File(s) not publicly available

Conducting an evaluation of CBRN canister protection capabilities against emerging chemical and radiological hazards

online resource
posted on 2020-09-29, 08:30 authored by Lee A. Greenawald, Christopher J. Karwacki, Frank Palya, Matthew A. Browe, David Bradley, Jonathan V. Szalajda

In the event of a chemical, biological, radiological, or nuclear (CBRN) hazard release, emergency responders rely on respiratory protection to prevent inhalation of these hazards. The National Institute for Occupational Safety and Health’s (NIOSH) CBRN Statement of Standard calls for CBRN respirator canisters to be challenged with 11 different chemical test representative agents (TRAs) during certification testing, which represent hazards from 7 distinct Chemical Families; these 11 TRAs were identified during the original 2001 CBRN hazard assessment. CBRN hazards are constantly evolving in type, intent of use, and ways of dissemination. Thus, new and emerging hazards must be identified to ensure CBRN canisters continue to provide protection to emergency responders against all hazards that would most likely be used in an intentional or unintentional event.

The objectives are to: (1) update the CBRN list of hazards to ensure NIOSH-approved CBRN canisters continue to provide adequate protection capabilities from newly emerging chemical and radiological hazards and (2) identify the need to update NIOSH TRAs to ensure testing conditions represent relevant hazards. These objectives were accomplished by reviewing recent hazard assessments to identify a list of chemical and radiological respiratory hazards, evaluate chemical/physical properties and filtration behavior for these hazards, group the hazards based on NIOSH’s current Chemical Families, and finally compare the hazards to the current TRAs based on anticipated filtration behavior, among other criteria.

Upon completion of the evaluation process, 237 hazards were identified and compared to NIOSH’s current CBRN TRAs. Of these 237 hazards, 203 were able to be categorized into one of NIOSH’s current seven Chemical Families. Five were identified for further evaluation. Based on reviewing key chemical/physical properties of each hazard, NIOSH’s current 11 TRAs remain representative of the identified respiratory CBRN hazards to emergency responders and should continue to be used during NIOSH certification testing. Thus, NIOSH’s CBRN Statement of Standard remains unchanged. The process developed standardizes a methodology for future hazard evaluations.


The authors would like to acknowledge CDC Center for Preparedness and Response (formerly OPHPR) for funding this project and for their support.