figshare
Browse

A generalizable framework to augment machine learning with molecular dynamics trajectories

Download (2.31 MB)
poster
posted on 2024-12-04, 11:41 authored by Yang ZhangYang Zhang, Andreas Vitalis, Amedeo Caflisch

Poster entitled: "A generalizable framework to augment machine learning with molecular dynamics trajectories" at the CECAM workshop: "Pushing the frontiers of molecular dynamics simulations"

Funding

Swiss National Science Foundation grant #189363

History

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC