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Abstract—Clouds, together with their shadows, usually occlude
ground-cover features in optical remote sensing images. This
hinders the utilization of these images for a range of applica-
tions such as earth observation, land-cover classification and
urban planning. In this work, we propose a deep unfolded
and prior-aided robust principal component analysis (DUPA-
RPCA) network for removing clouds and recovering ground-
cover information in multi-temporal satellite images. We model
these cloud-contaminated images as a sum of low rank and sparse
elements and then unfold an iterative RPCA algorithm that has
been designed for reweighted `1 minimization. As a result, the
activation function in DUPA-RPCA adapts for every input at
each layer of the network. Our experimental results on both
Landsat and Sentinel images indicate that our method gives
better accuracy and efficiency when compared with existing state
of the art methods.

Index Terms—Cloud removal, shadow removal, deep unfolding,
inverse problems, RPCA

I. INTRODUCTION

Remote sensing using optical imagery is crucial for im-
portant applications including, but not limited to, urban in-
formatics, crop mapping, building footprint extraction, and
land cover classification and change detection. Given that
the average global cloud cover in an year is estimated to
be about 68% [1], about one-third of optical satellite images
are affected by some form of cloud-cover [2]. The standard
method for obtaining cloud-free images, e.g. on Google Earth
Engine, is to first remove the clouds in individual images
of the same area taken over a period of time, usually an
year, and then reconstruct the missing region by taking an
average of these cloud-free images. However, the average
image obtained does not reflect the land-cover changes beneath
the clouds on individual dates, which limits its utilization for
the applications mentioned above. Consequently, efficient and
accurate recovery of ground-cover information using fewer
past images is of significant importance in remote sensing.

Another important consideration is the impact of cloud
thickness on image contamination. Thin clouds only partially
occlude ground-cover such that part of ground-cover infor-
mation can still be seen, and this problem is fairly easy to
formulate and solve. On the other hand, reconstructing ground
information in the presence of thick clouds is challenging as
they completely block the ground cover beneath it. In this
letter, we focus on removing thick clouds and their shadows
from a time-series of optical images contaminated by clouds.

Current cloud removal methods can be classified into spa-
tial, spectral and temporal methods. Spatial methods involve

detecting and removing clouds in individual images and con-
sist of two steps: cloud removal and missing region restoration.
The most popular method in this category, is the Fmask
algorithm [3]. However, it uses information in bands outside
of the visible spectrum to remove clouds. There are few other
notable spatial methods in the literature. As an example, the
method proposed by Cheng et al. [4], first estimates the land-
cover pattern of the known regions and then reconstructs the
missing regions by combining a series of pixels from these
known regions. On the other hand, Zheng et al. [5] use a
generative adversarial network (GAN) for both removal of
thick clouds and image restoration. However, spatial methods
face difficulty in the reconstruction of large missing regions
with reasonable precision.

Spectral methods, on the other hand, use multi-spectral
sensing data for cloud removal. For instance, Zhu et al.
[2] used Synthetic Aperture Radar (SAR) optical images for
reconstructing the missing region. However, these methods
struggle to reconstruct missing region information underneath
thick clouds as spectral bands information becomes scarce
amidst thick clouds. In addition, the multispectral images are
typically available at a lower resolution than those available
in the visible spectrum.

More pertinent to our work, temporal methods reconstruct
missing information beneath the clouds using multi-temporal
remote sensing images of the same area. For instance, Tseng
et al. [6] exchange cloud pixels with cloud free pixels from
previous images of the same area and eliminate the seam
artifacts around the boundaries of clouds through multiscale
Wavelet fusion together with color matching. The current
state-of-the-art multi-temporal method [7] uses a group-sparse
robust principle component analysis (RPCA) for initial de-
tection of clouds and shadow regions, which become the
balance values for the cloud-contaminated and cloud-free
pixels in the discriminative RPCA. However, these methods
are sensitive to large clouds and land-cover changes and are
not computationally efficient.

To overcome the aforementioned disadvantages, we pro-
pose DUPA-RPCA, an RPCA deep network architecture that
results from unfolding an iterative algorithm for solving a
re-weighted `1 minimization. It gives better accuracy and
efficiency for cloud removal and ground-cover reconstruction
in remote sensing image sequences heavily contaminated by
clouds while using only the bands in the visible spectrum and
outperforming state-of-the-art approaches.
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(a) Original cloud
image

(b) Cloud mask by
plain RPCA

(c) Cloud mask by
GoDec

(d) Ground truth of
cloud-free image

(e) Recovered image
by plain RPCA

(f) Recovered image
by GoDec

Fig. 1: RPCA cloud separation results

II. BACKGROUND ON RPCA

A. Optimization-Based Methods for RPCA

RPCA has become a popular choice in a range of applica-
tions involving outliers detection. With the data arranged as
the columns of a matrix, RPCA separates the data matrix D
into a low-rank matrix L and a sparse matrix S by solving [8]

min
L,S

‖L‖∗ + λ‖S‖1 s.t. D = L+ S, (1)

where ||.||1 is the `1 norm, ||.||∗ is the nuclear norm and λ is
a tuning regularizer. In the context of the cloud removal prob-
lem, the multi-temporal ground-cover images can be modeled
by a low-rank representation whereas the transient clouds and
their shadows can be modelled as sparse outliers.

Fig. 1 shows the visual cloud separation results of RPCA
and of its computationally efficient variant, GoDec [9]. We
observe that both the plain RPCA algorithm and its variant
identify the clouds reasonably well but they miss out on
the cloud shadows. More importantly, even though the plain
RPCA reconstructs the background image, the results are far
from desirable. Consequently, our goal is to efficiently and ac-
curately recover the ground-cover information while correctly
identifying the clouds and their accompanying shadows.

III. PA-RPCA

A. The Proposed Prior-Aided Model

Consider a temporally varying sequence of remote sensing
images, di for time instances = 1, 2, · · · , q, contaminated by
clouds and each of size m×n having their low-rank and sparse
components denoted as li and si, respectively. We arrange
the image sequence di into a matrix D ∈ Rp×q where p =
mn. Similarly, for image sequences li and si, we obtain their
corresponding matrices L ∈ Rp×q and S ∈ Rp×q . Inspired
by [10], we consider two measurement matrices H1 and H2

of appropriate dimensions, which relate the observations in D
with the unknown quantities (here H1 = H2 = I) such that
the acquired D matrix is composed as

D = H1L+H2S +N. (2)
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Fig. 2: (a) w (element of matrix W ) leads to a distinct proximal
operator for the corresponding s (element of S) (b) average
mean square error (MSE) plot with and without W

We further observe that both the plain RPCA and GoDec
give good enough masks of clouds. Moreover, on our dataset of
cloud contaminated image sequences, composed of 20 images
of the same area in which each image is of 400 x 400 pixels,
we found that the plain RPCA takes 9.709 seconds per image
on average as compared to its computationally efficient variant,
GoDec, which takes just 0.0326 seconds. We therefore propose
reweighting the elements of S with matrix W = σ(ρ, Ŵ ),
where σ(.) is the sigmoid function with a gain of ρ and Ŵ
is the land-cover mask, obtained by inverting the clouds mask
from GoDec. We formulate the proposed prior-aided RPCA
(PA-RPCA) in a Lagrangian form as

min
L,S

1

2
‖D−(H1L+H2S) ‖2F +λ1‖L‖∗+λ2‖W ◦S‖1, (3)

where ||.||F is the Frobenius norm, λ1 and λ2 are the tuning
regularizers and “◦” denotes the Hadamard product. PA-RPCA
directly leverages the output from GoDec as the prior matrix
W leads to a distinct proximal operator for each entry of
the input, making PA-RPCA more adaptive to input data as
shown in Fig. 2. Furthermore, ρ controls the extent to which
Ŵ changes the the length of the thresholding interval.

B. GoDec RPCA: Getting the Land-Cover Mask

We use GoDec method to obtain the land-cover mask Ŵ .
GoDec is a non-convex variant of RPCA which is formulated
as [9]

min
L,S
‖D − (L+ S) ‖2F

s. t. rank(L) ≤ r,

card(S) ≤ k (4)

where card(.) denotes the cardinality of a set, L denotes the
low-rank matrix and S denotes the sparse component. GoDec
puts a direct constraint on the rank of L and on ‖S‖0 while
RPCA instead minimizes their convex hulls ‖L‖∗ and ‖S‖1.
In particular, GoDec alternately allocates the sparse approxi-
mation of D − L and rank r approximation of D − S to S
and L, respectively. Furthermore, bilateral random projection
based low-rank estimation is used to significantly accelerate
the rank-r approximation of D − S under power scheme
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Fig. 3: Unfolded DUPA-RPCA architecture

modification. Compared with the nuclear norm minimization
methods, GoDec is significantly more efficient because it does
not require time consuming SVD for D. At last, we set an
empirical threshold value to attain the mask from the sparse
component S of GoDec RPCA.

C. Solving PA-RPCA

ISTA method [11] is used to solve the minimization problem
in (3). The general iterative step of ISTA is

Y k+1 = prox
(
Y k − 1

c
∇(Y k)

)
, (5)

where Y can be either L or S, c denotes the Lipschitz constant,
prox denotes the proximal operator [12] and ∇(.) denotes the
gradient of the quadratic part of (3). The low-rank component
L is computed using singular value thresholding Ψ{.} [13],
and the sparse component is computed using soft-thresholding
Θ{.} [11]. Algorithm 1 summarizes the iterative steps for
solving (3).

Algorithm 1: The Proposed Algorithm
Input: D, w (element of matrix W), H1, H2, λ1,λ2 and

maximum number of iterations K
Output: L, S

Initialisation: S = L = 0 and k = 1
1: for k = 1 to K do
2: F k1 =

(
I − 1

cH
T
1 H1

)
Lk −HT

1 H2S
k +HT

1 D
3: F k2 =

(
I − 1

cH
T
2 H2

)
Sk −HT

2 H1L
k +HT

2 D
4: Lk+1 =Ψλ1/c(F

k
1 )

5: Sk+1=Θλ2/c,w(F k2 )
6: end for
7: return LK , SK

IV. THE DUPA-RPCA

A. The DUPA-RPCA Network Architecture

The percentage of cloud cover can vary from no cloud at
all to full cloud coverage such that an increased number of
iterations would be needed to get a good separation of L and
S. This drives the need for an algorithm of fixed complexity
that can converge in fewer iterations while giving accurate
reconstruction results. Hence, following the principles of deep
unfolding [10], we unroll the iterations of Algorithm 1, by

substituting all the matrices that are a function of H1 and
H2 with convolutional layers having kernels Ck1 ....C

k
6 , all of

which are learned per layer during the training phase. PA-
RPCA is unfolded into a Ko-layered (Ko << K) DUPA-
RPCA network whose architecture (only kth layer) is shown
in Fig. 3. The kth iteration in PA-RPCA corresponds to the
kth layer in DUPA-RPCA. At each layer, L and S is updated
as

Lk+1 =Ψλk
1

{
Ck5 ∗ Lk + Ck3 ∗ Sk + Ck1 ∗D

}
, (6)

Sk+1 =Θλk
2 ,ρ

k,ŵ

{
Ck6 ∗ Lk + Ck4 ∗ Sk + Ck2 ∗D

}
, (7)

where ∗ denotes the convolution operator. In Fig. 3, λk1 , λk2
and ρk are the tuning parameters that are learned per layer
during the training phase together with the kernels Ck1 ....C

k
6 .

In our case, DUPA-RPCA is composed of 10 layers (Ko =
10). For our experiments, we choose kernels of size (5, 5, 1)
with strides (1, 1, 1), padding (2, 2, 0) and a bias for the first
three layers and kernels of size (3, 3, 1) with strides (1, 1, 1),
padding (1, 1, 0) and a bias for the remaining seven layers.
Finally, the loss function is chosen as

L(Υ) =
1

2N

N∑
i=1

∥∥Li − Li∥∥2F +
1

2N

N∑
i=1

∥∥Si − Si∥∥2F (8)

where N is the total number of training sequences in the
dataset,

{
Li, Si

}N
i=1

are the low-rank and the sparse com-
ponents predicted by the network respectively, {Li, Si}Ni=1

are the ground-truths of the land-cover and clouds and their
shadows respectively, and Υ =

{
Ck1 , · · · , Ck6 , λk1 , λk2 ρk

}Ko

k=1
are the parameters to be learnt by the network.

B. Experiments

To demonstrate the performance of DUPA-RPCA, we
choose Sentinel-2 Surface Reflectance and Landsat-8 Surface
Reflectance images downloaded from Google Earth Engine
with the image size kept at 400 × 400 pixels. We first make
5 cloud-free images in which each image is constructed by
taking mean of images of the same area over an year. The
time-period, over which we take the mean, does not overlap.
Random convex combinations of these 5 images are then
used to generate 15 more images. These 20 images represent
multi-temporal (images of the same area taken at different
times) cloud-free images. All these images are vectorized and
then stacked as vectors, with the ith image vector denoted by
l̂i ∈ R160000, to construct the matrix L̂ ∈ R160000×20, having
a rank of 5. We further add zero mean and a low variance
truncated (between 0 and +1) Gaussian noise to every column
of L̂ to construct the low-rank matrix L.

Moreover, to create the sparse matrix S ∈ R160000×20,
cloud-cover is cropped from cloud-contaminated images. Su-
perimposing these cropped clouds on the low-rank ground-
cover matrix L gives the data matrix D, having the same
dimensions as L and S. We create 450 such sequences
of cloud-contaminated remote sensing images D and their
corresponding L and S matrices, all normalized to unit range.
Out of the 450 sequences, 400 and 50 sequences are used
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Fig. 4: Performance of DUPA-RPCA

for training and testing respectively. We have also made the
dataset available online [14].

DUPA-RPCA is trained for 100 epochs using Adam op-
timizer with the learning rate of 2 × 10−5, and the batch
size is kept at 16. We further trained DUPA-RPCA on an
experimental dataset of 70 image sequences in which the
duration between two consecutive images in the L matrix
varied from one cycle period1 to several cycle periods. S and
the corresponding D matrices were generated in the same way
as before.

C. Results and Analysis

In this section, we compare DUPA-RPCA with the spatial
method of Single Image [5] and the multi-temporal RPCA
based method of Coarse-to-fine [7]. Fig. 4 shows the per-
formance of these algorithms based on peak signal-to-noise
ratio (PSNR) together with the time taken by these algorithms.
These results are obtained on 15 image sequences consisting
of both Landsat-8 and Sentinel-2 images and prepared in a
similar manner as the additional 70 images on which we
trained our network. The cloud-cover ratio in these images
ranged from 30% to 70% which is more consistent with the
actual temporally varying cloud contaminated images. DUPA-
RPCA has achieved the highest median PSNR while taking
significantly less time than the other multi-temporal method
and just marginally more as compared to the spatial method
of Single Image.

Single Image, being a spatial method, involves removing
clouds and restoring ground cover information in individual
images by first detecting the cloud using U-Net and then
reconstructing the missing region using GAN. However, the
generator is prone to filling the cloud regions with unrealistic
images if the cloud cover ratio is high, which is often the
case. The Coarse-to-fine method, on the other hand, processes
a batch of images. It also uses a two-stage process by first
detecting clouds with group-sparse RPCA and then using a
discriminative RPCA to further facilitate cloud removal and
more importantly restore the missing region. However, the
PSNR values of reconstructed regions drop significantly when
all of the images in the sequence have a high cloud cover
ratio as is often the case when the data matrix is composed
of consecutive images with a time interval of not more than

1Landsat-8 and Sentinel-2 revisit a place after every 16 days and 5 days
respectively.

Fig. 5: Recovered cloud-free images by DUPA-RPCA

one cycle between them. This problem could be solved by
incorporating more contextual information.

In our method, this contextual information is incorporated
by way of an end-to-end trained model based deep neural
network, DUPA-RPCA, which learns all of its parameters from
the data itself. Fig. 5 shows the visual reconstruction results
by DUPA-RPCA. Reweighting the sparse component with W
leads to a distinct proximal operator for each entry of the input
such that DUPA-RPCA achieves much better accuracy with the
reweighting scheme, as shown in Fig. 2b. Furthermore, at each
layer, the S matrix from previous layer is one of the inputs
for computing L such that a better estimation of S results in
an improved estimation of L.

V. CONCLUSION

In this paper, we proposed a deep unfolded and prior-aided
RPCA network for two-fold functionality: removing clouds
and recovering ground-cover information in remote sensing
images. Our design resulted in a distinct proximal operator at
each iteration/layer for every input making this model-aided
network highly adaptive such that the results from DUPA-
RPCA have attained much better accuracy and efficiency than
the existing state-of-the-art algorithms. The proposed DUPA-
RPCA utilizes the high temporal correlation between the
images which can also be modified to incorporate the spatial
correlation between the images in future work.
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