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Abstract— The harvest yield in vineyards can vary signifi-
cantly from year to year and also spatially within plots due to
variations in climate, soil conditions and pests. Fine grained
knowledge of crop yields can allow viticulturists to better
manage their vineyards. The current industry practice for yield
prediction is destructive, expensive and spatially sparse – during
the growing season sparse samples are taken and extrapolated
to determine overall yield. We present an automated method
that uses computer vision to detect and count grape berries. The
method could potentially be deployed across large vineyards
taking measurements at every vine in a non-destructive manner.
Our berry detection uses both shape and visual texture and we
can demonstrate detection of green berries against a green leaf
background. Berry detections are counted and the eventual
harvest yield is predicted. Results are presented for 224 vines
(over 450 meters) of two different grape varieties and compared
against the actual harvest yield as groundtruth. We calibrate
our berry count to yield and find that we can predict yield of
individual vineyard rows to within 9.8% of actual crop weight.

I. INTRODUCTION

Predicting the eventual weight of the harvest yield in a
vineyard enables vineyard managers to make adjustments
to the vines to reach their yield and quality goals. The
current industry practice for predicting harvest yield is labor
intensive, expensive, inaccurate, spatially sparse, destructive
and riddled with subjective inputs. Typically, the process for
yield prediction is for workers to sample a certain percentage
of the vineyard and extrapolate these measurements to the
entire vineyard. The manual sampling practice scales poorly
to large commercial vineyards and the industry is searching
for an alternative.

Here we report results of an approach to automatically
detect and count grapes to forecast yield with both precision
and accuracy. Our approach is to take conventional visible
light cameras through a vineyard to image the vines and
detect the crop and predict yield. Traditional manual yield
estimates look to sample the average number of grape
clusters per-vine, the average number of grape berries per-
cluster and average berry weight. Our approach is to estimate
the total number of berries, essentially combining clusters
per-vine and berries per cluster in the one measurement.
Clusters per vine and berries per cluster account for 60%
and 30% of variation in yield per vine respectively, therefore
90% of the variation in yield is accounted with accurate
berry counts. Furthermore, the number of berries per-vine
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Fig. 1. Example camera image of Gerwurztraminer wine grapes captured
at véraison. Automatically detecting the grape crop within imagery such as
this is difficult because of issues caused by the lighting and shadows, and
the lack of contrast to the leaf background.

is a good measure to obtain because it is fixed from fruit-set
all the way until harvest, unlike cluster weight for which a
multiplier must be guessed and applied.

The challenges in visually detecting grape berries is their
varying appearance under different lighting, the lack of color
contrast to the background, which is often similarly colored
to the grapes, and also occlusions causing not all grapes to be
visible. An example of the difficulties of visually detecting
grape crop can be seen in Fig. 1. The few existing methods
for detecting crop in vineyards, have been restricted to the
laboratory [4] or have relied on color contrast [3] and are
therefore not applicable for detecting crop over a similarly
colored background of leaves. Lack of color contrast is an
important issue that occurs in the white-grape varieties and
all the grape varieties prior to véraison (the onset of color
development). We specifically address the issues of lighting
and lack of color contrast, by using shape and texture cues
for detection.

The issue of occlusion means it is not possible detect and
count all berries on a vine. However, our detection of grape
berries is precise, ensuring that there are very few false
positives. The result of precise detection is that our berry
count is a reliable measurement of yield, despite the fact
that our algorithm only counts a percentage of all the grape
berries on a vine. We calibrate our berry count measurement
to harvest yield from a set of vines, and apply this calibration
to other vines not included in the calibration set, pointing to
the fact that percentage of berries not detected is relatively
constant from vine to vine.

We deployed our method in a vineyard and conducted
an experiment in which manual per-vine harvest weights
were collected and used as ground truth to evaluate our



automated yield measurements. The size of the experiment is
significant, including roughly 450m of vines, including two
different grape varieties, where the total harvest weight of
the vines totaled over 2000kg. Our method calculates yield
within 9.8% of ground truth.

II. RELATED WORK

Current practices to forecast yield are inaccurate because
of sampling approaches that tend to adjust towards historical
yields and include subjective inputs (Clingeleffer et al. [2]).
The calculation of final cluster weight from weights at
véraison use fixed multipliers from historic measurements,
Wolpert and Vilas [11]. Unfortunately, multipliers are biased
towards healthier vines thus discriminating against missing
or weak vines and multipliers for cluster weights vary widely
by vineyard, season and variety.

Sensor-based yield estimation in vineyards has been at-
tempted with trellis tension monitors, multispectral sensors,
terahertz-wave imaging and visible-light image processing.
A dynamic yield estimation system based on trellis tension
monitors has been demonstrated (Blom and Tarara [1]) but it
requires permanent infrastructure to be installed. Information
obtained from multispectral images has been used to forecast
yields with good results but is limited to vineyards with uni-
formity requirements (Martinez-Casasnovas and Bordes [8]).
A proof of concept study by Federici et al. [4] has shown that
terahertz imaging can detect the curved surfaces of grapes
and also has the potential to detect these through occluding
thin canopy. The challenge for this approach is to achieve
fast scan rates to be able to deploy the scanner on a mobile
platform.

Small scale yield estimation based on simple image color
discrimination has been developed by Dunn and Martin [3].
This approach was attempted on Shiraz post-véraison (i.e.
after color development, very close to harvest) in short
row segments. The method would not be applicable for the
majority of real world examples where the fruit appears over
a background of similarly-colored leaves, as is the case in
white grape varieties and in all varieties before véraison.
More complex crop detection based on computer vision
methods using color pixel classification or shape analysis
has been attempted on various fruit types – Jimenez et al. [5]
provides a summary of fruit detection work, Singh et al. [9]
present a method for detecting and classifying fruit in apple
orchards and Swanson et al. [10] use the shading on the
curved surfaces of oranges as a cue for detection.

III. BERRY DETECTION

We deploy a sideways-facing camera and lighting on a
small vineyard utility vehicle. The images capture the vines
and are processed with our algorithm to detect and count
the crop. In traditional vineyard yield estimation the crop
components that are measured to derive a final estimate are:

1) Number of clusters per vine (60% of the yield varia-
tion)

2) Number of berries per cluster (30% of the yield vari-
ation)

3) Berry size (10% of the yield variation)

These three components combine to describe all the variation
in harvest yield. Current practice is to take samples of each
of these components to compute an average and compute
the final yield. We take an approach to estimate the first
two of these items together in one measurement – that of
the number of berries per vine. The reason being that it
is difficult, especially late in the season, to delineate the
boundaries of clusters within images. However, it is possible
to count the total number of berries seen, hence combining
the two components – number of clusters per vine and berries
per cluster – into one measurement: berries per vine. An
interesting observation can be drawn that humans are better
at counting clusters per vine and weighing individual clus-
ters, whereas conversely it seems robotic sensing struggles to
accurately count mature grape clusters. Instead it is easier to
use robotic sensing to count the number of berries on vine, a
measure which would not be possible for a human to directly
produce.

Our approach does not attempt to measure berry weight.
However, we account for 90% of the harvest yield variation
with berries per vine ([2]). Furthermore, instead of taking
a small sample and extrapolating, we aim to estimate non-
destructively the specific yield at high resolution across the
entire vineyard. Hence, we will not introduce sampling errors
into the process.

Our algorithm to detect the berries in imagery has three
distinct stages:

1) Detecting potential berry locations with a radial sym-
metry transform (Section III-A)

2) Identifying the potential locations that have similar
appearance to grape berries (Section III-B)

3) Group neighboring berries into clusters (Section III-C)

A. Detecting Potential Berry Locations with a Radial Sym-

metry Transform

The first step of our algorithm is to find points with a high
level of radial symmetry as these points are potential centers
for grape berries, see Fig. 2(a). To find these points, we
use the radial symmetry transform of Loy and Zelinsky [7].
The algorithm is robust to the issues of lighting and low
color contrast, which cause problems for the existing crop
detection techniques that rely on simple color discrimination
(Jimenez et al. [5], Dunn and Martin [3]). The approach
detects the centers of berries of all colors, even those that
are similarly colored to the background leaves.

The radial symmetry transform requires us to know the
radii of the berries as seen in the image ahead of time. The
berry radii (in pixels) are dependent on the focal length of the
camera, actual berry size and the distance from the camera.
The focal length is kept fixed in our tests and the vehicle
maintains a relatively constant distance from the vines. There
is still variation in the radius the berries appear in the image
from differing berry sizes and also some variation in location
within the vine. We account for this variation by searching
for radially symmetric points over a range of possible radii,
N . Individual radii are denoted as n.



The transform first computes the locally normalized gra-
dient g with magnitude and orientation information at each
image pixel. An example gradient image from the Sobel
transform is depicted in Fig. 3(a). In a Hough Transform
like setup, each edge pixel p, with a gradient value above
a threshold T votes for possible points of radial symmetry
ps(p) given by:

ps(p) = p± n
g(p)

||g(p)||
(1)

for each radius n, these votes from the edge pixels are
counted in a vote image Fn which is then smoothed out
with An, a 2D Gaussian filter, to produce Sn, the radial filter
response at radius n. These filter responses at different radii
are then combined to form the overall radial filter response
S which is given by.

Sn = Fn ∗An (2)

S = max
n∈N

Sn (3)

We compute local maxima in the response image S with a
non-maximal suppression, and threshold to find the potential
centers. We choose the threshold to ensure as many berry
centers are detected as possible, at the expense of many
false positive detections. We use the following stages in the
algorithm to filter out the false positives.

B. Classifying Interest Points Appearing Similar to Berries

The next stage in our algorithm is to classify the detected
points which appear most like grapes, see Fig. 2(b). We
first take a patch in the image around each detected center.
The patch size has a radius defined by the previous radial
symmetry detector step. We then compute features from that
image patch. The features we use are a combination of color
and texture filters, which combine to form a 34 dimensional
feature vector. We use the three RGB channels, the three
L*a*b color channels and Gabor filters with 4 scales and
6 orientations. The features are not chosen specifically for
the grape detection task – we use generic low-level image
features.

We take a small number of training samples from our
datasets, by selecting a random subset of images and manu-
ally define in the images which regions have grape berries.
We compute our features in these regions which correspond
to the positive examples of the appearance of berries. For
negative examples we compute features at radially symmetric
interest points outside of our defined crop areas.

Given an input image we take each radially symmetric
interest point, compute the feature vector, and apply the
k-Nearest Neighbors algorithm. The k-Nearest Neighbors
algorithm computes the distance in feature space to every
point in the training set and determines whether the nearest
neighbors are positive berry examples or negative. If the
k closest positive examples are closer than the k closest
negative examples, that interest point is classified as a berry.
We use a value of three for k, which empirically seems to
function appropriately.

C. Group Neighboring Berries into Clusters

After classification of the interest points, a small number
of false positives still remain. Most of the remaining false
positive detections are isolated while grape berries naturally
occur in clusters so we apply contextual constraints that
dictate that there should be a minimum number of berries in
a cluster. We cycle through each classified berry, computing
the distance to every other berry, and remove berries that
do not have at least 5 other berries within their immediate
neighborhood, which we define as a radius of 150 pixels.
The process results in the clustered berries, which are the
output of our entire algorithm, see Fig. 2(c).

(a) Detect Berry Locations with Radial Symmetry Transform

(b) Identify Locations with Similar Appearance to Grape Berries

(c) Group Neighborhoods of Berries into Clusters

Fig. 2. Example images showing the functioning of our visual berry
detection algorithm on a Gerwurztraminer vine. Input image is seen in
Fig 1. (a) potential berry locations in the image that have been detected
as having radial symmetry. (b) points marked blue have been classified as
having appearance similar to a berry. (c) classified berries that neighbor
other classified berries are clustered together.



TABLE I

BERRY DETECTION STATISTICS. BERRY COUNT – THE NUMBER OF BERRIES REPORTED BY THE ALGORITHM. TRUE POSITIVES – THE NUMBER OF

BERRIES DETECTED THAT WERE ACTUAL BERRIES. FALSE POSITIVES – THE NUMBER OF FALSE BERRY DETECTIONS. FALSE NEGATIVES – THE

NUMBER OF BERRIES VISIBLE IN THE IMAGE THAT WERE NOT DETECTED. RECALL – PERCENTAGE OF VISIBLE BERRIES DETECTED. PRECISION –

PERCENTAGE OF DETECTIONS THAT WERE BERRIES.

Variety Berry Count True Positives False Positives False Negatives Recall Precision

Gerwurztraminer 1073 1055 18 354 74.9% 98.3%
Traminette 1116 1096 20 658 62.8% 98.2%
Riesling 784 762 22 657 53.7% 97.2%
Overall 2973 2913 60 1659 63.7% 98.0%

IV. RESULTS

A. Datasets

The results generated in this paper are from three different
grape varieties – Gewurztraminer, Traminette and Riesling.

The Gerwurztraminer dataset was collected just before
véraison, before color development, and the berries were
green in color, see Fig. 1. The Gerwurztraminer dataset
was collected from a commercial vineyard and therefore we
did not have access to the harvest crop weights. Only 5
vines were included in the dataset and we used it purely
for developing the berry detection algorithm.

The Riesling and Traminette datasets were collected from
an approximately one acre plot of these Vitis vinifera vari-
eties. The Riesling cultivar is a ‘White Riesling’ Vitis vinifera

and the Traminette is an intraspecific hybrid. We used four
rows of Traminette vines and four rows of Riesling varieties,
224 vines in total. The Traminette were at 8ft spacing and
Riesling were at 6ft spacing, which totaled 450m of vines.

The vines in this acre plot were vertically shoot positioned
and basal leaf removal was performed in the cluster zone,
a practice performed by vineyard owners to expose the fruit
to the sun to change the flavor characteristics of the grapes.
The basal leaf removal also makes yield estimation feasible
towards the end of the growing season because the occluding
canopy is removed from the fruit-zone. On the Traminette
vines the basal leaf removal was performed just on the East
facing side of the row and on both sides of the Riesling
vines. Our tests captured images from the East side of the
rows. Despite not all of the crop being visible from the one
side, we calibrate our measurements from a portion of the
harvest data, which takes into account the percentage of the
grapes that were not visible.

The Traminette and Riesling vines vines are white grape
varieties, the images of the crop were collected post-véraison,
and even at this late stage the fruit still had similar coloring
to the background of leaves. The similarly colored fruit and
leaves demonstrating the ability of our shape and texture
approach to detect the crop amongst the canopy.

For our experiments we use a Canon SX200IS, mounted
facing sideways at the same height of the fruit zone, cap-
turing images of the crop. The camera is set in continuous
capture mode, recording images at 3264 x 2448 resolution,
at approximately 0.8Hz. We mount halogen lamps facing
sideways, illuminating the field of view of the camera to

improve the lighting of the fruit-zone, which is often in
the dark shadows of the canopy. The camera vehicle is
driven along the rows in the vineyard capturing images at
approximately 0.5m/s.

B. Berry Detection Performance

We first evaluate the performance of our berry detection
algorithm, by selecting five images from each of the three
different datasets; Gerwurztraminer, Traminette and Riesling.
We processed the images with the berry detection algorithm
and also manually counted detection statistics, presenting
these results in Table I. The shows that our algorithm mistak-
enly detects only a minimal number of false berries, giving it
a very high precision rate. However, it is conservative, it does
not detect a sizeable percentage of berries that are visible in
the images and therefore has a high false negative count and
therefore a moderate recall rate.

To gain an understanding of what part of the algorithm
are most responsible for the false negatives detections we
break-down the false negatives into the three stages of
the algorithm; False detections that are not detected by
the radial-symmetry detector (Section III-A), those that are
misclassified (Section III-B) and those that are not clustered
to neighboring berries (Section III-C). Table II presents the
false negative break-down by algorithm stage. The table
shows that around 60% of all missed detections are caused
by the radial symmetry transform, around 30% are classified
as non-berry and only 10% of the false negatives are to be
blamed on the clustering. We show in the following section
that, even with these false negatives, we can still acquire
accurate yield prediction because of the high precision rate.
However, to further improve performance we could look at
modifying the radial symmetry transform to improve the
number of berries it can detect without drastically increasing
the false detections.

TABLE II

BREAK-DOWN OF FALSE NEGATIVES

Variety Not-detected Mis-classified Not-clustered

Gerwurztraminer 51.7% 31.9% 16.4%
Traminette 73.9% 16.0% 10.0%

Riesling 53.9% 40.2% 5.9%
Overall 61.1% 29.0% 9.7%



C. Multiple Flashes for Improved Interest Point Detection

We have begun investigating a method that can help
improve the recall performance of the radial symmetry trans-
form, which was originally proposed by Raskar et al. [6]. The
approach is to use multiple flashes placed around the camera
to detect the depth discontinuities in the image. The method
finds edges that correspond only to depth discontinuities and
ignores edges due to texture, Fig. 3(b).

The edge pixels found by an image gradient operator can
be due to actual depth discontinuities in the scene (which
we are interested in because they could be the contours of
grapes) or they can be due to texture in the scene (which
can cause the radially symmetry detector to fire at places
that are not of interest), Fig. 3(a). Many points are detected
with radial symmetry when using the image edges as input,
see Fig. 3(c). Whereas if we use the depth edges as input
and replace the traditional image gradient, g, in Equation 1,
we can isolate the grape berries using the radial symmetry
transform, see Fig. 3(d).

From initial results it is obvious the method of Raskar et
al. [6], demonstrated in Fig 3, will improve the performance
of our algorithm, however, at the present moment we have
not had the chance to deploy the multiple lighting setup on
a large scale in a vineyard. Therefore, the yield estimation
results presented in the following section use conventional
image edges.

D. Yield Estimation

For the yield estimation results, we compare our berry
counts against actual harvest weights collected from the
Traminette and the Riesling datasets. First, we register
images together, and assign registered images to specific
vines by defining the boundaries of the vines within the
images, cropping-out overlapping content to avoid double
counting. We conduct this process manually, but this could
be performed automatically if we had in place a localization
system, such as GPS and odometry system, which would
be able to register data based on the fixed spacing of the
vines. See Fig. 4 for examples of our automated berry
counts being compared to the harvest data, the row and
vine number, the harvest crop weight, and the detected berry
count are displayed over the images. Cluster counts are
also displayed, however our automated cluster counts were
inaccurate because of the difficulties determining separate
clusters – late in the season clusters tend to grow over each
other. We focus on the berry counts in this work because
they produce more accurate yield estimates.

Once registered to specific vines, we compare our au-
tomated berry counts with the harvest crop weights. Our
automatically generated berry counts produced a linear re-
lationship with actual harvest crop weights with correlation
score r2 = 0.74. Fig. 5 shows the datapoints in the correlation
and the distribution of measurements.

We saw in Table I that our recall rate is not high and we
also know that occlusions will cause further berries to not be
counted by our algorithm – yet despite these issues we still
get good correlation to the harvest weights. Reasons that our

(a) Image-edges (b) Depth-edges

(c) Radial Symmetry Detection from Image-edges

(d) Radial Symmetry Detection from Depth-edges

Fig. 3. Using the multiple flash method of Raskar et al. [6] to improve
performance of radial symmetry transform. Multiple flashes are placed
around the camera and triggered sequentially. (a) Regular image processing
to find image edges/gradients finds contours in the objects’ texture as well
as object boundaries. (b) Using the method of Raskar et al. [6] to compute
the depth-edges, the boundaries of the objects are isolated, omitting the
objects’ texture. (c) Radial symmetry detected in regular image edges. (d)
Radial symmetry detected in depth discontinuity edges. It is obvious the
performance of the radial symmetry detection of grape berries is much
improved using the depth edge approach.

measurements achieve good correlation are first through the
high precision of our detection algorithm which rarely counts
false positives and also because the occlusion level and the
percentage of visible berries that are missed has reasonable
constancy across the vineyard. Further improvements to the
detection algorithm, such as proposed in Section IV-C, and
incorporating an estimate of any variations there may be in
occlusion will only improve the correlation score.



(a) Traminette

(b) Riesling

Fig. 4. Example showing berry detections for the Traminette and Riesling varieties used in the yield estimation experiment. Detected berries are highlighted
by a red contour. The row and vine number, the harvest crop weight, the cluster counts and the berry count are displayed over the images.

Finally, we evaluate the accuracy of our estimates in terms
of predicting harvest weight. We fit a function to a part of our
dataset that provides a mapping from berry count to harvest
weight, and calibrates for the berries that are out of view and
missed by the detection algorithm. We calibrate the function
using two rows of data (either 48 vines for Traminette or 64
vines for Riesling), and apply the function to the other rows’
berry counts.

Once we have functions calibrated from portions of our
data we evaluate how accurate our berry counts are at
predicting the total weight of other rows of vines for which
we have not calibrated our measurements. Fig. 6 presents
a graph of the predicted versus actual harvest weights for
four rows of Traminette and four rows of Riesling vines. The
average error of these results is at 9.8% of the eventual actual
harvest weight. An estimate of harvest yield generated taken
from measurements at every single vine and achieving 9.8%
accuracy for a row, already exceeds what is possible with

current practices that are restricted to very coarse sampling
across a vineyard.

V. CONCLUSION AND FUTURE WORK

We have demonstrated that a computer vision method can
provide high resolution automated crop yield estimates for
vineyard management. Our approach detects and counts crop
in images collected from a camera mounted facing sideways
on a vehicle driven along the rows in a vineyard. We combine
the traditional crop yield measurements of clusters per vine
and berries per cluster, with a single estimate of berries per
vine. The number of berries on a vine is known to account
for 90% of the variation in harvest yield. We develop an
algorithm to detect individual berries in camera images and
evaluate in actual vineyard conditions. Unlike other image
detection approaches, our approach is not reliant of color
contrast, and can detect berries of all colors, even those that
are similarly colored to the background of leaves.



0 5 10 15 20
0

100

200

300

400

500

600

700

Crop Weight (lbs)

B
e

rr
y

 C
o

u
n

t
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weights gives a correlation score of r
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the distribution within the measurements, the green line represents a linear
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a total of 224 vines. By comparison, the typical yield prediction approach
would take a measurement at a small fraction of the vines and extrapolate,
whereas we can measure every vine.
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Fig. 6. Graph showing our predictions of the harvest weight of rows in a
vineyard. Rows 1 to 4 have 24 Traminette vines each. Rows 5 to 8 have 32
Riesling vines each. Predictions are generated from the functions mapping
berry count to crop weight that were calibrated on data from other rows.
Our yield estimates have a mean error of 9.8% of the weight of the row.
Producing yield predictions at this accuracy at the resolution of single row
surpasses the coarse sampling approaches currently used in vineyards.

We evaluate our approach on what we think is the largest
automated crop imaging experiment demonstrated in a vine-
yard. On approximately 450m of vines we compute an
automated estimate of the harvest yield using measurements
taken from imagery and compare against the actual yield,
meticulously measured by hand at harvest time. We compare
our measurements to yield and show we can estimate the
weight of a row of vines with 9.8% error.

Our results have significance on the future of vineyard
operations through our ability to make yield predictions with
high fidelity opening up the possibility of vineyard owners
making precise adjustments to their vines, where previously
they have been restricted to using coarse measurements.

There are a number of avenues of work to further improve
our approach. First is to find ways to improve the recall
rate of the current berry detection system, for example by
deploying the multiple flash technique discussed in this
paper. Another extension would be to augment the berry
counts with a method that measures berry diameter as an
indicator of berry weight, which is known to account for
the remaining 10% of the variation in final yield. In other
ongoing work we hope to improve the function correlating
visible berry counts to yield and evaluate the variability of
the function with different vine varieties, trellis structures,
by differing times of the growing season, and from year to
year. We also will look to develop an approach to count grape
clusters early in the season, even before berries have formed,
to give vineyard managers information with maximum time
before harvest to make the necessary adjustments to their
vines.
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