Post-hoc power estimation for topological inference in fMRI

Joke Durnez^a, Beatrijs Moerkerke^a and Thomas Nichols^b

Introduction

- Topological inference on clusters or peaks is increasingly being used in neuroimaging.
- Uncorrected topological *p*-values can be submitted to any multiple testing procedure to control an excess of type I errors.
- More stringent threshold \Rightarrow drop in power.
- To meet an acceptable level of power: compute power (and sample size) a priori; however, these techniques depend on many unknown parameters.
- Zehetmayer et al. (2010) study post-hoc power in the context of statistical genetics.

Evaluation π_0 estimators on simulated data

Average estimates of $\hat{\pi}_0$ for the different estimators with their standard deviation.

- Our goal: estimate the post-hoc power of an fMRI study post-hoc using estimates for the proportion of non-activated features π₀.
- π_0 can be estimated using the distribution uncorrected *p*-values.
- Topological *p*-values can be found using RFT and permutations, both for clusters and for peaks.
- We use permutation p-values for clusters, and RFT p-values for peaks.

Estimating π_0 , the proportion of null tests

choice of λ .

Benjamini,2000 - **BH**: After sorting the *p*-values, the slope S_i is calculated between the *i*th *p*-value and the point (m+1,1) for ascending *i* (solid lines). The first *i* for which $S_i < S_{i-1}$ is considered the first p-value from the alternative hypothesis (dashed line). Sub-

Storey, 2003 - ST; Storey, Pounds, 2003 - PM: The **2001** - **S** : For a certain λ probability density function is (here: 0.5), π_0 is estimated as assumed to be a mixture of a the density of *p*-values greater uniform distribution (dashed than λ (dark grey) divided by line) and a beta-distribution the expected density under H_0 , (solid line), with weight π_0 to $1 - \lambda$ (light grey). Storey, the uniform distribution. 2003 and Storey, 2001 differ in Through maximal likelihood the way they optimize the estimation, the optimal

Pounds, 2004 - **PC**: The probability density function $\hat{f}(p_i)$ is estimated by applying a loess smoother through the histogram of *p*-values (solid line). π_0 is then estimated as $\hat{f}(\max(p_i))$.

PM produces best overall performance.

Evaluation of post-hoc power estimation on simulated data

Estimating the free-receiver operator curve

FROC: TPR is plotted against the FPR for a range of *p*-value thresholds

sequently	m_0	IS	estimated	as	
min(<i>m</i> , (1	/ <i>S</i> -	- i	+ 1)).		

weights and parameters for the beta-distribution are estimated.

Estimating post-hoc power

	Declared active	Declared inactive	Total
Truly non-active	$F = \alpha m_0$	$m_0 - \alpha m_0$	<i>m</i> ₀
Truly active	$T = S - \alpha m_0$	$m_1 - (S - \alpha m_0)$	m_1
Total	S	m-S	т

"Power" True Positive Rate: TPR = E(T)/m₁ ↔ FPR = E(F)/m₀
False Nondiscovery Rate: FNR = E[(m₁ − T)/(m − S)] if S ≠ m and 0 otherwise ↔ FDR = E(F)/S

Simulations

- fMRI data (40 × 40 × 40 × 400) are simulated using neuRosim with spatial ($\sigma = 2.5$) and temporal ($\rho = 0.2$) noise.
- 5 regions of 7 × 7 × 7 voxels are related to the blocked design (20 blocks) with 400 timepoints.
- The signal-to-noise ratio: 0.015.
- A GLM is fit to the data using FSL.
- Excursion threshold: $P(T_{398} > u) = 0.01$

Real data example

- study by Henson et al., 2002: single-subject event-related design.
 Average effect of presenting faces.
- 97 peaks discovered
- FWER control $\alpha = 0.05$
 - 35 significant peaks
 - $\overrightarrow{TPR} = 55\%$
 - FNR = 44%
- FDR control $\alpha = 0.05$
 - 52 significant peaks
 - $\overrightarrow{TPR} = 81\%$

Peak and cluster *p*-values are calculated.

- **5**00 simulations have been performed.
- Simulations have been repeated under different conditions for smoothness, excursion threshold, number of activated regions and signal-to-noise ratio's with equal conclusions.

References and acknowledgements

Benjamini and Hochberg (2000). Journal of the royal statistical society. Series B, statistical methodology, 57(1), 289-300.
Storey (2001). Journal of the royal statistical society. Series B, statistical methodology, 64(30), 479-498.
Storey and Tibshirani (2003). Proceedings of the national academy of sciences of the united states of America, 100(16), 9440-9445.
Pounds and Morris (2003). Bioinformatics, 19(10), 1236-1242.
Pounds and Cheng (2004). Bioinformatics, 20(11), 1735-1745.
Henson, Shallice, Gorno-Tempini and Dolan (2002). Cerebral cortex, 12(2), 178-186.
Zehetmayer and Posch (2010). Bioinformatics, 26(8), 1050-1056.
This work was carried out using the STEVIN Supercomputer Infrastructure at Ghent University, funded by Ghent University, the Flemish Supercomputer Center (VSC), the Hercules Foundation and the Flemish Government â department EWI.

• FNR = 26%

Discussion and conclusion

- Pounds and Morris (2003) best estimator under different fMRI conditions
- Post-hoc power calculations: For a univariate tests ill-advised (e.g. power always greater than 50% for significant test). For multiple testing, provides useful estimate of proportion of true positives.
- Procedure can be used on any collection of uncorrected *p*-values: voxel-based morphometry, diffusion tensor imaging,...
- Henson study: very low power using FWER control ⇒ call for better balance between sensitivity and specificity.