Table S1. Relevant in vitro and in vivo studies on anti-H. pylori effectiveness of AMPs in the past five years

AMP	Description	Study design	Outcome	Reference
Cathelicidin	Synthetic mouse cathelicidin CRAMP, human cathelicidin LL-37 and shortened LL-37	Antimicrobial and anti-biofilm assays were performed <i>in vitro</i> with strains <i>H. pylori</i> SS1 and 10783, where the resident biofilm was measured by crystal violet assay or BacLight Live / Dead. Anti- <i>H. pylori</i> activity tested <i>in vivo</i> using 129/SVJ wild-type (Cnlp+/+) and cathelicidin-knockout (Cnlp-/-) mice	In the <i>in vitro</i> assays <i>a</i> ll three forms of cathelicidin significantly inhibited <i>H. pylori</i> SS1 growth at the micromolar range of concentrations. In contrast, CRAMP, LL-37, and sLL-37 markedly inhibited <i>H. pylori</i> 10783 growth. In the <i>in vivo</i> tests, human cathelicidin LL- 37 decreased and disrupted the biofilm formation in a dose-dependent manner in the stomachs of mice.	[1]
PGLa-AM1	Recombinant peptide glycine-leucine-amide AM1 (rPGLa-AM1)	Anti- <i>H. pylori</i> activity analysed <i>in vitro</i> (bactericidal dynamics method, agar dilution method for MIC determination) and <i>in vivo</i> with the mouse adaptive SS1 <i>H. pylori</i> strain and an <i>H. pylori</i> -infected mouse model.	Strong anti- <i>H. pylori</i> activity and therapeutic effect of rPGLa-AM1 exerted both <i>in vitro</i> (rPGLa-AM1 killing of <i>H. pylori</i> within 15 min at 32 μg/mL or 30 min at 16 μg/mL) and <i>in vivo</i> (100 % removal efficiency to <i>H. pylori</i> colonization achieved at a dose of 40 mg/kg body weight).	[2]
Bicarinalin	Synthetic analogue of venom peptide bicarinalin, isolated from the ant <i>Tetramorium</i> <i>bicarinatum</i> ;	In vitro assay with 44 H. pylori clinical strains isolated from stomach ulcer biopsies of Peruvian patients and H. pylori ATCC 43504 strain. MIC determination by broth microdilution assay.	Bicarilin had a cytotoxic effect on <i>H. pylori</i> clinical isolates (MIC ₅₀ = 0.99 μ mol/L) and in the reference strain (MIC ₅₀ = 3.9 μ mol/L).	[3]
Distinct member of the defensin family	Human neutrophil peptide 1 (HNP1)	MIC determination by agar dilution method in the <i>in vitro</i> tests and HPN1 anti- <i>H. pylori</i> activity tested <i>in vivo</i> , using an infected mouse model.	HNP1 exerted strong effect against antibiotic-resistant <i>H. pylori</i> activity (MIC = 8 μg/mL) in vitro.	[4]

BSF AMPs	Peptides Isolated From Black Soldier Fly (<i>Diptera:</i> <i>Stratiomyidae</i>)	In vitro assay with strain <i>H. pylori</i> ATCC 43504. Anti- <i>H. pylori</i> activity was evaluated by inhibition zone assay.	 In <i>in vivo</i> assays HNP1 significantly reduced colonization of antibiotic-resistant <i>H. pylori</i> in the stomach of mice. Inhibition halos of the isolated peptides compared to the metronidazole halo in the gel diffusion test, where a 21 mm inhibition zone with metronidazole (5 μg) indicates 	[5]
			susceptibility.	
Cathelicidin-like antimicrobial peptide	Cbf-K16 is a variant of BF- 30, which was found in the venom of the snake <i>Bungarus fasciatus</i>	MIC determination against <i>H. pylori</i> SS1, 26695 and 11637, and anti- <i>H. pylori</i> activity analysed by paper disk, spectrophotometer at 600 nm and microscope, in <i>in vitro</i> tests. Anti- <i>H. pylori</i> activity tested <i>in vivo</i> using an infected C57BL/6 male mice.	In the <i>in vitro t</i> he MIC and MBC of Cbf-K16 against the tested <i>H. pylori</i> were 16 and 32 µg/ml, respectively, and its killing kinetics was time-dependent, reflecting the thorough elimination of drug-resistant bacteria within 24 h. This peptide also protected <i>H. pylori</i> -infected gastric epithelial cells (GES-1) from death by reducing the cell supernatant and intracellular bacterial counts by 1.9 and 2.9-log ₁₀ units, respectively. Antimicrobial activity in the mouse gastritis model was observed, with decreasing bacterial counts by 3.9-log ₁₀	[6]

ATCC - American Type Culture Collection; MBC – Minimum Bactericidal Concentration; MIC – Minimum Inhibitory Concentration

Table S2. Relevant *in vitro* studies on the application of PDT to treat *H. pylori* infections in the past five years

Light delivery mode	Study design	Outcome	Reference
Wireless ingestible capsule prototype with 625 nm red or 405 nm blue LED, battery, and dedicated electronic boards	In vitro study with H. pylori ATCC 49503 strain. Following 30 min of light irradiation, a suspension was removed and cultured. Surviving CFU were counted and survival fractions were determined relative to unilluminated bacterial suspensions.	With an irradiation time of 30 min, the death efficiency of <i>H. pylori</i> was up to 96 %.	[7]
405 nm (range 402–407 nm) blue light LED delivered to samples placed from 10 cm. The irradiances were 300 μW/cm², 500 μW/cm² and 600 μW/cm². The luminous energy at 1 h was approximately 1.08 J/cm² , 1.08 J/cm² and 2.16 J/cm² respectively.	<i>In vitro</i> study with 10 <i>H. pylori</i> clinical isolates antibiotic-resistant and with an <i>H. pylori</i> sensitive strain. The effect of blue LED on the viability of <i>H. pylori</i> at each time point was performed by counting the colonies with/without irradiation. The morphology and length of bacteria were examined and measured under SEM. <i>H. pylori</i> reductase activity assay and ROS detection were carried out.	Blue LED with irradiance of 300 μW/cm ² killed resistant- <i>H. pylori</i> in 6h; irradiance of 500 μW/cm ² took 2 h to achieve statistically significant killing; irradiance of 600 μW/cm ² took 1 h to achieve statistically significant killing; For an LED irradiation under 500 μW/cm ² , the surviving fraction of metronidazole- resistant strain was 1 % after 4 h; for the triple-antibiotic resistant strain was <10 % after 5 h; for the reference strain 26695 was <10 % after 4 h and <1 % after 5 h <i>H. pylori</i> exposed to blue LED irradiation of 600 μW/cm ² . <i>H. pylori</i> cells exhibited a short rod- shaped morphology after irradiation.	[8]

		The decrease in cell activity and		
		significant increase in ROS indicator		
		fluorescence was observed only in		
		samples exposed to blue LED for up to		
		2 h.		
	In vitro study where H. pylori strain			
	JCM No.12093 was smeared on a			
	medium with basic methylene blue	The basic effect of MB appeared between		
Red LED with a wavelength of 660 nm. Applied energy	(MB) (after addition of NaHCO₃) and	a pH of 8.6 and 9.0. The		
fluencies of 10 J/cm ² (at 2 min 40 s) and 15 J/cm ² (at 4	irradiated using a red LED with a	NaHCO ₃ concentration was between 4%	[9]	
min).	wavelength of 660 nm. After 4 days of	and 6%. The basic effect at 15 J/cm ² was		
	culture, the effect was determined	greater than that at 10 J/cm ² .		
	according to the bacterial growth			
	area.			
	In vitro study with 3 H. pylori strains			
	(ATCC 700392, 43504 and 49503)			
	grown on solid medium either with, or			
	without, doxycycline at subinhibitory	PDT and doxycycline combination showed		
400 nm light source	concentrations, and irradiated for 10,	an antibacterial synergistic effect with no	[10]	
	20 and 30 minutes with a 400 nm-	significant toxicities.		
	peaked light source. The phototoxicity			
	tests on AGS cells were evaluated by			
	MTT assay.			
	In vitro study of the effect of blue LED	Blue LED for 1-6 minutes significantly		
Dive LED invedication for 1. Consideration	irradiation for 1-6 minutes on the	decreased the viability of <i>H. pylori</i> and	[11]	
Blue LED Irradiation for 1-6 minutes	viability (evaluated by counting the	decreased urease activity, and swarming	[11]	
	number of CFU) and virulence factors	motility. Blue LED irradiation for 6		

	of <i>H. pylori</i> (urease production, motility, adhesion and biofilm formation).	minutes caused greater than 50 % disruption of preformed mature biofilms of <i>H. pylori</i> , relative to controls.	
Irradiation procedure performed with endoscopic light in a dark room and with <i>H. pylori</i> culture plates placed 10 cm from the light source. The amount of endoscopic light energy was 7.5 mJ/cm ² .	In vitro PDT study with <i>H. pylori</i> ATCC 700392, using endoscopic light as light source, methylene blue (MB) as a photosensitizer and comparing bactericidal effects of low molecular weight (LMW) and high molecular weight (HMW) chitosan, combined with PDT. Bacterial removal rate and membrane damage evaluated by ethidium bromide monoazide PCR method (EMA q-PCR). Measurement of 8-oxo-2'-dexoyguanosine by ELISA for oxidative stress.	At a chitosan concentration of ≤ 0.05 %, the killing effect did not differ between the two molecular weights, and 100 % bacterial removal rate was observed at a light energy ≥ 6.23 mJ/cm ² powers under 0.02 % MB. After 15 min irradiation, LMW chitosan with high concentration of MB (0.004 %) showed highest killing effects, consistent with the results of EMA q-PCR but not with the level of 8-OHdG. Bactericidal effects of LMW chitosan plus PDT using 0.002 and 0.004 % MB for 15 min irradiation were significantly higher than those using HMW chitosan plus PDT.	[12]
Irradiation for 5 minutes with blue LED source with a light power of 10 mW cm ⁻² at a wavelength of 470 nm.	In vitro study of the effect of curcumin with and without irradiation with blue LEDs on the viability of <i>H. pylori</i> ATCC 700392 (evaluated by counting the number of CFU) and on virulence factors of <i>H. pylori</i> (urease production, motility, adhesion and biofilm formation).	The combination of curcumin and blue LEDs caused significant reductions in viability, urease production, motility, haemagglutination activity, as well as increased disruption of mature preformed biofilms of <i>H. pylori</i> , in comparison to curcumin alone (P < 0.0001), at sublethal concentrations of curcumin.	[13]

In vitro study with H. pylori strain ATCC		
43504 and virulent strain (<i>cag</i> A+		
and <i>vac</i> A+) ATCC 700824 (J99).	Exposure to visible light induced bacterial	
Bacterial suspensions were placed in a	photokilling most effectively at 405 nm	
Petri dish and irradiated according to	and 460 nm. Sub-lethal light dose at 405	
the absorption spectrum of <i>H. pylori</i>	nm caused morphological changes on	
endogenous porphyrins. Illumination	bacterial surface indicating the cell wall as	
efficacy was assessed in comparison	one of the main targets of photodamage.	[14]
with the dark control by plating serial	Besides porphyrins, PPIX and CPI and III,	
dilutions of each sample on Brucella	the endogenous photosensitizers	
agar plates with 10 % FBS. After	responsible for bacterial photokilling also	
incubation at 37 °C in microaerophilic	include flavin-type molecules such as	
atmosphere, surviving bacterial cells	riboflavin.	
(CFU/ml) were counted.		
	In vitro study with H. pylori strain ATCC 43504 and virulent strain (cagA+ and vacA+) ATCC 700824 (J99). Bacterial suspensions were placed in a Petri dish and irradiated according to the absorption spectrum of H. pylori endogenous porphyrins. Illumination efficacy was assessed in comparison with the dark control by plating serial dilutions of each sample on Brucella agar plates with 10 % FBS. After incubation at 37 °C in microaerophilic atmosphere, surviving bacterial cells (CFU/ml) were counted.	In vitro study with H. pylori strain ATCC43504 and virulent strain (cagA+ and vacA+) ATCC 700824 (J99).Bacterial suspensions were placed in a Petri dish and irradiated according to the absorption spectrum of H. pylori endogenous porphyrins. Illumination efficacy was assessed in comparison with the dark control by plating serial dilutions of each sample on Brucella agar plates with 10 % FBS. After incubation at 37 °C in microaerophilic atmosphere, surviving bacterial cells (CFU/ml) were counted.Exposure to visible light induced bacterial photokilling most effectively at 405 nm and 460 nm. Sub-lethal light dose at 405 nm caused morphological changes on bacterial surface indicating the cell wall as one of the main targets of photodamage. Besides porphyrins, PPIX and CPI and III, the endogenous photosensitizers responsible for bacterial photokilling also include flavin-type molecules such as riboflavin.

ATCC - American Type Culture Collection; CFU - Colony-Forming Unit; KCTC - Korean Collection for Type Cultures; LED - Light Emitting Diode; PDT – photodynamic therapy; ROS - Reactive Oxygen Species

Table S3. Relevant *in vitro* and *in vivo* studies on anti-*H. pylori* effectiveness of micro- or nanoparticles in the past five years

Micro/nanoparticles	Study design	Outcome	Reference
Floating	In the in vitro study the H. pylori ATCC 26695	In vitro, the optimized batch showed 100 %	
mucoadhesive	growth inhibition was performed by OD	H. pylori growth inhibition in 15 h. In rabbit	
alginate beads	checked at several time points.	stomach was confirmed the gastric retention	
containing amoxicillin	The in-vivo study was carried out by	of optimized formulation demonstrated its	[15]
trihydrate with a size	administering beads to six healthy New	efficacy as stomach-specific delivery of the	
range of 1.39 ± 0.07	Zealand breed white rabbits and monitoring	drug.	
mm to 1.66 ± 0.03 mm	them through an X-ray imaging method.		
Biomimetic hydroxyapatite nanocrystals coated with lactoferrin (LF- Coated HA) combined with cell free supernatant from probiotic <i>Lactobacillus</i> <i>paracasei</i> (LFHP)	In vitro and in vivo evaluation of antibacterial and antinflammatory properties, humoral antibody induction, histopathological analysis and absence of side effects.	In vitro, LFHP treatment showed a higher antibacterial activity against <i>H. pylori</i> compared to antibiotic pool (AP) therapy. In vivo, LFHP therapy demonstrated higher antibacterial, anti-inflammatory and immune response activities and absence of hematological alterations, compared with AP therapy.	[16]
Chitosan-coated amoxicillin trihydrate- loaded <i>Caesalpinia</i> <i>pulcherrima</i> galactomannan (CPG)- alginate beads (CCA- CPG-A)	In vitro studies of mucoadhesion, drug release, floating and H. pylori growth inhibition performed with a clinical isolated strain. In vivo studies in Wistar rats for gastric mucoadhesion, H. pylori growth inhibition using PCR amplification of isolated DNA, rapid urease test.	In vitro–in vivo growth inhibition study showed complete eradication of <i>H. pylori</i> . In vivo mucoadhesion study showed more than 85 % mucoadhesion of beads even after 7th hour.	[17]

	HP55/PLGA NP was developed as an oral		
	delivery system of <i>H. pylori</i> recombinant	HP55/PLGA NPs controlled the release of	
	antigen CCF. Study about the immunogenicity	antigen CCF in the acidic environment	
	and prophylactic vaccination of the vaccine	(pH \leq 5.5). Immunized mice with	
nanonarticles (~200	was performed in SPF BALB/c mice, which	HP55/PLGA-CCF nanoparticles induced high	[12]
nanoparticles (~200	were immunized by intraperitoneal injection	levels of urease-specific antibodies and	[10]
1111)	or oral administration. Two weeks after the	memory T cell responses. A month after H.	
	final immunization, mice were infected with	pylori challenge, 43 % of mice were	
	H. pylori SS1 and, after 1 month, the mice	completely protected.	
	were sacrificed to evaluate <i>H. pylori</i> infection.		
	In vitro determination of bactericidal activity		
	of clarithromycin (CLR)-loaded AGS-NPs	AGS-NPs loaded with CLR demonstrated an	
	against <i>H. pylori</i> through bacterial	enhanced bactericidal effect in vitro due to	
ACS mombrand	enumeration after incubation with the NPs.	preferential binding of AGS-NPs with H.	[19]
AGS Memorantialas	In vivo determination of anti-H. pylori efficacy	pylori. In vivo, CLR-loaded AGS-NPs showed	
	of CLR-loaded AGS-NPs orally administered in	superior anti-H. pylori efficacy when	
(AGS-NPS)	C57BL/6 male mice infected with <i>H. pylori.</i>	compared to free CLR or a non-targeted NP	
	Acute toxicity AGS-NPs evaluated in vivo, by	formulation. Toxicity tests showed no	
	orally administration of AGS-NPs to	adverse effects from the AGS-NPs.	
	uninfected C57BL/6 male mice.		
	In vivo assay with six-week old Balh/C male	Control: 163 ± 25 CFU/stomach; Amoxicillin-	
Ureido-conjugated	mice After treatment the stomache were cut	loaded UCCs-2/TPP nanoparticles:	
amoxicillin-UCCs-	and the H nylori bacterial colony counting	21 ± 9 CFU/stomach, 8 ± 1 CFU/stomach for	[20]
2/TPP nanoparticle	was performed	15 mg/kg and 30 mg/kg of amoxicillin,	
	was performed.	respectively.	
HP55/poly(n-	Oral administration in a prophylactic mice	NPs protected the CCF antigen from the	[21]
butylcyanoacrylate)	model (male BALB/c mice). The cytotoxicity of	acidic pH in simulated gastric fluid (SGF, pH	[∠⊥]

(PBCA) NPs carrying H.	HP55/PBCA-CCF NPs was evaluated in RAW	1.2) and from the proteolysis in simulated	
pylori subunit vaccine	264.7 and GES-1 cells by MTT assay. Vaccine	intestinal fluid (SIF, pH 7.4). No significant	
CCF.	immunogenicity and the response of humoral	cytotoxicity of HP55/PBCA-CCF NPs was	
	immunity was evaluated through checking	found at concentrations from 10 to 100	
	elevation of the levels of antigen-specific	μg/mL after 24 h both in RAW 264.7 and	
	antibodies in the serum.	GES-1 cells. Vaccination of mice with	
		HP55/PBCA-CCF NPs triggered a local and	
		systemic humoral immune response and	
		elicited a Th1/Th17 response.	
		In vitro, with an AMX concentration of 2	
		μg/mL AMX-PLGA/Cs NPs and AMX-	
		PLGA/UCCs-2 NPs showed significant	
Amovicillin-loaded		antibacterial activity during all co-incubation	
urea-modified (AMX-	In vitro study: growth inhibition of H. pylori	periods; compared with the AMX solution,	
	ATCC 26695 was determined using OD_{590}	both NPs exhibited better bacterial growth	
Amovicillin loadod	measurements.	inhibition effect after 6 h; to 12 and 24 h,	
	Male mice (Balb/c strain) with 4 weeks were	AMX-PLGA/UCCs-2 NPs showed more	[22]
PI = CA/Cc NPc with 190	used for the <i>in vivo</i> study. The viable bacterial	antibacterial effect than AMX and AMX-	
and 360 nm to $nH 1.2$	count of each stomach was calculated by	PLGA/Cs nanoparticles	
and 300 mm to pri 1.2	counting the number of colonies.	In vivo, with an AMX concentration of	
and 7.4, respectively.		15 mg/Kg the mice treated once a day for 7	
		days with AMX-PLGA/Cs NPs and AMX-	
		PLGA/UCCs-2 NPs all had lower bacterial	
		load than AMX-treated mice.	
Gold nanostars	In vitro evaluation of the photothermal	Photoacoustic imaging confirmed that	
conjugated with acid-	antibacterial effect of GNS@Ab. Gold	prepared GNS@Ab targeted actively H.	[23]
sensitive cis-aconitic	nanostar-based theranostic agents were	pylori in the stomach. GNS@Ab nanoprobes	

anhydride modified	employed for photothermally eradicating H.	killed H. pylori in vivo under NIR laser	
anti- <i>H. pylori</i>	pylori in vivo in SPF BALB/c mice, and 40 H.	irradiation and all GNS@Ab nanoprobes	
polyclonal antibodies	pylori strains with antibiotic resistance	were excreted out of gut within 7 days after	
(GNS@Ab)	isolated from clinical patients. GNS@Ab	oral administration. Gastric local lesion	
	influence on gut microbiome was investigated	caused by H. pylori restored to normal status	
	by sequencing.	within 1 month. GNS@Ab nanoprobes within	
		therapeutic doses did not damage intestinal	
		bacteria imbalance. Forty clinical specimens	
		of H. pylori with antibiotic resistance were	
		treated and killed with GNS@Ab	
		nanoprobes.	
Chitosan-DNA nanoparticles (mean diameter of 117.7 nm)	CagW gene DNA vaccine was encapsulated in chitosan NPs (pcDNA3.1 (+)-cagW-CS-NPs). The stability and <i>in vitro</i> expression of chitosan NPs were studied by DNase I digestion and transfection, and the immune responses elicited in specific pathogen-free (SPF) mice by the pcDNA3.1 (+)-cagW-CS-NPs were evaluated. The protective potential pcDNA3.1 (+)-cagW-CS-NPs was evaluated by challenging with <i>H. pylori</i> (ATCC: 43504).	Chitosan encapsulation protected the DNA plasmid from DNase I digestion, and the cagW gene could express in HDF cells and maintain good bioactivity at the same time. In <i>in vivo</i> assays, mice immunized with pcDNA3.1 (+)-cagW-NPs showed better immune responses and prolonged release of the plasmid DNA, in comparison to the mice immunized with the control plasmid.	[24]
Amoxicillin (AMX) minitab tablets (AMX- MTs) with mean diameter of 4.0± 0.0	In vitro study of the release profiles of AMX- MTs and AMX-LPNs and antimicrobial activity assessment using <i>H. Pylori</i> ATCC 700392/26695 for the agar plate diffusion	In vitro, MT-6 and LPN-11 showed a significantly higher antibacterial activity, with a significantly wider zone of inhibition (33.2 ± 2.5 and 34.1 ± 1.3, respectively),	[25]
thickness between 3.4	method assays. MIC determined by the	compared to control (28.5 \pm 1.8). The MIC of	
and 4.5 mm, and AMX	microdilution broth test.	both optimized tablet formula (MT-6) and	

lipid polymer	In vivo study of the antimicrobial activity and	LPNs formula (LPN-11) was around two-fold	
nanoparticles (AMX-	oral pharmacokinetics of the optimum MT and	lower than the control against <i>H. pylori</i> .	
LPNs) with size ranging	LPN formulations in comparison to market	In vivo, relative bioavailability of the AMX	
between 235±34 nm	tablet using 24 male Wistar rats.	was 1.85 and 1.8 after the oral use of LPN11	
and 390 ± 28 nm.		and MT-6, respectively, compared to the	
		market tablet.	
	In vitro evaluation of ChMics ability to adhere		
	H. pylori SS1 and clinical isolate J99 by		
	incubation of ChMics with FITC-labelled H.		
	pylori strains and visualization of ChMics and		
	adherent FITC-labelled <i>H. pylori</i> by CLSM.		
	ChMics cytotoxicity evaluated towards human	In vitro, ChMics adhered both H. pylori	
	gastric adenocarcinoma cell line (AGS, ATCCR	strains without cytotoxicity towards human	
Chitosan microspheres	CRL-1739 [™]) using elution/extract and direct	gastric cells. Ex vivo studies showed that	
size (XL \sim 120 µm and	contact assays.	smaller (XS) microspheres penetrate further	
XS. \sim 40 µm) and	In vivo studies: evaluation of ChMics	within the gastric foveolae. <i>In vivo</i> assays	[26]
degree of acetylation	penetration into gastric mucus of C57BI /6	showed 88 % reduction of infection when <i>H</i> .	
(6% and 16%)	mice and study of ChMics efficiency in H	<i>pylori</i> -infected mice (C57BL/6) were treated	
	<i>pylori</i> -infected C57BL/6 mice. At the end of	with more mucoadhesive XL6 and XS6	
	the treatment plan, animals were sacrificed	ChMics.	
	and <i>H. pylori</i> infection levels in mice stomach		
	tissue were quantified by colony forming		
	assay PCB and histological analysis were		
	nerformed		
Chitagan (nahu (namulia	performed.		
	in vitro studies of drug release, mucoadnesion	SPIO/AIVIO@PAA/CHI INPS are biocompatible	[27]
acid) particles co-	and mucopenetration evaluation, preventive	and retain the plotlim inhibition and the	[27]
loaded with	antibiofilm assay, cytotoxicity (with NIH/	bactericidal effect of amoxicillin against H.	

superparamagnetic	3T3 and AGS cell lines) and bacterial growth	pvlori. SPIO/AMO@PAA/CHI NPs adhered to	
iron oxide	inhibition assay (with <i>H. pylori</i> strains127-4,	the gastric mucus layer, due to the	
nanoparticles and	125-54, and 125-57).	mucoadhesive property of chitosan, and	
amoxicillin	In vivo study of the eradication efficacy of H.	passed rapidly through the mucus layer after	
(SPIO/AMO@PAA/CHI)	pylori by SPIO/AMO@PAA/ CHI NPs and	exposure to a magnetic field. The NPs	
	determination of residual	prolonged the amoxicillin residence time in	
	SPIO/AMO@PAA/CHI NPs in the stomach of	the stomach, reducing the required drug	
	BALB/c mice.	dose and treatment time.	
Fullerenol nanoparticles (FNPs)	 In vitro, the survival of treated H. pylori cells with different concentrations of FNP A (50,100, and 200 μg/mL) was detected in acidic medium (pH 2.20). In vivo, a model of H. pylori infection in C57BL/6 mouse was generated. H. pylori-specific serum Ig levels in the infected mice were detected by ELISA. Biofilms were cultured in pH 2.20 to simulate H. pylori colonies in the stomach, treated with different concentrations of FNP A (50, 100, and 200 μg/mL) for 40 min and observed by SEM. 	FNPs exerted strong effect on <i>H. pylori</i> eradication <i>in vitro</i> and <i>in vivo</i> due to peroxidase-like activity. FNP treatment of <i>H.</i> <i>pylori</i> biofilm resulted in collapse of the bacteria due to break down of polysaccharides by FNPs in cell wall components.	[28]

CFU - Colony-Forming Unit; CLSM - confocal laser scanning microscopy; FESEM - Field Emission Scanning Electron Microscopy; ELISA - enzyme-linked immunosorbent assay; MBC - Minimum bactericidal concentration; MIC - Minimum Inhibitory Concentration; PCR - - Polymerase chain reaction; ROS - Reactive Oxygen Species; TEM - Transmission Electron Microscopy

Vaccine	Vaccine component(s)	Adjuvant	Administration route(s)	Protective response(s)	Animal model
Epitope vaccine CTB-Lpp20	H. pylori Lpp20 epitopes	СТВ	Intraperitoneal	Antibody Production (IgG, IgA, and sIgA) and Th1- biased response	BALB/c mice
Multi-epitope vaccine CTB-UE displayed on the surface of non- genetically modified <i>L. lactis</i> particles (CUE -GEM)	Tandem copies of the B cell epitopes and Th cell epitopes from the <i>H. pylori</i> urease A and B sub-units	СТВ	Oral	Urease-specific antibody and pro-inflammatory cytokine response; CD4+Th cell-mediated and humoral immunity, regulation of gastric pro-inflammatory cytokine profile (IFN-γ and IL-17).	BALB/c mice
Fusion protein vaccine	Recombinant <i>L. lactis</i> strain expressing a fusion protein of Omp22 and HpaA from	FA	Oral	Induction of significant systematic humoral immune response	BALB/c mice

Table S4. List of *H. pylori* vaccines tested in animal models, over the past six years

Fusion protein vaccine	Recombinant <i>L. lactis</i> strain expressing a fusion protein of Omp22 and HpaA from <i>H. pylori</i>	FA	Oral	Induction of significant systematic humoral immune response	BALB/c mice	[31]
Recombinant L. <i>lactis</i> strain expressing H. pylori Lpp20	<i>H. pylori</i> Lpp20 protein	FA	Oral	Elevated levels of serum Lpp20-specific IgG antibodies	SPF BALB/c mice	[32]
Multivalent epitope-based vaccine (CWAE)	<i>H. pylori</i> urease, NAP, HSP60	HA	Oral	Significant reduction of the number of <i>H. pylori</i> colonies in the stomach of Mongolian gerbils. Elicited higher levels of mixed CD4 ⁺ T cell (Th cell) response, IgG, and secretory	Mongolian gerbils	[33]

Reference

[29]

[30]

				IgA (sIgA) antibodies against H. pylori.		
Multivalent epitope-based vaccine (CFAdE)	<i>H. pylori</i> adhesins urease, Lpp20, HpaA, CagL	PA	Oral	Induction of high levels of specific antibodies against urease, Lpp20, HpaA and CagL. <i>H. pylori</i> colonization was decreased. Protection correlated with IgG and sIgA antibody and antigen- specific CD4+ T cells.	Mongolian gerbils	[34]
Systemic whole cell inactivated vaccine	Heat inactivated <i>H. pylori</i> WC	Aluminum phosphate	Systemic (intramuscular, subcutaneous)	High IgG titer levels and long term protective immunity.	Swiss albino mice	[35]
CCF-encapsulated acid-resistant HP55/PLGA NPs	<i>H. pylori</i> recombinant antigen CCF	АН	Oral	Th1/Th17-bias immune response. Increased levels of antigen-specific antibodies, switched IgG2a/IgG1 ratio and proinflammatory cytokines detected.	BALB/c mice	[18]
Inactivated V. <i>cholerae-</i> HpaA- CFA/I	Formaldehyde-inactivated recombinant <i>V. cholera</i> expressing HpaA alone or together with CFA/I	СТ	Oral	Induction of high serum anti-HpaA responses.	C57/Bl6 mice	[36]
CotC-CTB-UreB- expressing <i>B.</i> subtilis spores	H. pylori urease B (UreB) and B. subtilis spore coat protein CotC as a fusion protein	СТВ	Oral	Increased levels of UreB- specific IgG in serum and UreB-specific IgA in faeces, elevated levels of IL-10 and IFN-γ in splenocytes.	BALB/c mice	[37]

Recombinant vaccine	Brucella OMPs-CagA	CpG	Subcutaneous	Decrease of bacterial colonization in gastric, splenetic and blood tissues. Increased levels of IgG, promotion of Th1 immune response.	BALB/c mice	[38]
Vaccines composed of <i>H. pylori</i> FliD and the adjuvants CpG, Addavax, or CTB	rFLiD	CpG, Addavax, or CTB	Subcutaneous	Induction of antigen-specific immune responses of Th1/Th17 type, particularly with CpG-adjuvanted FLiD	C57BL/6 mice	[39]
whole cell vaccine (WCV)	Formalin-inactivated H. pylori WCV	mmCT	Oral	Reduction in colonization of <i>H. pylori</i> in the stomach of mice, increase in serum IgG and intestinal-mucosal IgA anti- <i>H. pylori</i> antibody responses and strong T cell and IFNγ and IL-17A cytokine responses.	C57BL/6 mice	[40]
HP55/PBCA-CCF NPs oral subunit vaccine	subunit vaccine CCF	АН	Oral	Production of serum antigen-specific antibodies, mucosal secretory IgA, and proinflammatory cytokines. Th1/Th17 response and augmented lymphocytes.	BALB/c mice	[21]
Multivalent epitope-based vaccine (CTB-HUUC)	CTB-HUUC	СТВ	Oral	Promotion of <i>H. pylori</i> - specific lymphocyte responses and mixed CD4+ T cell immune response, indicated by IFN-γ, IL-4, and IL-17 production in mice. Both oral prophy-lactic and	BALB/c mice	[41]

				therapeutic vaccinations reduced gastric urease activity and <i>H. pylori</i> infection and protected stomachs in mice.		
Engineered <i>L. lactis</i> strain expressing NapA	<i>H. pylori</i> NapA subunit	-	Oral	Induction of both polarized Th17 and Th1 responses.	BALB/c mice	[42]
Epitope-based vaccine	Immunodominant epitope peptides derived from HpaA	CpG	Subcutaneous, intranasal	Protection of mice against <i>H. pylori</i> infection and stimulation of strong Th1 responses.	BALB/c mice	[43]
Oral vaccine	Engineered <i>L. lactis</i> strain expressing HpaA	FA	Oral	Enhanced serum IgG level	BALB/c mice	[44]
Outer-membrane vesicles (OMVs) vaccine	H. pylori OMVs	СТ	Oral	Strong humoral and significant mucosal immune response, induction of T helper 2 (Th2)-biased immune responses.	C57BL/6 mice	[45]
α-GalCer- adjuvanted <i>H.</i> <i>pylori</i> vaccine	Whole-cell inactivated <i>H.</i> <i>pylori</i> antigen	α-GalCer	Oral	Strong intestinal and systemic Th1 responses and significant antigen-specific mucosal and systemic antibody responses.	C57BL/6, IL- 17RA ^{-/-} and IL-1RI ^{-/-} mice	[46]
Oral vaccine	L. lactis strain expressing H. pylori Lpp20	L. lactis	Oral	Elevated serum IgG levels and lowered urease activity	BALB/cmice	[47]
Oral vaccine	Recombinant <i>L. lactis</i> expressing <i>H. pylori</i> CagL (<i>L. lactis</i> -pAMJ2008-CagL)	-	Oral	Stimulation of CagL-specific antibodies: IgA, IgG, cytokine IL-17 and IFN-γ. Specific anti-CagL IgA	BALB/c mice	[48]

				response detected in the feces of immunized mice		
Parenteral vaccine	Recombinant <i>H. pylori</i> UreA, UreB, and NAP	cGAMP	Parenteral (intranasal, intramuscular, subcutaneous)	Gastric mucosal <i>H. pylori</i> colonization significantly reduced. Antigen-specific serum IgG and mucosal IgA responses. Induction of antigen-specific Th1 and Th17 responses.	BALB/c mice	[49]
Live attenuated measles virus vaccine	Live attenuated measles virus expressing <i>H. pylori</i> HspA (MV-HspA)	FA	Intraperitoneal	Induction of humoral immune response	BALB/c mice	[50]
Multivalent, subunit vaccine	NAP, UreA and UreB	dmLT	Oral	Reduction of gastric bacterial colonization; increased serum antigen- specific IgG and mucosal IgA responses. Induction of Th1/Th17 immune responses	SPF BALB/c mice	[51]
Multi-component vaccine	<i>H. pylori</i> LPS and recombinant CagA (rCagA)	CpG	Systemic (intramuscular)	Induction of robust Th1- biased immune responses	BALB/c mice	[52]
Outer membrane proteins (OMPs) and whole cell vaccine (WCV)	OMP and WCV	Purified <i>H.</i> <i>pylori</i> outer membrane vesicles (OMVs)	Gavage	Enhancement of systematic and gastric mucosal immunity, and humoral immunity. Induction of Th1 immune response. Eradication of <i>H. pylori</i> enhanced.	C57BL/6 mice	[53]
Semisynthetic CRM197–1	Totally synthesized tri-D- <i>glycero</i> -D- <i>manno</i> -heptose antigen 1 from <i>H. pylori</i> LPS	FA	Subcutaneous	Very robust T-cell- dependent antigen-specific immune response, with very	C57BL/6J mice	[54]

glycoconjugate vaccine				high titers of IgG1 and IgG2b protective antibody isotypes.		
Trivalent subunit <i>H.</i> <i>pylori</i> vaccine	Recombinant <i>H. pylori</i> antigens (NAP/UreA/UreB)	dmLT	Oral	Significant reduction of <i>H.</i> <i>pylori</i> gastric colonization 6 weeks after challenge, associated with the induction of antigen-specific Th17 and local mucosal IgA immune responses.	BALB/c mice	[55]
Saccharomyces cerevisiae-based oral vaccine	EBY100/pYD1-UreB and EBY100/pYD1-VacA	S. cerevisae	Oral	Significant production of IgG and secretory IgA responses and reduced <i>H. pylori</i> loads.	BALB/c mice	[56]

AH - Aluminum hydroxide; CagA - cytotoxin-associated gene A; CTB - Cholera toxin B; dmLT - double-mutant heat-labile toxin; FA - Freund's adjuvant; HSP60 - heat shock protein 60; HpaA - *H. pylori* adhesin A; HspA - heat shock protein A; LPS - lipopolysaccharide; mmCT - multiple mutant cholera toxin; NapA - neutrophil-activating protein A subunit; OMPs - outer membrane proteins; NAP - neutrophil-activating protein; PA - Polysaccharide adjuvant; VacA - vacuolating cytotoxin A; WC- whole cells

 Table S5. Relevant in vivo studies on anti-H. pylori effectiveness of natural products in the past six years

Natural product	Extract/	Study design	Outcome	Reference
-	compound			
Conifer Green Needle Complex (CGNC)	CGNC contains chlorophyll derivatives, carotenoids, vitamins A, E, and K, phytosterols, polyprenols, squalene, resin acids (approximately 20 %), essential oils and natural antibiotics (phytoncides)	Study with adult patients (26 treated, 24 no treatment) with precancerous gastric lesions. Patients received 600 mg per day of CGNC before food for six months. During gastroscopy and immediately after obtaining biopsy samples with one piece of tissue from the antral section, a rapid urease test for detecting <i>H. pylori</i> was carried out.	After six months of CGNC therapy, <i>H. pylori</i> infection could no longer be observed in 57.1 % of infected patients compared with 15.4 % infected patients in the control, untreated group. Moreover, partial regression of dyspeptic symptoms, reduction in endoscopic signs of gastritis, an increase of pepsinogen–pepsin in gastric juice, and total regression or reduction in the degree of intestinal metaplasia and lymphoplasmacytic infiltration were observed.	[57]
Medicinal herb and spice	Methanol extract of Eryngium foetidum	In vivo, swiss mice were inoculated with 0.2 mL of 10 ⁸ CFU/mL of H. pylori and divided into 5 groups; the control group received the vehicle and the four others received 125, 250, and 500 mg/kg of methanol extract of Eryngium foetidum and ciprofloxacin (500 mg/kg) for 7 days, respectively. H. pylori colonization and number of colonies in gastric biopsies culture were assessed on days 1 and 7 after treatment.	The number of <i>H. pylori</i> infected animals was 17 % (plant-extract) and 0 % (ciprofloxacin) compared to 100 % for the infected untreated group. Plant- extract (381.9 ± 239.5 CFU) and ciprofloxacin (248 ± 153.2 CFU) significantly reduced bacterial load in gastric mucosa compared to untreated, inoculated mice (14350 ± 690 CFU)	[58]

Medicinal herb	Tinospora sagittata (Oliv.) Gagnep. var. craveniana (S.Y. Hu) Lo (TSG)	In vivo, two groups of 48 mice were inoculated intragastrically with 0.3 mL of <i>H. pylori</i> SCYA201401 (1 × 10 ⁸ CFU/mL) and 0.3 mL of <i>H. pylori</i> SS1 (1 × 10 ⁸ CFU/mL), respectively on three alternate days. Animals were fasted 24 h before and 2 h after each inoculation. After 24 days, 8 mice from each experimental group were sacrificed. The eradication ratios were determined by use of rapid urease tests and bacterial culture.	<i>In vivo,</i> the eradication ratios in the TSG and palmatine groups of mice were 80 and 50 % compared with 70 % in the triple-therapy group.	[59]
Medicinal herb	Geniposide and genipin found in <i>Gardenia</i> jasminoides	In vivo, 60 male C57BL/6 mice were used for tests. All of the mice, apart from those in the control group, were infected with 1×10^9 CFU of <i>H. pylori</i> 26695 every other day for a total of 3 doses using stomach tubes. All test samples (geniposide and genipin) were dissolved in water and administered orally every day at a volume of 0.2 mL per mouse. Stomach and blood samples were collected from all of the groups the day after the last treatment was administered.	Geniposide and genipin reduced <i>H. pylori</i> infections <i>in vivo</i> , interfering with the growth and virulence of <i>H.</i> <i>pylori</i> , as well as mitigating gastric inflammation caused by a <i>H. pylori</i> infection.	[60]
Medicinal herb	Bryophyllum pinnatum	Sixty mice were inoculated orally through a feeding tube four times at 2-day intervals with 0.2 mL of an <i>H. pylori</i> α2 suspension containing 10 ⁸ CFU/mL. The presence of <i>H. pylori</i> on the mice stomachs was confirmed by urease,	Treatment of infected animal with plant-extract significantly increases the percentage of negativity from 67 to 83 %, respectively, at 125 and 500 mg/kg doses. Bryophyllum pinnatum extract (85.91 ± 52.91 CFU) and standard (25.74 ± 16.15 CFU) also	[61]

		catalase and oxidase testing and Gram	reduced significantly ($p < 0.05$) bacterial	
		staining	load of gastric mucosa as compared to	
		Stanning.	untreated infected mice (11883 + 1831	
		Male Mongolian gerbils were infected	The CFU in the stomachs of the <i>H</i> .	
		with <i>H. pylori</i> and then, wasabi leaf	<i>pylori</i> -infected groups by treatment	
		extract (30 mg / kg body weight) and ally	with wasabi leaf extract $(1.9 + 1.8)$ or	
	Wasabi	isothiocyanate (AIT) (3.0 mg / kg body	$AIT (2.3 \pm 1.8)$ showed a decreasing	
Medicinal herb	(Wasabia	weight) were orally administered. The	tendency compared with the positive	[62]
	japonica	CELL of H pulori gostric musocal orosion	control group (2.4 ± 1.4) The treatment	[02]
	Matsum)	and notochial homorrhage secres in the	decreased the score of gastric museual	
		stomache of the animale in each group	arosion in the <i>H</i> nylari infected	
		stomachs of the animals in each group	erosion in the <i>H</i> . <i>pylon</i> -infected	
		were analysed.	driiffidis.	
		2 man and 1 woman received gosnuyuto	The eradication of <i>H. pylori</i> was	
	Goshuyuto	7.5 g/day and rabeprazole 20 mg/day for	achieved after treatment with	[60]
Medicinal herb		28 days after the failure of each	goshuvuto plus rabeprazole, in the	[63]
		secondary eradication therapy. All cases	three studied individuals.	
		received a post-treatment UBT.		
	Burdock			
	complex (BC)	In the clinical trial, <i>H. pylori</i> positive		
	constitutes of	individuals (n = 36) were enrolled and	Individuals infected with H. pylori	
	burdock	requested to ingest BC (n = 19) or	treated with BC for 8 weeks significantly	
	(Arctium lappa),	placebo (n = 17) for 8 weeks. Antioxidant	decreased (P <0.05) the UBT value, had	
Madiainal have	angelica	capacity, total phenol, UBT, inflammatory	inflammatory markers with improved	[C 4]
iviedicinal herb	(Angelica	markers were analysed in the first, 4th,	antioxidant activity and phenolic levels	[64]
	sinensis),	8th and 10th weeks. Furthermore, an	compared to placebo. In addition, the	
	gromwell	endoscopic examination was performed	consumption of BC healed the ulcer	
	(Lithospermum	at the initial consultation and at the 10th	wound considerably	
	ervthrorhizon).	week.	,	
	and sesame			

	(Sesamum indicum) oil			
Vitamins and garlic	vitamin (C, E, and selenium) and garlic (extract and oil)	3365 adult patients (2258 <i>H. pylori</i> positive, 1107 <i>H. pylori</i> negative). Incidence of gastric cancer was ascertained from gastroscopies.	<i>H. pylori</i> treatment for two weeks and vitamin or garlic supplementation for seven years were associated with a statistically significant reduced risk of death due to gastric cancer for more than 22 years. <i>H. pylori</i> treatment and vitamin supplementation were also associated with a statistically significantly reduced incidence of gastric cancer.	[65]
Plant	Essential oil and ethanolic extract obtained from <i>Casearia</i> sylvestris Swartz leaves.	In vivo action was investigated by employing male Wistar rats experimentally infected with <i>H. pylori</i> ATCC 43504. Stomach fragments were used to determine activity against <i>H.</i> <i>pylori</i>	<i>In vivo</i> tests showed that ethanolic extract eradicated <i>H. pylori</i> from the gastric lesions and decreased the ulcerative lesion size.	[66]
Edible fungi	Hericium erinaceus extracts	<i>In vivo</i> tests were performed with C57BL mice. Colonization tests were carried out in homogenized stomachs 3 weeks after the inoculation of <i>H. pylori</i> in the animals;	Mice receiving the H. erinaceus extract had a mean <i>H. pylori</i> , about 1 log lower than the control (no extract) animals.	[67]
Medicinal herb	-	A meta-analysis of 8 trials with 919 participants	Compared with using the drug therapy only, the combination of Chinese herbal medicines with the drug therapy more effectively eliminates <i>H. pylori</i> and alleviates adverse reactions	[68]
Ginger (Zingiber officinale)	1-g ginger powder tablets	Clinical trial: 15 patients with <i>H. pylori</i> positive functional dyspepsia received 3 g/day ginger powder as three 1-g tablets	Significant <i>H. pylori</i> eradication rate of 53.3 % (P = 0.019) and improvement of	[69]

		for 4-weeks. Dyspepsia symptoms were	dyspeptic symptoms after ginger	
		asked before and after the intervention	supplementation.	
		and <i>H. pylori</i> eradication was assessed by		
		a non-invasive stool antigen test.		
		Clinical trial with 98 healthy and H. pylori-		
		infected patients: the cinnamon group	Significant roduction of clinical	
		received multidrug treatment and a	symptoms and higher <i>II</i> , nulari	
Cinnamon	Cinnamon	cinnamon extract capsule and control	aradisation rate in sinnamon group	[70]
Cimanion	extract capsule	group received multi-drug treatment and	(72.47.%) in sinnamon group compared	[/0]
		a 40 mg starch capsule, for 3 months.	to 52.06 % in the central group)	
		Cinnamon extract efficacy was analysed		
		by the UBT.		
		A total of 160 mice were divided into		
		eight groups (n = 10 each) and were	The CLO test and <i>H. pylori</i> PCR in the	
		administered different treatments for 2	gastric mucosa after treatment showed	
Cloves, basil,	β-caryophyllen,	and 4 weeks. <i>H. pylori</i> SS1 eradication	that the treatment rate increased as the	
cinnamon	a natural	was assessed using a Campylobacter-like	dose of β-caryophyllen increased.	[71]
leaves, and	bicyclic	organism (CLO) test and <i>H. pylori</i> qPCR of	β-caryophyllen -treated mice had	[/1]
copaiba balsam.	sesquiterpene	the gastric mucosa. The levels of	significantly reduced levels of H. pylori-	
		inflammation of gastric mucosa were	induced inflammation compared to that	
		assessed using histology and	in <i>H. pylori</i> -infected but untreated mice.	
		immunostaining.		

ATCC - American Type Culture Collection; CFU – Colony-Forming Unit; UBT – Urease Breath Test

Phage identification	Phage host strain	Isolation/detection method	Family	Head/Tail size (nm)	Accession number	Reference
-	SchReck 290	Spontaneously production	Undetermined	Head: 70 ± 5x60±4 Tail: 120	Not- sequenced	[72]
HP1	IMMi 290/89	Spontaneously production	Syphoviridae	Head: 55-60 Tail: 170 x 9.5	Not- sequenced	[73]
-	Clinical isolate	Isolated from human faeces	Undetermined	Head: 100 No tail	Not- sequenced	[74]
PhiHp33	B45	UV and low pH induction	Syphoviridae	Head: 62.5 ±7.3 Tail: 92.4±2.97x5-6	NC_016568.1	[75, 76]
1961P	NCTC 11637*	Spontaneously production	Podoviridae	Head: 71.1 ± 2.9 Tail: 23.0 ± 1.0 x 13.3	NC_019512.1	[77]
КНРЗО	Clinical isolate	Spontaneously production	Corticoviridae/Tectiviridae	Head: 68.8 ± 2.3 No tail	NC_019928.1	[78, 79]
KHP40	Clinical isolate	Spontaneously production	Podoviridae	Undetermined	NC_019931.1	[78]
ΦΗΡΕ1	Clinical isolate	Isolated from Zagazig wastewater	Podoviridae	Head: 62 Tail: 12 × 6	Not- sequenced	[80]
ΦΗΡΕ2	Clinical isolate	Isolated from Zagazig wastewater	Siphoviridae	Head: 92.5 Tail: 180 x 15	Not- sequenced	[80]
Нр ф	Clinical isolate	Isolated from human gastric biopsies	Undetermined	Undetermined	Not- sequenced	[81]

Table S6. Phages of *H. pylori* isolated and characterized in laboratory

* Propagation and indicator host

References

1. Zhang L, Wu WKK, Gallo RL, Fang EF, Hu W, Ling TKW, et al. Critical Role of Antimicrobial Peptide Cathelicidin for Controlling *Helicobacter pylori* Survival and Infection. J Immunol. 2016;196:1799–809. doi:10.4049/jimmunol.1500021.

2. Zhang X, Jiang A, Wang G, Yu H, Qi B, Xiong Y, et al. Fusion expression of the PGLa-AM1 with native structure and evaluation of its anti-*Helicobacter pylori* activity. Appl Microbiol Biotechnol. 2017;101:5667–75. doi:10.1007/s00253-017-8302-9.

3. Guzman J, Téné N, Touchard A, Castillo D, Belkhelfa H, Haddioui-Hbabi L, et al. Anti-*Helicobacter pylori* properties of the ant-venom peptide bicarinalin. Toxins (Basel). 2018;10. doi:10.3390/toxins10010021.

4. Zhang X, Jiang A, Qi B, Yu H, Xiong Y, Zhou G, et al. Secretion expression of human neutrophil peptide 1 (HNP1) in *Pichia pastoris* and its functional analysis against antibiotic-resistant *Helicobacter pylori*. Appl Microbiol Biotechnol. 2018;102:4817–27. doi: 10.1007/s00253-018-8982-9.

5. Alvarez D, Wilkinson KA, Treilhou M, Téné N, Castillo D, Sauvain M. Prospecting Peptides Isolated From Black Soldier Fly (Diptera: Stratiomyidae) With Antimicrobial Activity Against *Helicobacter pylori* (Campylobacterales: Helicobacteraceae). J Insect Sci. 2019;19. doi: 10.1093/jisesa/iez120.

6. Jiang M, Ma L, Huang Y, Wu H, Dou J, Zhou C. Antimicrobial activities of peptide Cbf-K16 against drug-resistant *Helicobacter pylori* infection *in vitro* and *in vivo*. Microb Pathog. 2020;138:103847. doi: 10.1016/j.micpath.2019.103847.

7. Tortora G, Orsini B, Pecile P, Menciassi A, Fusi F, Romano G. An ingestible capsule for the photodynamic therapy of *Helicobacter pylori* infection. IEEE/ASME Trans Mechatronics. 2016;21:1935–42. doi: 10.1109/TMECH.2016.2536944.

8. Ma J, Hiratsuka T, Etoh T, Akada J, Fujishima H, Shiraishi N, et al. Anti-proliferation effect of blue light-emitting diodes against antibiotic-resistant *Helicobacter pylori*. J Gastroenterol Hepatol. 2018;33:1492–9. doi: 10.1111/jgh.14066.

9. Ogasawara K. *Helicobacter pylori* eradication using a light-emitting diode and methylene blue. Laser Ther. 2018;27:21–5. doi:10.5978/islsm.18-OR-01.

10. Baccani I, Faraoni P, Marini M, Gnerucci A, Orsini B, Pecile P, et al. Synergistic effect of photodynamic therapy at 400 nm and doxycycline against *Helicobacter pylori*. Future Microbiol. 2019;14:1199–205. doi:10.2217/fmb-2019-0129.

11. Darmani H, Am Smadi E, Mb Bataineh S. Blue light emitting diodes cripple *Helicobacter pylori* by targeting its virulence factors. Minerva Gastroenterol Dietol. 2019;65:187–92. doi:10.23736/S1121-421X.19.02593-5.

12. Kim EJ, Choi JH, Yang HJ, Choi SS, Lee HK, Cho YC, et al. Comparison of high and low molecular weight chitosan as *in-vitro* boosting agent for photodynamic therapy against *Helicobacter pylori* using methylene blue and endoscopic light. Photodiagnosis Photodyn Ther. 2019;26:111–5. doi:10.1016/j.pdpdt.2019.03.005.

13. Darmani H, Smadi EAM, Bataineh SMB. Blue light emitting diodes enhance the antivirulence effects of Curcumin against *Helicobacter pylori*. J Med Microbiol. 2020;69:617–24. doi:10.1099/jmm.0.001168.

14. Morici P, Battisti A, Tortora G, Menciassi A, Checcucci G, Ghetti F, et al. The *in vitro* Photoinactivation of *Helicobacter pylori* by a Novel LED-Based Device. Front Microbiol. 2020;11. doi:10.3389/fmicb.2020.00283.

15. Dey SK, De PK, De A, Ojha S, De R, Mukhopadhyay AK, et al. Floating mucoadhesive alginate beads of amoxicillin trihydrate: A facile approach for *H. pylori* eradication. Int J Biol Macromol. 2016;89:622–31. doi:10.1016/j.ijbiomac.2016.05.027.

16. Fulgione A, Nocerino N, Iannaccone M, Roperto S, Capuano F, Roveri N, et al. Lactoferrin Adsorbed onto Biomimetic Hydroxyapatite Nanocrystals Controlling - *In Vivo* - the *Helicobacter pylori* Infection. PLoS One. 2016;11:e0158646. doi:10.1371/journal.pone.0158646.

17. Thombre NA, Gide PS. Floating-bioadhesive gastroretentive *Caesalpinia pulcherrima*- based beads of amoxicillin trihydrate for *Helicobacter pylori* eradication. Drug Deliv. 2016;23:405–19. doi:10.3109/10717544.2014.916766.

18. Tan Z, Liu W, Liu H, Li C, Zhang Y, Meng X, et al. Oral *Helicobacter pylori* vaccine-encapsulated acid-resistant HP55/PLGA nanoparticles promote immune protection. Eur J Pharm Biopharm. 2017;111:33–43. doi:10.1016/j.ejpb.2016.11.007.

19. Angsantikul P, Thamphiwatana S, Zhang Q, Spiekermann K, Zhuang J, Fang RH, et al. Coating Nanoparticles with Gastric Epithelial Cell Membrane for Targeted Antibiotic Delivery against *Helicobacter pylori* Infection. Adv Ther. 2018;1:1800016. doi:10.1002/adtp.201800016.

20. Jing Z-W, Luo M, Jia Y-Y, Li C, Zhou S-Y, Mei Q-B, et al. Anti-*Helicobacter pylori* effectiveness and targeted delivery performance of amoxicillin-UCCs-2/TPP nanoparticles based on ureido-modified chitosan derivative. Int J Biol Macromol. 2018;115:367–74. doi:10.1016/J.IJBIOMAC.2018.04.070.

21. Liu H, Liu W, Tan Z, Zeng Z, Yang H, Luo S, et al. Promoting Immune Efficacy of the Oral *Helicobacter pylori* Vaccine by HP55/PBCA Nanoparticles against the Gastrointestinal Environment. Mol Pharm. 2018;15:3177–86. doi:10.1021/acs.molpharmaceut.8b00251.

22. Luo M, Jia Y-Y, Jing Z-W, Li C, Zhou S-Y, Mei Q-B, et al. Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of *Helicobacter pylori*. Colloids Surfaces B Biointerfaces. 2018;164:11–9. doi:10.1016/j.colsurfb.2018.01.008.

23. Zhi X, Liu Y, Lin L, Yang M, Zhang L, Zhang L, et al. Oral pH sensitive GNS@ab nanoprobes for targeted therapy of *Helicobacter pylori* without disturbance gut microbiome. Nanomedicine Nanotechnology, Biol Med. 2019;20. doi:10.1016/j.nano.2019.102019.

24. Chehelgerdi M, Doosti A. Effect of the *cagW*-based gene vaccine on the immunologic properties of BALB/c mouse: An efficient candidate for *Helicobacter pylori* DNA vaccine. J Nanobiotechnology. 2020;18. doi:10.1186/s12951-020-00618-1.

25. Gaber DA, Alhawas HS, Alfadhel FA, Abdoun SA, Alsubaiyel AM, Alsawi RM. Mini-tablets *versus* nanoparticles for controlling the release of amoxicillin: *In vitro/in vivo* study. Drug Des Devel Ther. 2020;14:5405–18. doi:10.2147/DDDT.S285522.

26. Henriques PC, Costa LM, Seabra CL, Antunes B, Silva-Carvalho R, Junqueira-Neto S, et al. Orally administrated chitosan microspheres bind *Helicobacter pylori* and decrease gastric infection in mice. Acta Biomater. 2020;114:206–20. doi:10.1016/j.actbio.2020.06.035.

27. Yang SJ, Huang CH, Yang JC, Wang CH, Shieh MJ. Residence Time-Extended Nanoparticles by Magnetic Field Improve the Eradication Efficiency of *Helicobacter pylori*. ACS Appl Mater Interfaces. 2020;12:54316–27. doi:10.1021/acsami.0c13101.

28. Zhang J, Chen Z, Kong J, Liang Y, Chen K, Chang Y, et al. Fullerenol Nanoparticles Eradicate *Helicobacter pylori* via pH-Responsive Peroxidase Activity. ACS Appl Mater Interfaces. 2020;12:29013–23. doi:10.1021/acsami.0c05509.

29. Li Y, Chen Z, Ye J, Ning L, Luo J, Zhang L, et al. Antibody Production and Th1-biased Response Induced by an Epitope Vaccine Composed of Cholera Toxin B Unit and *Helicobacter pylori* Lpp20 Epitopes. *Helicobacter*. 2016;21:234–48. doi:10.1111/hel.12268.

30. Liu W, Tan Z, Xue J, Luo W, Song H, Lv X, et al. Therapeutic efficacy of oral immunization with a non-genetically modified *Lactococcus lactis*-based vaccine CUE-GEM induces local immunity against *Helicobacter pylori* infection. Appl Microbiol Biotechnol. 2016;100:6219–29. doi:10.1007/s00253-016-7333-y.

31. Zhang R, Duan G, Shi Q, Chen S, Fan Q, Sun N, et al. Construction of a recombinant *Lactococcus lactis* strain expressing a fusion protein of Omp22 and

HpaA from *Helicobacter pylori* for oral vaccine development. Biotechnol Lett. 2016;38:1911–6. doi:10.1007/s10529-016-2173-5.

32. Zhang R, Peng X, Duan G, Shi Q, Chen S, Wang C, et al. An engineered *Lactococcus lactis* strain exerts significant immune responses through efficient expression and delivery of *Helicobacter pylori* Lpp20 antigen. Biotechnol Lett. 2016;38:2169–75. doi:10.1007/s10529-016-2209-x.

33. Guo L, Yang H, Tang F, Yin R, Liu H, Gong X, et al. Oral Immunization with a multivalent epitope-based vaccine, based on NAP, Urease, HSP60, and HpaA, provides therapeutic effect on *H. pylori* infection in Mongolian gerbils. Front Cell Infect Microbiol. 2017;7 AUG. doi:10.3389/fcimb.2017.00349.

34. Guo L, Yin R, Xu G, Gong X, Chang Z, Hong D, et al. Immunologic properties and therapeutic efficacy of a multivalent epitope-based vaccine against four *Helicobacter pylori* adhesins (urease, Lpp20, HpaA, and CagL) in Mongolian gerbils. Helicobacter. 2017;22. doi:10.1111/hel.12428.

35. Suganya K, Prem Kumar A, Sekar B, Sundaran B. Protection of mice against gastric colonization of *Helicobacter pylori* by therapeutic immunization with systemic whole cell inactivated vaccines. Biologicals. 2017;45:39–46. doi:10.1016/j.biologicals.2016.10.002.

36. Tobias J, Lebens M, Wai SN, Holmgren J, Svennerholm AM. Surface expression of *Helicobacter pylori* HpaA adhesion antigen on *Vibrio cholerae*, enhanced by co-expressed enterotoxigenic *Escherichia coli* fimbrial antigens. Microb Pathog. 2017;105:177–84. doi:10.1016/j.micpath.2017.02.021.

37. Zhou Z, Dong H, Huang Y, Yao S, Liang B, Xie Y, et al. Recombinant *Bacillus subtilis* spores expressing cholera toxin B subunit and *Helicobacter pylori* urease B confer protection against H. Pylori in mice. J Med Microbiol. 2017;66:83–9. doi:10.1099/jmm.0.000404.

38. Abadi AH, Mahdavi M, Khaledi A, Esmaeili SA, Esmaeili D, Sahebkar A. Study of serum bactericidal and splenic activity of Total-OMP- CagA combination from *Brucella abortus* and *Helicobacter pylori* in BALB/c mouse model. Microb Pathog. 2018;121:100–5. doi: 10.1016/j.micpath.2018.04.050.

39. Ghasemi A, Mohammad N, Mautner J, Karsabet MT, Ardjmand A, Moniri R. Immunization with recombinant FliD confers protection against *Helicobacter pylori* infection in mice. Mol Immunol. 2018;94:176–82. doi:10.1016/j.molimm.2018.01.001.

40. Holmgren J, Nordqvist S, Blomquist M, Jeverstam F, Lebens M, Raghavan S. Preclinical immunogenicity and protective efficacy of an oral *Helicobacter pylori* inactivated whole cell vaccine and multiple mutant cholera toxin: A novel and non-toxic mucosal adjuvant. Vaccine. 2018;36:6223–30. doi:10.1016/j.vaccine.2018.07.073.

41. Pan X, Ke H, Niu X, Li S, Lv J, Pan L. Protection Against *Helicobacter pylori* Infection in BALB/c Mouse Model by Oral Administration of Multivalent Epitope-Based Vaccine of Cholera Toxin B Subunit-HUUC. Front Immunol. 2018;9:1003. doi:10.3389/fimmu.2018.01003.

42. Peng X, Zhang R, Duan G, Wang C, Sun N, Zhang L, et al. Production and delivery of *Helicobacter pylori* NapA in *Lactococcus lactis* and its protective efficacy and immune modulatory activity. Sci Rep. 2018;8. doi:10.1038/s41598-018-24879-x.

43. Yang WC, Sun HW, Sun HQ, Yuan HM, Li B, Li HB, et al. Intranasal immunization with immunodominant epitope peptides derived from HpaA conjugated with CpG adjuvant protected mice against *Helicobacter pylori* infection. Vaccine. 2018;36:6301–6. doi:10.1016/j.vaccine.2018.09.007.

44. Zhang R, Wang C, Cheng W, Duan G, Shi Q, Chen S, et al. Delivery of *Helicobacter pylori* HpaA to gastrointestinal mucosal immune sites using *Lactococcus lactis* and its immune efficacy in mice. Biotechnol Lett. 2018;40:585–90. doi:10.1007/s10529-017-2502-3.

45. Liu Q, Li X, Zhang Y, Song Z, Li R, Ruan H, et al. Orally-administered outer-membrane vesicles from *Helicobacter pylori* reduce *H. pylori* infection via Th2-biased immune responses in mice. Pathog Dis. 2019;77:50. doi:10.1093/femspd/ftz050.

46. Longet S, Abautret-Daly A, Davitt CJH, McEntee CP, Aversa V, Rosa M, et al. An oral alpha-galactosylceramide adjuvanted Helicobacter pylori vaccine

induces protective IL-1R- and IL-17R-dependent Th1 responses. npj Vaccines. 2019;4. doi: 10.1038/s41541-019-0139-z

47. Sun N, Zhang R, Duan G, Peng X, Wang C, Chen S, et al. A food-grade engineered *Lactococcus lactis* strain delivering *Helicobacter pylori* Lpp20 alleviates bacterial infection in *H. pylori*-challenged mice. Biotechnol Lett. 2019;41:1415–21. doi:10.1007/s10529-019-02740-z.

48. Aliramaei MR, Khorasgani MR, Rahmani MR, Zarkesh Esfahani SH, Emamzadeh R. Expression of *Helicobacter pylori CagL* gene in *Lactococcus lactis* MG1363 and evaluation of its immunogenicity as an oral vaccine in mice. Microb Pathog. 2020;142. doi:10.1016/j.micpath.2019.103926.

49. Chen J, Zhong Y, Liu Y, Tang C, Zhang Y, Wei B, et al. Parenteral immunization with a cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) adjuvanted *Helicobacter pylori* vaccine induces protective immunity against *H. pylori* infection in mice. Hum Vaccines Immunother. 2020;16:2849–54. doi:10.1080/21645515.2020.1744364.

50. Iankov ID, Kurokawa C, Viker K, Robinson SI, Ammayappan A, Panagioti E, et al. Live Attenuated Measles Virus Vaccine Expressing *Helicobacter pylori* Heat Shock Protein A. Mol Ther - Oncolytics. 2020;19:136–48. doi:10.1016/j.omto.2020.09.006.

51. Liu M, Zhong Y, Chen J, Liu Y, Tang C, Wang X, et al. Oral immunization of mice with a multivalent therapeutic subunit vaccine protects against *Helicobacter pylori* infection. Vaccine. 2020;38:3031–41. doi:10.1016/j.vaccine.2020.02.036.

52. Paydarnia N, Mansoori B, Esmaeili D, Kazemi T, Aghapour M, Hajiasgharzadeh K, et al. *Helicobacter pylori* recombinant CagA regulates Th1/Th2 balance in a BALB/c murine model. Adv Pharm Bull. 2020;10:264–70. doi:10.34172/apb.2020.031.

53. Song Z, Li B, Zhang Y, Li R, Ruan H, Wu J, et al. Outer Membrane Vesicles of *Helicobacter pylori* 7.13 as Adjuvants Promote Protective Efficacy Against *Helicobacter pylori* Infection. Front Microbiol. 2020;11. doi:10.3389/fmicb.2020.01340.

54. Wang J, Zhang Y, Zhu Y, Liu J, Chen Y, Cao X, et al. Total synthesis and immunological evaluation of the Tri-D-glycero-Dmanno-heptose antigen of the lipopolysaccharide as a vaccine candidate against *Helicobacter pylori*. Org Lett. 2020;22:8780–5. doi:10.1021/acs.orglett.0c03105.

55. Zhong Y, Chen J, Liu Y, Zhang Y, Tang C, Wang X, et al. Oral immunization of BALB/c mice with recombinant *Helicobacter pylori* antigens and double mutant heat-labile toxin (dmLT) induces prophylactic protective immunity against *H. pylori* infection. Microb Pathog. 2020;145. doi:10.1016/j.micpath.2020.104229.

56. Cen Q, Gao T, Ren Y, Lu X, Lei H. Immune evaluation of a *Saccharomyces cerevisiae*-based oral vaccine against *Helicobacter pylori* in mice. *Helicobacter*. 2021;26. doi:10.1111/hel.12772.

57. Bespalov V, Sherbakov A, Novik V, Kalinovsky V, Shamsi K, Soultanov V. Conifer Green Needle Complex in Patients with Precancerous Gastric Lesions: An Observational Pilot Study. Evidence-based Complement Altern Med. 2016;2016. doi: 10.1155/2016/3848409.

58. Kouitcheu Mabeku LB, Eyoum Bille B, Nguepi E. *In Vitro* and *In Vivo* Anti- *Helicobacter* Activities of *Eryngium foetidum* (Apiaceae), *Bidens pilosa* (Asteraceae), and *Galinsoga ciliata* (Asteraceae) against *Helicobacter pylori*. Biomed Res Int. 2016;2016. doi: 10.1155/2016/2171032.

59. Rong Q, Xu M, Dong Q, Zhang Y, Li Y, Ye G, et al. *In vitro* and *in vivo* bactericidal activity of *Tinospora sagittata* (*Oliv.*) *Gagnep. var. craveniana* (*S.Y.Hu*) *Lo* and its main effective component, palmatine, against porcine *Helicobacter pylori*. BMC Complement Altern Med. 2016;16. doi: 10.1186/s12906-016-1310-y. 60. Chang CH, Wu J Bin, Yang JS, Lai YJ, Su CH, Lu CC, et al. The Suppressive Effects of Geniposide and Genipin on *Helicobacter pylori* Infections *In Vitro* and *In vivo*. J Food Sci. 2017;82:3021–8. doi: 10.1111/1750-3841.13955.

61. Kouitcheu Mabeku LB, Eyoum Bille B, Tchouangueu TF, Nguepi E, Leundji H. Treatment of *Helicobacter pylori* infected mice with *Bryophyllum pinnatum*, a medicinal plant with antioxidant and antimicrobial properties, reduces bacterial load. Pharm Biol. 2017;55:603–10. doi: 10.1080/13880209.2016.1266668.
62. Masuda S, Masuda H, Shimamura Y, Sugiyama C, Takabayashi F. Improvement Effects of Wasabi (*Wasabi japonica*) Leaves and Allyl Isothiocyanate on Stomach Lesions of Mongolian Gerbils Infected with *Helicobacter pylori*. Nat Prod Commun. 2017;12:595–8.

http://www.ncbi.nlm.nih.gov/pubmed/30520603. Accessed 17 Feb 2021.

63. Nagata Y, Nagasaka K, Koyama S, Murase M, Saito M, Yazaki T, et al. Successful eradication of *Helicobacter pylori* with a herbal medicine, *goshuyuto* (*Wu Zhu Yu Tang*), plus rabeprazole after failure of triplet therapy with vonoprazan: A report of three cases. J Dig Dis. 2018;19:439–42. doi: 10.1111/1751-2980.12537.

64. Yen C-H, Chiu H-F, Huang S-Y, Lu Y-Y, Han Y-C, Shen Y-C, et al. Beneficial effect of Burdock complex on asymptomatic *Helicobacter pylori* infected subjects: A randomized, double-blind placebo-controlled clinical trial. Helicobacter. 2018;23:e12469. doi: 10.1111/hel.12469.

65. Li WQ, Zhang JY, Ma JL, Li ZX, Zhang L, Zhang Y, et al. Effects of *Helicobacter pylori* treatment and vitamin and garlic supplementation on gastric cancer incidence and mortality: Follow-up of a randomized intervention trial. BMJ. 2019;366. doi:10.1136/bmj.l5016.

66. Spósito L, Oda FB, Vieira JH, Carvalho FA, dos Santos Ramos MA, de Castro RC, et al. *In vitro* and *in vivo* anti-*Helicobacter pylori* activity of *Casearia sylvestris* leaf derivatives. J Ethnopharmacol. 2019;233:1–12. doi: 10.1016/j.jep.2018.12.032.

67. Wang G, Zhang X, Maier SE, Zhang L, Maier RJ. *In vitro* and *in vivo* inhibition of *Helicobacter pylori* by ethanolic extracts of lion's mane medicinal mushroom, *Hericium erinaceus* (Agaricomycetes). Int J Med Mushrooms. 2019;21:1–11. doi:10.1615/IntJMedMushrooms.2018029487. doi:10.1615/IntJMedMushrooms.2018029487.

68. Shi X, Wu H, Ma X, Yin X, Li X, Ma J, et al. Effect of Chinese Herbal Medicines on *Helicobacter pylori*-associated gastroduodenal ulcers: a systematic review and Meta-analysis. Journal of Traditional Chinese Medicine. 2019;39:459–65. https://pubmed.ncbi.nlm.nih.gov/32186092/. Accessed 17 Feb 2021.
69. Attari VE, Somi MH, Jafarabadi MA, Ostadrahimi A, Moaddab SY, Lotfi N. The gastro-protective effect of ginger (*Zingiber officinale* roscoe) in *Helicobacter pylori* positive functional dyspepsia. Adv Pharm Bull. 2019;9:321–4. doi: 10.15171/apb.2019.038.

70. Imani G, Mehrpoya M, Khalilian A, Dastan D, Imani B. Effects of cinnamon extract on complications of treatment and eradication of *Helycobacter pylori* in infected people Implication for health policy/practice/research/medical education. J Herbmed Pharmacol J Herbmed Pharmacol. 2020;9:x–x. doi:10.15171/jhp.2020.xx.

71. Jung DH, Park MH, Kim CJ, Lee JY, Keum CY, Kim IS, et al. Effect of β-caryophyllene from cloves extract on *Helicobacter pylori* eradication in mouse model. Nutrients. 2020;12. doi: 10.3390/nu12041000.

72. Schmid EN, Von Recklinghausen G, Ansorg R. Bacteriophages in *Helicobacter (Campylobacter) pylori*. J Med Microbiol. 1990;32:101–4. doi:10.1099/00222615-32-2-101.

73. Von Heinegg EH, Nalik HP, Schmid EN. Characterisation of a *Helicobacter pylori* phage (HP1). J Med Microbiol. 1993;38:245–9. doi: 10.1099/00222615-38-4-245.

74. Vale FF, Matos APA, Carvalho P, Vtor JMB. *Helicobacter pylori* phage screening. Microsc Microanal. 2008;14:150–151. doi:10.1017/S1431927608089721.

75. Lehours P, Vale FF, Bjursell MK, Melefors O, Advani R, Glavas S, et al. Genome sequencing reveals a phage in *Helicobacter pylori*. MBio. 2011;2. doi:10.1128/mBio.00239-11

76. Alves de Matos AP, Lehours P, Timóteo A, Roxo-Rosa M, Vale FF. Comparison of induction of B45 *Helicobacter pylori* prophage by acid and UV radiation. Microsc Microanal. 2013;19:27–8. doi:10.1017/S1431927613000755

77. Luo C-H, Chiou P-Y, Yang C-Y, Lin N-T. Genome, Integration, and Transduction of a Novel Temperate Phage of *Helicobacter pylori*. J Virol. 2012;86:8781–92. doi: 10.1128/JVI.00446-12.

78. Uchiyama J, Takeuchi H, Kato S -i., Takemura-Uchiyama I, Ujihara T, Daibata M, et al. Complete Genome Sequences of Two *Helicobacter pylori* Bacteriophages Isolated from Japanese Patients. J Virol. 2012;86:11400–1. doi:10.1128/JVI.01767-12.

79. Uchiyama J, Takeuchi H, Kato SI, Gamoh K, Takemura-Uchiyama I, Ujihara T, et al. Characterization of *Helicobacter pylori* bacteriophage KHP30. Appl Environ Microbiol. 2013;79:3176–84. doi:10.1128/AEM.03530-12.

80. Abdel-Haliem ME, Askora A. Isolation and characterization of bacteriophages of *Helicobacter pylori* isolted from Egypt. Future Virol. 2013;8:821–6.

81. Cuomo P, Papaianni M, Fulgione A, Guerra F, Capparelli R, Medaglia C. An innovative approach to control *H. pylori*-induced persistent inflammation and colonization. Microorganisms. 2020;8:1–13. doi:10.3390/microorganisms8081214.