The compressed file is organised as follows:<div><br></div><div>static: Folder containing all static files in the project<br></div><div>- css: folder containing the CSS files of the project</div><div>- img: folder containing the displayed image on the GUI</div><div>- js: folder containing the JSME molecular editor</div><div>- models: folder containing the 110 machine-learning models employed for the predictions in .pkl format.</div><div>- temps: folder containing the images and CSV files generated by the user on each run of the application</div><div>- OutputTemplate.csv: Template for the file that can be downloaded by the user</div><div>- Ref_Data.csv: CSV file with the Morgan fingerprints for all compounds in the datasets used to compute the distance-to-model metric.</div><div><br></div><div>templates: folder with the HTML5 templates of the project</div><div><br></div><div>etp.yml: environment file with all dependencies needed to run the project</div><div><br></div><div>compute.py: Python code to run the compound standardization and the predictions from all 110 models.</div><div><br></div><div>main.py: Flask application for Epigenetic Target Profiler.</div><div><br></div>
Funding
Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico, scholarship number 335997
LANCAD-UNAM-DGTIC-335
Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico, grant 282785