bi701842n_si_002.pdf (1.18 MB)

Visualization and Classification of Amyloid β Supramolecular Assemblies

Download (1.18 MB)
journal contribution
posted on 2007-12-25, 00:00 authored by Hisashi Yagi, Tadato Ban, Kenichi Morigaki, Hironobu Naiki, Yuji Goto
Deposition of amyloid β (Aβ) fibrils has been suggested to play a central role in Alzheimer's disease. In clarifying the mechanism by which fibrils form and moreover in developing new treatments for amyloidosis, direct observation is important. Focusing on the interactions with surfaces at the early stages, we studied the spontaneous formation of Aβ(1−40) fibrils on quartz slides, monitored by total internal reflection fluorescence microscopy combined with thioflavin T, an amyloid-specific fluorescence dye. Self-assembly of Aβ(1−40), accelerated by a low concentration of sodium dodecyl sulfate, produced various remarkable amyloid assemblies. Densely packed spherulitic structures with radial fibril growth were typically observed. When the packing of fibrils was coarse, extremely long fibrils often protruded from the spherulitic cores. In other cases, a large number of wormlike fibrils were formed. Transmission electron microscopy and atomic force microscopy revealed relatively short and straight fibrillar blocks associated laterally without tight interaction, leading to random-walk-like fibril growth. These results suggest that, during spontaneous fibrillation, the nucleation occurring in contact with surfaces is easily affected by environmental factors, creating various types of nuclei, and hence variations in amyloid morphology. A taxonomy of amyloid supramolecular assemblies will be useful in clarifying the structure−function relationship of amyloid fibrils.