
at all in travelled zones. This is the potential reason for
the unsuccessful performance of the co-attentive feature
crossing module. More studies must be conducted to
explore this concept.

VII. CONCLUSION

We studied the problem of chained trip purpose inference,
which is an important task in urban planning and for the
analysis of travel behaviour, using information about trips
and zones only. In this study, we proposed a new approach
to form the trip chain, which consists of an attentive dual-
flow or dual-branch architecture. To leverage trip chain inter-
dependencies sufficiently, we proposed a co-attentive feature
crossing module with a second intra-trip chain encoder. The
performance of the proposed model was evaluated via ablation

Fig. 10. Visualization of attention weights acquired from the picked trip
chain.
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Fig. 11. Densities of POIs.

studies. Extensive experiments were conducted on four large-
scale real datasets, and the results were compared with various
benchmark models. The results confirmed the performance,
generalization ability, and practicability of the proposed frame-
work. The proposed framework achieved all the research
objectives of our study. However, there are some questions
that are yet to be answered. The proposed framework did
not perform as expected on the Twin Cities and the Chicago
metropolitan area datasets. The diversity of travel behaviour
between different countries is worth exploring. We believe the
limitation of the proposed framework could inspire an in-depth
investigation into understanding human behaviour in future
research.

In summary, we considered two directions of future re-
search. An intuitive idea is to explore methods to save the
learned interactive features, specifically the trip-to-zone direc-
tion, and pass them back into the geographic adjacent graph.
In this way, as the learning process iterates, we can extract
the geographic contexts from a traveller’s perspective, which
is the same as clustering the travellers’ statistical information
in zones [18]. This approach can benefit not only the model
performance but also overcome the serious issue of the drop
in performance caused by the missing POIs. In the real-world
applications, we cannot know the complete geographic con-
textual information overtime. As we observed strong temporal
correlations among trip purposes, continuous exploration of
the attitudes of travellers who value time is meaningful for
improving travel behaviour comprehension. Eventually, we
plan to conduct a large-scale empirical experiment based on
the proposed method in the future.
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APPENDIX A. DATASET & PREPROCESSING

The four datasets are roughly categorised in terms of the
country of origin. The Tokyo 23 and Downtown Yokohama
datasets are from Japan and the other datasets are from the
US. We present the detailed information in Table V. Notably,
the features of the traveller were not included by default but
were set for the feature combination test. For all numerical
features, we applied standardization, such as pre-processing.

All categorical inputs were converted by means of one-hot
encoding. In particular, time-related features, such as the
departure and arrival time, were transformed to seconds. For
deep learning-based models, we further implemented linear
projection and add operation on time-related features. Given
a trip chain of length N , there should be N trips and
N + 1 travelled zones. Subsequently, setting departure and
arrival time as corresponding trigger points for trips and zones
respectively, we acquired N departure times and N+1 arriving
times, which gives rise to two time-related vectors xtd ∈ RN

and xta ∈ RN+1. The first arrival time was set to 0:00
AM or 3:00 AM for datasets in JP or US, respectively. We
firstly transformed these into a cyclical format and thereafter
projected the new products to the same dimension with ht and
hv in Equations 2-3.

ĥt = ht + [sin(
2πxtd

3600× 24
); cos(

2πxtd

3600× 24
)]Wtd (26)

ĥv = hv + [sin(
2πxta

3600× 24
); cos(

2πxta

3600× 24
)]Wta (27)

Wtd,Wta ∈ R2×dm are the weights for linear projection.
Thus, we replaced the outputs of Equations 2-3 with ĥt and
ĥv .

Category Feature Format JP US

OD xv

#Public

Integral

√ √

#Health
√ √

#Leisure
√ √

#Catering
√ √

#Accommodation
√ √

#Shopping
√ √

#Tourism
√ √

#Transport
√ √

Activity

xt

Travel time (minute)

Float

√ √

Stay duration (minute)
√

Speed (mile/minute)
√

Distance (mile)
√

Transportation mode Categorical (4)
√ √

Time Departure time (second) Intergral
√ √

Arriving time (second)
√ √

Traveller

#Household Intergral
√ √

Age Categorical (10)
√ √

Annual income Categorical (5)
√ √

Gender

Binary

√ √

IF full-time worker
√ √

IF student
√ √

IF unemployed
√ √

Purpose y

Business

Binary

√ √

Education
√ √

Health
√

Home
√ √

Meal
√

Others
√ √

Recreation
√ √

Shopping
√ √

Work
√ √

TABLE V
DATASET DESCRIPTION

APPENDIX B. HYPER-PARAMETER & TRAINING PROGRESS

We implemented DACross and deep learning models us-
ing Tensorflow 2.4.0 and Python 3.7. The experiments were
conducted on an Ubuntu 20.04 operating system with a
single NVIDIA RTX 3090 24-GB graphics processing unit.
For the Tokyo 23 and Twin Cities datasets, we conducted
hyper-parameter search 80 times using Bayesian optimization
each time. Setting all hyper-parameters as searchable renders
the search space considerably wide. Hence, we only per-
formed search on critical hyper-parameters. The other hyper-
parameters were configured empirically. Details of hyper-
parameters are listed in Table VI. An early stopping strategy
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Hyper-Parameter Tokyo 23 Twin Cites Searchable

#Batch 64 256
Learning rate 5× 10−4 1× 10−4

Dropout rate 0.1 0.1
Bias Yes No

√

dm 64 64
#GAT heads K 4 4

#Encoder1 heads K1 4 8
#Encoder2 heads K2 8 8
#Encoder1 layers L1 1 1

√

#Encoder2 layers L2 1 3
√

#Cross scale 0.5 0.5
√

#Cross heads Kc 8 4
√

#Cross pooling mean mean
dagg 512 512

√

TABLE VI
HYPER-PARAMETER SETTINGS

was used to stop training progress when the loss from the
validation set was larger than the loss from the training
set. Moreover, deep learning-based baselines shared the same
hyper-parameters from search results. The hyper-parameters
of conventional machine learning baselines were selected by
the optimum results from complete grid searches, except the
BNN. We utilised the same settings of [16] for the BNN.
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