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A Compressive Sensing Codec Architecture for
ECG Signals with Adaptive Quantization and

Stream Entropy Coding
Shailesh Kumar, Surendra Prasad, Senior Member, IEEE, and Brejesh Lall, Member, IEEE

Abstract—Compressive sensing (CS) is quite appealing as a
low-complexity method for the compression of ECG data in
resource-limited wearable devices. This paper proposes a codec
architecture comprising adaptive quantization and asymmetric
numeral systems (ANS) based entropy coding of compressive
measurements that can boost the compression ratio without
sacrificing reconstruction performance. The quantized Gaussian
entropy model for the compressive measurements is estimated
directly from the data and is adapted dynamically to achieve
better compression. We have tested our encoder with Block
Sparse Bayesian learning as well as CS-NET sparse recovery
algorithms on the MIT-BIH Arrhythmia database. Our encoder
can achieve 5-25% of additional space savings over compressive
sensing.

I. INTRODUCTION

In wireless body area networks (WBAN) based telemoni-
toring networks [1], the energy consumption on sensor nodes
is a primary design constraint [2]. The wearable sensor nodes
are often battery-operated. It is necessary to reduce energy
consumption as much as possible. It is desirable that a low-
complexity encoder be used for the compression of ECG
data from wearable devices. Compressive sensing (CS) [3]–[7]
provides a very good solution to implement low-complexity
encoders and has been extensively studied for ECG data
compression [8], [9]. It uses a sub-Nyquist sampling method
by acquiring a small number of incoherent measurements
which are adequate to reconstruct the signal if the signal is
sufficiently sparse in some basis. For a sparse signal x ∈ Rn,
one would make m linear measurements where m ≪ n which
can be mathematically represented by a sensing operation

y = Φx (1)

where Φ ∈ Rm×n is a matrix representation of the sensing
process and y ∈ Rm the set of m measurements collected for
x. A suitable reconstruction algorithm can recover x from y.

Ideally, the sensing process should be implemented at the
hardware level in the analog-to-digital conversion (ADC)
process. However, much of the use of CS in ECG follows a
digital CS paradigm [10] where the ECG samples are acquired
first by the ADC circuit on the device and then they are
translated into incoherent measurements via the multiplication
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of a digital sensing matrix. These measurements are then
transmitted to remote telemonitoring servers. A suitable re-
construction algorithm is used on the server to recover the
original ECG signal from the compressive measurements.
Reconstruction algorithms for ECG signals include: greedy
algorithms [11] (simultaneous orthogonal matching pursuit),
optimization-based algorithms [12], [10] (SPG-L1), Bayesian
learning algorithms [13]–[15], and deep learning based algo-
rithms [16].

We consider the problem of efficient transmission of com-
pressive measurements of ECG signals over the wireless body
area networks under the digital compressive sensing paradigm.
Let x be an ECG signal and y be the corresponding stream
of compressive measurements. Our goal is to transform y
into a bitstream s with as few bits as possible without losing
the signal reconstruction quality. A primary constraint in our
design is that the encoder should avoid any floating point
arithmetic.

A. Related Work

The literature on the use of CS for ECG compression
is mostly focused on the design of a specific sensing ma-
trix, sparsifying dictionary, or reconstruction algorithm for
the high-quality reconstruction of the ECG signal from the
compressive measurements. To the best of our knowledge,
(digital) quantization and entropy coding of the compressive
measurements of ECG data haven’t received much attention
in the literature.

Mamaghanian et al. [10] use a Huffman codebook which
is deployed inside the sensor device. They don’t employ any
quantization of the measurements. The codebook is fixed. It
cannot adapt to differing signal statistics. Simulation-based
studies generally send the floating point compressive mea-
surements to their decoder modules. They don’t consider
the issue of the number of bits required to encode each
measurement. The compression ratio is often defined simply
as m

n or some variant of it 1. The underlying assumption is that
the measurements are encoded using the same number of bits
as the original digital samples. Huffman codes have frequently
been used in ECG data compression for non-CS methods
[17], [18] for entropy coding. However, entropy coding of CS
measurements has largely been ignored.

Asymmetric Numeral Systems (ANS) [19] based entropy
coding schemes have seen much success in recent years for

1Other variants include n
m

[13], n−m
n
× 100 [16]
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lossless data compression. They provide superior compression
compared to Huffman like symbol codes. To the best of our
knowledge, ANS stream codes have not been considered in
the past for the entropy coding of compressive measurements.

B. Contributions

In this paper, we present an adaptive quantization and en-
tropy coding scheme with a norm-bounded quantization noise
for digital compressive measurements. A quantized Gaussian
probability model 2 of the measurements is estimated directly
from the data and the parameters for this model are used for
the entropy coding of the measurements. Asymmetric numeral
systems (ANS) based entropy coding is then used for efficient
entropy coding of the quantized and clipped measurements.
Our encoding scheme doesn’t require a fixed codebook for
entropy coding. The encoder can be implemented entirely
using integer arithmetic.

C. Paper Organization

The rest of the paper is organized as follows. Section II de-
scribes our proposed codec architecture. Section III describes
the ECG database used for the evaluation of the codec and
the performance metrics. The analysis of the experimental
results is covered in section IV. Section V summarizes our
contributions and major findings.

II. PROPOSED CODEC ARCHITECTURE

Digital
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Fig. 1. Digital Compressive Sensing Encoder
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Fig. 2. Digital Compressive Sensing Decoder

This section describes a codec architecture for digital sig-
nals involving digital compressive sensing, quantization and
entropy coding steps. Figure 1 and fig. 2 depict high-level
block diagrams of the encoder and the decoder. The encoding
algorithm is presented in algorithm 1. The decoding algorithm
is presented in algorithm 2.

The digital signal is split into windows of n samples each.
The windows of the digital signal are further grouped into
frames of w windows each. The last frame may have less

2A quantized Gaussian distribution is a quantized version of Gaussian
distribution over bins of size 1 centered at integer values. It is defined by
taking a Gaussian distribution with the specified mean and standard deviation,
clipping it to an interval, renormalizing it to account for the clipped-off tails
and then integrating the probability density over the bins [20].

Algorithm 1: Encoder algorithm
Send stream header ;
Build sensing matrix Φ;
foreach frame of digital signal as x with nw windows do

X← window(x) ;
// Sense
Y ← ΦX;
y← flatten(Y);
// Adaptive quantization
for q = qmax . . . qmin (descending) do

ȳ←
⌊

1
2q

y
⌋

;
ỹ← 2qȳ;
if N RMSE(y, ỹ) ≤ ρ then

break ;
end

end
// Quantized Gaussian model parameters
µy ← ⌈mean(ȳ)⌉ ;
σy ← ⌈std(ȳ)⌉ ;
// Adaptive range adjustment
for r = 2 . . . 8 do

ymin ← µy − rσy ;
ymax ← µy + rσy ;
ŷ← clip(ȳ, ymin, ymax);
if N RMSE(ȳ, ŷ) ≤ γ then

break ;
end

end
c← ans code(ŷ, µy , σy , ymin, ymax) ;
nc ← number of words in c;
Send frame header(µy , σy , q, r, nw, nc);
Send frame payload(c);

end

Algorithm 2: Decoder algorithm
Read stream header ;
Build sensing matrix Φ;
while there is more data do

µy , σy , q, r, nw, nc ← read frame header ;
c← read frame payload (nc);
// Entropy model parameters
ymin ← µy − rσy ;
ymax ← µy + rσy ;
ŷ← ans decode(c, µy , σy , ymin, ymax) ;
// Inverse quantization
ỹ← 2qŷ;
Ỹ ← window(ỹ) ;
X̃← reconstruct(Ỹ) ;
x̃← flatten(X̃) ;

end

than w windows. The encoder compresses the digital signal
frame by frame into a bitstream. It first sends encoding
parameters in the form of a stream header (see table I). Then
for each frame of the digital signal, it sends a frame header
(see table II) followed by a frame payload consisting of the
quantized and entropy-coded measurements for the frame. The
decoder initializes itself by reading the stream header from
the incoming bitstream. Then, it reconstructs the digital signal
frame by frame.

A. Sensing Matrix

Following [10], we construct a sparse binary sensing matrix
Φ of size m×n. Each column of Φ consists of exactly d ones
and m−d zeros, where the position of ones has been randomly
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TABLE I
STREAM HEADER

Parameter Description Bits

key Pseudorandom generator key for Φ 64
n Window size 12
m Number of measurements per window 12
d Number of ones per column in sensing matrix 6
w Number of windows per frame 8
adaptive Adaptive or fixed quantization flag 1
if (adaptive )

ρ N RMSE limit for adaptive quantization 8
else

q Fixed quantization parameter 4
γ N RMSE limit for clipping 8

TABLE II
FRAME HEADER

Parameter Description Bits

µy Mean value 16
σy Standard deviation 16
q Frame quantization parameter 3
r Frame range parameter 4
nw Windows in frame 8
nc Words of entropy coded data 16

selected in each column. Sparse binary sensing matrices can be
treated as adjacency matrix representations of bipartite graphs.
In the equation y = Φx, let x and y represent node sets U and
V respectively where each node in the node-set corresponds
to a component of the vector. Consider the bipartite graph
G(Φ) = (U, V,E) 3 such that an edge (i, j) belongs to E if
and only if Φ(j, i) = 1. Informally, such a graph is an expander
[21] if each small subset of nodes in U has many neighbors
in V . We refer to U as the left part and V as the right part of
the graph G. A bipartite graph is called left d-regular if every
node in the left part has exactly d neighbors in the right part.
This corresponds to having exactly d ones in each column of
Φ. A bipartite left-d regular graph G = (U, V,E) is called a
(k, d, ϵ)-expander if any set S ⊂ U of at most k left nodes
has at least (1− ϵ)d|S| neighbors.

Sparse binary sensing matrices cannot satisfy the standard
RIP property [22], however, they do satisfy a generalized RIP-
p property [21], [23]. An m × n matrix Φ is said to satisfy
RIP (p, k, δ) if for any k-sparse vector x, we have

∥x∥p(1− δ) ≤ ∥Φx∥p ≤ ∥x∥p. (2)

The adjacency matrices of expander graphs have this property.
Gilbert et al. show in [21] that if Φ is the adjacency matrix
of a (k, d, ϵ) expander graph G = (U, V,E), then the scaled
matrix Φ/d satisfies RIP (1, k, δ) property for δ = 2ϵ. They
further show that for an expander matrix Φ, for any signal x,
given y = Φx, we can recover x̂ such that

∥x− x̂∥1 ≤ c(ϵ)∥x− x|k∥1
where x|k is the best k-term approximation of x and c(ϵ) is a
constant depending on ϵ. Stable recovery guarantees are also

3U and V are left and right nodes of G and E is the set of edges between
the left and right nodes.

available. Berinde et al. show in [24] that for k-sparse x and
the measurements y = Φx+ e where the measurement noise
e has an ℓ1 bound, there exists an algorithm that recovers
a k-sparse x̂ such that ∥x − x̂∥1 = O(∥e∥1/d) if Φ is a
matrix induced by a (s, d, ϵ)-expander G where s = O(k).
These theoretical results are the foundation of our encoder
design wherein a bounded quantization noise doesn’t impact
the reconstruction quality.

Mamaghanian et al. [10] studied the variation of reconstruc-
tion SNR with d for SPGL1 algorithm [25]. They chose a value
of d = 12 below which SPGL1 recovery suffered. Zhang et
al. [13] showed experimentally that the BSBL-BO algorithm
can do good recovery for much lower values of d. In our
experiments, we have reported results for both d = 12 as well
as d = 4.

B. Encoding

Here we describe the encoding process for each frame.
Let a frame of digital signal be denoted by a vector x. The
frame is split into non-overlapping windows of n samples each
({xi}1≤i≤w). We put them together to form the (signed) signal
matrix 4:

X =
[
x1 x2 . . . xw

]
. (3)

We perform compressive sensing on the whole frame of
windows together as:

Y = ΦX. (4)

Note that by design, the sensing operation can be implemented
using just lookup and integer addition. The ones in each row
of Φ identify the samples within the window to be picked up
and summed. Consequently, Y consists of only signed integer
values.

Beyond this point, the window structure of the signal is not
relevant for quantization and entropy coding. Hence, we flatten
it into a vector y of mw measurements.

y = flatten(Y). (5)

1) Quantization: The quantization for each frame is spec-
ified by a parameter q. This parameter is either fixed for the
whole stream (as specified in the stream header), or varies
from frame to frame (under adaptive quantization). It is given
by:

ȳ =

⌊
1

2q
y

⌋
. (6)

For integer measurement values, quantized values are also
integers with a smaller range (by a factor of 2q). It can be
easily implemented on a computer as a signed right shift by
q bits. We can measure the quantization error introduced by
this step by comparing y with the inverse quantized values
ỹ = 2qȳ.

4PhysioNet provides the baseline values for each channel in their ECG
records. Since the digital samples are unsigned, we have subtracted them by
the baseline value (1024 for 11-bit encoding). 11 bits mean that unsigned
values range from 0 to 2047. The baseline for zero amplitude is digitally
represented as 1024. After baseline adjustment, the range of values becomes
[−1024, 1023].
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If adaptive quantization has been specified, then we vary
the quantization parameter q from a value qmax = 6 down to
a value qmin till we reach a limit on N RMSE (20) between
y and ỹ as specified by the parameter ρ in the stream header.

2) Entropy Model: We model the quantized measurements
as samples from a quantized Gaussian distribution that can
only take integral values. First, we estimate the mean µy

and standard deviation σy of measurement values in ȳ. We
round up the values of µy and σy to the nearest integer
for efficient encoding. Entropy coding works with a finite
alphabet. Accordingly, the quantized Gaussian model requires
specification of the minimum and maximum values that our
quantized measurements can take. The range of values in ȳ
must be clipped to this range. The clipping function for a
scalar value is defined as:

clip(v, a, b) ≜


a v ≤ a

b v ≥ b

v otherwise.
(7)

We clip the values in ȳ to the range [µy−rσy, µy+rσy] where
r is the range parameter estimated for each frame. Similar to
adaptive quantization, we vary r from 2 to 8 till we have
captured sufficient variation in ȳ and N RMSE(ȳ, ŷ) ≤ γ
where γ is a parameter specified in the stream header.

The adaptive quantization and adaptive clipping ensure that
the total quantization error introduced by quantization and
clipping steps is bounded.

3) Entropy Coding: We use the ANS entropy coder to
encode ŷ into an array c of 32-bit integers (called words). This
becomes the payload of the frame to be sent to the decoder.
The total number of bits in the frame payload is the length
of the array nc times 32. Note that we have encoded and
transmitted ŷ and not the unclipped ȳ. ANS entropy coding
is a lossless encoding scheme. Hence, ŷ will be reproduced
faithfully in the decoder if there are no bit errors involved in
the transmission 5.

4) Integer Arithmetic: The input to digital compressive
sensing is a stream of integers. The sensing process with the
sparse binary sensing matrix can be implemented using integer
sums and lookup. It is possible to implement the computation
of approximate mean and standard deviation using integer
arithmetic. We can use the normalized mean square error
thresholds for adaptive quantization and clipping steps under
integer arithmetic. ANS entropy coding is fully implemented
using integer arithmetic. The proposed encoder can be fully
implemented using integer arithmetic.

5) Bounded Quantization Noise: N RMSE values of ρ and
γ limit the amount of noise introduced by the quantization and
clipping steps respectively. From (22) we can see that SNR =
−20 log10(N RMSE). Our typical values are ρ = 0.01 and
γ = 0.02. They correspond to 40 dB of noise for quantization
and 34 dB of noise for the clipping step.

6) Encoder Computational Complexity: The encoding pro-
cess is dominated by the matrix multiplication y = Φx.
For a general sensing matrix, this operation is O(mn). A
binary sensing matrix has a total of nd ones. Since d is

5We assume that appropriate channel coding mechanism has been used.

a small constant, hence the total number of lookup and
addition operations is O(n). This significantly reduces the
computational complexity of the encoder.

C. Decoding

Decoding of a frame starts by reading the frame
header which provides the frame encoding parameters:
µy, σy, q, r, nw, nc. The frame header is used for building the
quantized Gaussian distribution model for entropy decoding.
nc tells us the number of words (4nc bytes) to be read from
the bitstream for the frame payload. The ANS decoder is used
to extract the encoded measurement values ŷ from the frame
payload. Inverse quantization and windowing are performed
to construct the measurement matrix Ỹ which is the input to
a suitable sparse recovery algorithm.

The architecture is flexible in terms of the choice of the
reconstruction algorithm.

X̃ = reconstruct(Ỹ). (8)

Each column (window) in Ỹ is decoded independently. In our
experiments, we have built two different algorithms:

• BSBL-BO (Block Sparse Bayesian Learning-Bound Op-
timization) [13], [15], [26]

• CS-NET [16]
Once each window has been reconstructed, they are flattened
to form the sequence of reconstructed samples.

D. BSBL-BO

Natural signals tend to have richer structures beyond spar-
sity. A common structure in natural signals is a block/group
structure [27]. We introduce the block/group structure on x as

x =
(
x1 x2 . . . xg

)
(9)

where each xi is a block of b values. The signal x consists
of g such blocks. Under the block sparsity model, only a few
k ≪ g blocks are nonzero (active) in the signal x however,
the locations of these blocks are unknown. We can rewrite the
sensing equation as:

y =

g∑
i=1

Φixi + e (10)

by splitting the sensing matrix into blocks of columns appro-
priately. e denotes the measurement error.

Under the sparse Bayesian framework [15], each block
is assumed to satisfy a parametrized multivariate Gaussian
distribution:

P(xi; γi,Bi) = N (0, γiBi), ∀ i = 1, . . . , g (11)

with the unknown parameters γi and Bi. γi is a non-negative
parameter controlling the block sparsity of x. When the block
sparse Bayesian model for x is estimated, most γi tend to be
zero due to automatic relevance determination [28] promoting
block sparsity. Bi ∈ Rb×b is a positive definite matrix,
capturing the correlation structure of the i-th block. We further
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assume that the blocks are mutually uncorrelated. The prior
of x can then be written as

P(x; {γi,Bi}i) = N (0,Σ0) (12)

where
Σ0 = diag{γ1B1, . . . , γgBg}. (13)

We also model the correlation among the values within each
active block as an AR-1 process with a common model
parameter. Under this assumption the matrices Bi take the
form of a Toeplitz matrix

Bi = B =


1 r . . . rb−1

r 1 . . . rb−2

...
. . .

...
rb−1 rb−2 . . . 1

 (14)

where r is the AR-1 model coefficient. This constraint signifi-
cantly reduces the number of model parameters to be learned.

Measurement error is modeled as an independent zero-mean
Gaussian noise P(e;λ) ∼ N (0, λI). BSBL doesn’t require us
to provide the value of noise variance as input. It is able to
estimate λ within the algorithm. The estimate of x under the
Bayesian learning framework is given by the posterior mean
of x given the measurements y.

Our implementation of the BSBL-BO algorithm is available
as part of CR-Sparse library [29]. As Zhang et al. suggest in
[13], block sizes are user-defined and they are identical and
no pruning of blocks is applied. Our implementation has been
done under these assumptions and is built using JAX so that
it can be run on GPU hardware easily to speed up decoding.
The only configurable parameter for this decoder is the block
size which we shall denote by b in the following.

E. CSNet

CSNet [16] is a state-of-the-art deep learning network for
the reconstruction of ECG signals from compressive mea-
surements. The measurements are first raised back to Rn as
z = ΦTx. An initial reconstruction module consists of three
convolution layers. It is followed by the secondary reconstruc-
tion module consisting of an LSTM layer followed by a dense
layer. We implemented this network and followed the training
procedure as described in [16]. Our primary change was that
we didn’t feed the original measurements. Rather, we trained
the network with Ỹ as inputs and X as expected outputs. Thus,
we tested whether CSNet can work well with our quantized
and clipped measurements. Another difference from [16] is
that we use sparse binary sensing matrices rather than standard
RIP compliant sensing matrices.

III. ECG DATABASE AND PERFORMANCE METRICS

We use the MIT-BIH Arrhythmia Database [30] from Phy-
sioNet [31]. The database contains 48 half-hour excerpts of
two-channel ambulatory ECG recordings from 47 subjects.
The recordings were digitized at 360 samples per second
for both channels with 11-bit resolution over a 10mV range.
The samples can be read in both digital (integer) form or as
physical values (floating point) via the software provided by

PhysioNet. We use the MLII signal (first channel) from each
recording in our experiments.

Each window of n samples generates m measurements by
the sensing equation y = Φx. Assume that we are encoding
s ECG samples where s = nw and w is the number of
signal windows being encoded (across all frames). Let the
ECG signal be sampled by the ADC device at a resolution of
r bits per sample 6. Then the number of uncompressed bits
is given by bitsu = rs. Let the total number of compressed
bits corresponding to the s ECG samples be bitsc

7. Then the
compression ratio (CR) is defined as

CR ≜
bitsu
bitsc

. (15)

Percentage space saving (PSS) is defined as

PSS ≜
bitsu − bitsc

bitsu
× 100. (16)

We call the ratio m/n as the measurement ratio. The percent-
age measurement saving (PMS) is defined as:

PMS ≜
n−m

n
× 100. (17)

Another way of looking at the compressibility is how many
bits per sample (bps) are needed on average in the compressed
bitstream. We define bps as:

bps ≜
bitsc
s

. (18)

Similarly, we can define bits per measurement (bpm) as:

bpm ≜
bitsc
mw

. (19)

The normalized root mean square error is defined as

N RMSE(x, x̃) ≜
∥x− x̃∥2
∥x∥2

(20)

where x is the original ECG signal and x̃ is the reconstructed
signal. A popular metric to measure the quality of reconstruc-
tion of ECG signals is percentage root mean square difference
(PRD):

PRD(x, x̃) ≜ N RMSE(x, x̃)× 100 (21)

The signal to noise ratio (SNR) is related to PRD as

SNR ≜ −20 log10(0.01PRD). (22)

Zigel et al. [32] established a link between the diagnostic
distortion and the easy to measure PRD metric. Table III
shows the classified quality and corresponding SNR and PRD
ranges.

IV. EXPERIMENTS AND DISCUSSION

The experiments in this section have been designed to study
the compression efficiency of the encoder and the quality of
reconstruction under different reconstruction algorithms.

6For MIT-BIH Arrhythmia database, r = 11.
7This includes the overhead bits required for the stream header and frame

headers to be explained later.
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TABLE III
QUALITY OF RECONSTRUCTION [32]

Quality PRD SNR

Very good < 2% > 33 dB
Good 2-9% 20-33 dB
Undetermined ≥ 9% ≤ 20 dB

(a) Record 100 (b) Record 102 (c) Record 115

(d) Record 202 (e) Record 208 (f) Record 234

Fig. 3. Histograms of measurement values with the sparse binary sensing
matrix with m = 256, n = 512, d = 4 in 200 bins

A. Gaussianity

The key idea behind our entropy coding design is to model
the measurement values as being sampled from a quan-
tized Gaussian distribution. Figure 3 shows the histograms
of measurement values for 6 different records. Visually, the
quantized Gaussian distribution approximation appears to be
quite reasonable.

The best compression can be achieved by using the empiri-
cal probabilities of different values in y in an entropy model.
However, doing so would require us to transmit the empirical
probabilities as side information. This may be expensive.
We can estimate the loss in compression overhead by use
of the quantized Gaussian approximation. Let P denote the
empirical probability distribution of data and let Q denote the
corresponding quantized Gaussian distribution. Bamler in [20]
show empirically that the overhead of using an approximation
distribution Q in place of P in ANS entropy coding is close
to the KL divergence KL(P||Q) which is given by

KL(P||Q) =
∑
y

P(y) log2
(
P(y)
Q(y)

)
. (23)

We computed the empirical distribution for y for each record
and measured its KL divergence with the corresponding
quantized Gaussian distribution. It varies around 0.11 ± 0.07
bits across the 48 records for an encoder configuration with
m = 256, n = 512, d = 4. Thus, the overhead of using
a quantized Gaussian distribution in place of the empirical
probabilities can be estimated to be 4 − 18%. The empirical
distributions vary widely from one record to another in the
database. Hence using a single fixed empirical distribution
(e.g. the Huffman codebook preloaded into the device in
[10]) may lead to lower compression. The simple adaptive
quantization approach proposed here provides an effective
alternative yielding superior performance.

B. Quantization Parameter

The quantization step is a key contributor to compression
savings. This can be studied better under the fixed quantization
mode. In the first experiment, we compress the data from
record 100 at different values of the quantization parameter q
(6) and PMS. The results are shown in fig. 4. The number of
measurements (m) has been chosen to vary from 20% to 60%
of the window size (n). q varies from 0 to 7. Figure 4 (a) shows
that reconstruction quality doesn’t change much from q = 0
till q = 4 after which it starts degrading. As expected, the
PRD degrades as m is reduced. (b) shows that PSS (percentage
space saving) increases linearly with q. As q increases, the size
of the alphabet for entropy coding reduces and this leads to
increased space savings. (c) shows the variation of PSS with
PMS at different values of q. PSS increases linearly with PMS.
Also, PSS is much higher than PMS at higher values of q.

Increasing quantization linearly increases the PSS. Since up
to q = 4, there is no noticeable impact on PRD, as seen in
fig. 4 (a), it is safe to enjoy these savings in bit rate. At 40%
PMS, one can attain up to 69.3% PSS without losing any
reconstruction quality.

Figure 5 shows the impact of the quantization step on the
reconstruction quality for a small segment of record 100. The
first panel shows the original (digital) signal. The remaining
panels show the reconstruction at different q values using
the BSBL-BO algorithm. The reconstruction visual quality is
excellent up to q = 5 (PRD below 7%), good at q = 6 (PRD
at 9%) and clinically unacceptable at q = 7 (with PRD more
than 15%). One can see significant waveform distortions at
q = 7. Also, note how the quality score keeps increasing till
q = 4 and starts decreasing after that with a massive drop at
q = 7.

In the remaining experiments, we will be using adaptive
quantization.

We note that Mamaghanian et al. [10] have used an inter-
packet redundancy removal step before Huffman coding. They
suggest that measurements of consecutive windows are corre-
lated due to the periodic nature of the ECG signal. However,
we suspect that this was happening due to the use of unsigned
digital values with a large DC component in their design. Since
we removed the baseline from the signal before compres-
sion, we didn’t notice any significant inter-packet redundancy.
Hence, we haven’t included any redundancy removal block in
our encoder.

C. Space Savings

In this experiment, we report the variation of the percentage
space savings (PSS) with the percentage measurement savings
(PMS) under different encoder configurations. We chose the
window size n = 512. PMS varies from 20% to 80%.
Correspondingly m varies from 410 down to 77. For each
choice of m and n, we constructed binary sensing matrices
Φ for two different values of d at d = 4 and d = 12. All
48 records were encoded and PSS was measured separately
for each of them. Figure 6 shows the variation of mean PSS
(over records) with PMS along with error bars for standard
deviation across records at each PMS. We note that d = 12
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Fig. 4. Variation of compression statistics vs quantization parameter at different measurement ratios m
n

for record 100

Fig. 5. Reconstruction of a small segment of record 100 for different values
of q = 0, 2, 4, 5, 6, 7 with m = 256, n = 512, d = 4 under non-adaptive
quantization. The block size for the BSBL-BO decoder is 32.

Fig. 6. Error bars for variation of mean PSS with PMS for 48 records at
d = 4 and d = 12.

gives slightly better compression. However, the difference is
not significant and it decreases as PMS increases. The small
error bars indicate that the compression ratio doesn’t vary
much from record to record. At low PMS, we can see that
the compression scheme can give additional savings of up to
25%. The trend line is linear and savings reduce linearly to
5% at 85% PMS.

Figure 7 shows more detailed box plots of variation of PMS
across the 48 records at different PMS values.

In the following, we will report results for d = 4 configu-
ration. Results are similar for d = 12.

We measured the overhead of bits required to encode the
stream and frame headers. The overhead varies from 0.07% at
PMS=20% to about 0.4% at PMS=80% on average. At higher

Fig. 7. PMS vs PSS box plots over 48 records at d = 4

Fig. 8. PMS vs Savings gain (PSS - PMS) box plots over 48 records at d = 4

PMS there are very few measurements to encode. Hence
overhead is higher. Increasing the frame size will reduce the
overhead. However, this will cause delays in a real-time system
since a frame cannot be decoded till its full payload has been
received.

The bits per sample vary from 6 ± 0.3 bps at PMS=20%
down to 1±0.1 bps at PMS=85%. This is significant compared
to the uncompressed rate of 11 bits per sample.

Savings gain can be measured as the difference PSS−PMS.
Figure 8 shows the box plots of savings gains at different PMS
levels. Savings gain varies from 25± 3% at PMS=20% down
to 5.3±0.9% at PMS=85%. More measurements lead to more
savings via the quantization, clipping and entropy coding steps.

Our adaptive quantization scheme is designed to keep the
noise introduced by quantization and clipping steps to rea-
sonable levels. Figure 9 shows the box plots of variation of
quantization noise SNR across the 48 records at different PMS.
It is clear that quantization SNR remains limited between 35
and 40 dB.
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Fig. 9. PMS vs Quantization SNR box plots over 48 records at d = 4

Fig. 10. Error bars for variation of PMS vs mean PRD at d = 4 and d = 12
for reconstruction with the BSBL-BO algorithm.

Compression is to no avail if the signal cannot be recon-
structed faithfully. The reconstruction heavily depends on the
choice of the sparse recovery algorithm. In the following,
we present our results for two different sparse recovery ap-
proaches.

D. Reconstruction with BSBL-BO

Figure 10 shows the variation of mean PRD with PMS for
d = 4 as well as d = 12 when BSBL-BO reconstruction
algorithm is used in the decoder. The error bars show the
standard deviation of PRD across the 48 records. We have
drawn additional lines for 2% and 9% PRD that indicate very
good and good reconstruction levels. Surprisingly, d = 4 gives
us better PRD. We can see that mean PRD is below 9% level
till up to 65% PMS. At this PMS, we have a PSS of about
77% (fig. 6).

Figure 11 provides more detailed box plots for the variation
of PRD with PMS across the 48 records at d = 4.

E. Reconstruction with CSNet

For CSNet, a window size of n = 256 was chosen following
[16]. We only trained and tested for a fixed binary sensing
matrix with d = 4. Figure 12 shows detailed box plots
for the variation of PRD with PMS across the 48 records.
We note that CSNet can reconstruct well up to 80% PMS
with 7% additional space savings (mean PSS being 87%).
Reconstruction quality degrades far more slowly for CSNet
with mean PRD being 16.5 % for a PMS of 90 % and mean
PSS being 93.4%.

Fig. 11. PMS vs PRD box plots over 48 records at d = 4 for reconstruction
with BSBL-BO algorithm

Fig. 12. PMS vs PRD box plots over 48 records at d = 4 for reconstruction
with CS-NET

F. Comparison

Zhang et al. [16] have reported optimal PMS values for
different methods (BP, OMP, BSBL-BO, CSNet, etc.) for
PRD=9% for a subset of test records for n = 256. In their
setup, Φ is RIP satisfying matrix which is different from
the binary sensing matrix used in our setup. For BSBL-BO
reconstruction, we report the needed PMS as well as the
corresponding PSS for these records for a PRD ≤ 9%. in
table IV. While our codec requires slightly more measurements
(lower PMS) due to the sparsity of the sensing matrix, it
consistently outperforms in compression due to additional
space savings from quantization and entropy coding. Our PSS
is better by 6.5± 3%.

TABLE IV
REQUIRED PMS AND CORRESPONDING PSS FOR BSBL-BO FOR A

TARGET PRD ≤ 9%

Record Ref PMS Our PMS PSS PRD

100 71 66 78.0 8.8
101 71 66 77.2 8.9
102 70 61 75.8 8.7
107 74 65 75.2 8.9
109 75 70 78.8 8.7
111 69 63 74.5 8.6
115 68 67 78.4 8.7
117 74 73 83.9 7.2
118 76 70 81.3 8.2
119 71 70 81.1 7.7

Similarly, in table V, we compare the PMS reported in
[16] for CSNet for good recovery with the needed PMS as
well as the corresponding PSS for these records in our CSNet



9

implementation for sparse binary sensing matrices. Again, we
see slightly lower PMS (i.e., more measurements required) to
attain the target PRD but this is more than compensated for
by the higher PSS levels. We reiterate that studies like [16]
simply assume that the measurements also require the same
11-bit representation like original data and ignore the issue of
entropy coding.

TABLE V
REQUIRED PMS AND CORRESPONDING PSS FOR CSNET FOR A TARGET

PRD ≤ 9%

Record Ref PMS Our PMS PSS PRD

100 88 80 87.8 8.6
101 88 79 86.8 8.8
102 63 56 72.8 8.2
107 81 78 83.3 8.4
109 87 84 89.4 8.7
111 80 78 84.4 8.5
115 91 88 92.3 7.6
117 93 92 95.2 8.7
118 87 84 91.0 8.9
119 92 91 94.0 8.7

Mamaghanian et al. [10] report their best result for CS for
record 107 for which they report that ”good” (PRD ≤ 9%)
signal recovery can be achieved up to a PSS of 74% using
SPGL1 reconstruction. For our codec with BSBL-BO recon-
struction, good recovery was achieved up to a PSS of 75.2 %.
With CSNet, it increases further up to 83.3 %.

V. CONCLUSION

We summarize the key features and benefits of our encoding
scheme. Our scheme converts digital compressive measure-
ments to a finite alphabet suitable for entropy coding using
simple adaptive quantization and clipping steps with limited
quantization noise. The quantized measurements can be ap-
proximately modeled using a quantized Gaussian distribution
for entropy coding. ANS entropy coding can efficiently encode
them into a bitstream. The encoder can be easily implemented
using integer arithmetic on resource-limited devices. Our en-
tropy coding scheme does not require a fixed codebook. It
can adapt to changing signal characteristics frame by frame.
We see additional PSS gains of 5-10% (at higher PMS and
PRD) up to 25% (at lower PMS and PRD). The decoder can
use any suitable reconstruction algorithm. We have shown it
working with BSBL-BO and CSNet. The codec architecture
is general enough to be applied in other compressive sensing
applications also.

The software code implementing this codec and all scripts
for the experimental studies conducted in this work have been
released as opensource software on GitHub [33].

While the quantized Gaussian entropy model has worked
well in this design, better entropy models require further
research. Lower values of d tend to give better SNR with
less number of measurements. It is unclear why this happens.
Surprisingly, changing d doesn’t affect the compression ratio
much. These issues require further investigation. More work
is required in applying this architecture to other physiological
signals. Images are also a candidate for this architecture. The

architecture will need to be modified to handle multidimen-
sional data.
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