Supporting Information

Visible-Light-Driven Reductive Carboarylation of Styrenes with CO₂ and Aryl Halides

Hao Wang,^{†,‡} Yuzhen Gao,[†] Chunlin Zhou,^{†,‡} and Gang Li^{*,†,‡}

 [†]Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
[‡]University of Chinese Academy of Sciences, Beijing, 100049, China

*E-mail: gangli@fjirsm.ac.cn

Table of Contents

1. General Information	S3
2. Experimental Section	S3
2.1 Optimization of reaction conditions	S3
2.2 General procedures for synthesis of products	S4
2.2 Characterization of products	S6
2.3 Mechanistic studies	S30
2.4 Gram-scale experiment	S35
3. X-Ray Crystallographic Spectrum of 78	S36
4. NMR Spectra of Compounds	S41
5. References	S130

1. General Information

Unless otherwise noted, commercial available reagents were purchased from commercial suppliers (such as Strem, Alfa Aesar, J&K Chemical Co., Energy Chemical, Sinocompound and Adamas) and used as received. Solvents were generally dried over 4 Å molecular sieves. Purification of products was performed by flash chromatography (FC) using silica gel or preparative thin layer chromatography. ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III spectrometer (400 MHz and 101 MHz, respectively). Chemical shifts are reported parts per million (ppm) referenced to CDCl₃ (δ 7.26 ppm), tetramethylsilane (TMS, δ 0.00 ppm) for ¹H NMR; CDCl₃ (δ 77.16 ppm) for ¹³C NMR. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, td = triplet of doublet and m = multiplet,. To distinguish, some ¹³C NMR chemical shifts retain two decimal places. High-resolution mass spectra (HRMS) were obtained on an Impact II UHR-TOF mass spectrometry equipped with an ESI source from Bruker at Fujian Institute of Research on the Structure of Matter. The Blue LED strips (1 meter, 30W) were purchased from Prime LED Co., Ltd. (China). CO₂ gas (Purity: 99.995%) was purchased from Linde. ¹³CO₂ gas (99% ¹³C) was purchased from Shanghai Wusheng Biological Technology Co., Ltd., who buys from Sigma-Aldrich, USA.

2. Experimental Section

2.1 Optimization of reaction conditions

Table S1. Photocatalyst optimization.[a]

[a] Reaction conditions: 1,1-diphenylethylene (0.2 mmol), iodobenzene (0.4 mmol), photocatalyst (2 mol %), DABCO (0.1 mmol), K₂CO₃ (0.5 mmol), HCOOK (0.4 mmol), 1 atm CO₂, 30 W blue LEDs, rt, 24 h. DABCO = triethylenediamine. [b] Yield was determined by ¹H NMR with CH₂Br₂ as internal standard.

Table S2. Reductant optimization.[a]

Bu

Me

1d

	PhI (2 equiv) + CO ₂ (1 atm)	[Ir(ppy) ₂ (dtbbpy)]PF ₆ (2 mol %) DABCO (50 mol %) K ₂ CO ₃ (2.5 equiv) Reductant (2 equiv) DMSO (0.1 M) 465 nm, 30 W rt, 24 h 1
Entry	Reductant	Yield ^[b] [%]
1	HCO ₂ K	82%
2	HCO ₂ Cs	82%
3	HCO ₂ Na	82%
4	(HCO ₂) ₂ Ca	11%
5	NaH	9%
6	CaH_2	7%

[a] Reaction conditions: 1,1-diphenylethylene (0.2 mmol), iodobenzene (0.4 mmol), $[Ir(ppy)_2(dtbbpy)]PF_6$ (2 mol %), DABCO (0.1 mmol), K₂CO₃ (0.5 mmol), reductant (0.4 mmol), 1 atm CO₂, 30 W blue LEDs, rt, 24 h. DABCO = triethylenediamine. [b] Yield was determined by ¹H NMR with CH₂Br₂ as internal standard.

2.2 General procedures for synthesis of products

General Procedure A

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with alkene (0.20 mmol, 1.0 equiv), corresponding halide (2.0 equiv), photocatalyst (2 mol%), DABCO (50 mol%), K_2CO_3 (2.0 equiv), HCOOK (2.0 equiv) and anhydrous DMSO (2 mL) (Note that ahydrous condition is important in order to avoid the alkene reduction reactions with water). N₂ gas in a balloon was bubbled into the mixture under stirring for 30 seconds through a needle and the tube was then evacuated and back-filled with CO_2 for 3 times. The mixture was placed under a 30 W blue LED (λ max=465 nm, 3 cm-4.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 24 h or 48 h (for some aryl bromides and

chlorides). Upon completion of the reaction, all the solvent were removed under reduced pressure at high temperature. (The following procedure is different from **General procedure B**) The crude residue was dissolved in 10 mL acetone, and K_2CO_3 (5 equiv) and CH_3I (10 equiv) were added. The mixture was stirred at 70 °C for 2 h and then cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo, and crude ¹H NMR spectrum was taken using CH_2Br_2 as internal standard. The resulting residue was purified by flash silica gel chromatography or preparative thin layer chromatography using petroleum ether/EtOAc (100:1-10:1) as the eluent to give the desired products.

General Procedure B

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with alkene (0.20 mmol, 1.0 equiv), corresponding halide (2.0 equiv), photocatalyst (2 mol%), DABCO (50 mol%), K₂CO₃ (2.0 equiv), HCOOK (2.0 equiv) and anhydrous DMSO (2 mL) (Note that ahydrous condition is important in order to avoid the alkene reduction reactions with water). N₂ gas in a balloon was bubbled into the mixture under stirring for 30 seconds through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED $(\lambda max=465 \text{ nm}, 3 \text{ cm}-4.5 \text{ cm} \text{ away from the LEDs}, with cooling fan to keep the reaction temperature at$ 25~30 °C) light source and stirred at ambient temperature for 24 h or 48 h (for some aryl bromides and chlorides).. Upon completion of the reaction, then AcOH (0.2 mL) was added and the system was stirred for 10 min at room temperature. The solvent along with other volatile matter was removed directly under reduced pressure at high temperature. The residue was re-dissolved in MeOH (4 mL) and then SOCl₂ (0.4 mL) was added dropwise carefully. The Schlenk tube was capped and stirred at 100 °C for 6 h. After cooled to room temperature, the mixture was diluted with EtOAc (10 mL) and quenched with saturated aqueous solution of sodium hydrogen carbonate. The reaction was extracted with EtOAc (30 mL \times 3) and the organic layers were combined and dried over Na₂SO₄. After concentrated under reduced pressure, crude ¹H NMR spectrum was taken using CH₂Br₂ as internal standard. The resulting residue was purified by flash silica gel chromatography or preparative thin layer chromatography using petroleum ether/EtOAc (100:1-10:1) as the eluent to give the desired products.

2.2 Characterization of products

methyl 2,2,3-triphenylpropanoate

The general procedure **A** was followed. Yield: 49.6 mg (78%) for X = I; 43.1 mg (68%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.21 (m, 6H), 7.17 – 7.15 (m, 4H), 7.11 –7.08 (m, 1H), 7.03 (t, *J* = 7.3 Hz, 2H, 2H), 6.66 (d, *J* = 6.8 Hz, 2H), 3.71 (s, 2H), 3.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 142.8, 137.4, 131.0, 129.4, 127.8, 127.6, 127.0, 126.4, 62.1, 52.4, 44.5. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₀O₂Na⁺ [M+Na⁺] 339.1356, found 339.1353.

methyl 2,2-diphenyl-3-(o-tolyl)propanoate

The general procedure **A** was followed. Yield: 47.5 mg (72%) for X = I; 42.1 mg (64%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.16 (m, 7H), 7.14 – 7.08 (m, 4H), 7.07 – 7.04 (m, 2H), 6.91 – 6.89 (m, 1H), 3.77 (s, 2H), 3.72 (s, 3H), 1.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 142.5, 138.9, 136.1, 130.1, 129.9, 129.2, 127.8, 127.0, 126.6, 125.7, 61.9, 52.4, 39.7, 18.9. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₂Na⁺ [M+Na⁺] 353.1512, found 353.1509.

methyl 2,2-diphenyl-3-(m-tolyl)propanoate

The general procedure **A** was followed. Yield: 47.1 mg (71%) for X = I; 48.3 mg (73%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.22 (m, 6H), 7.18 – 7.15 (m, 4H), 6.96 – 6.90 (m, 2H), 6.52 (d, *J* = 7.1 Hz, 1H), 6.35 (s, 1H), 3.68 (s, 3H), 3.66 (s, 2H), 2.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 142.9, 137.2, 136.9, 132.0, 129.4, 127.9, 127.7, 127.4, 127.0, 126.9, 62.1, 52.3, 44.5, 21.4. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₂Na⁺ [M+Na⁺] 353.1512, found 353.1511.

methyl 2,2-diphenyl-3-(p-tolyl)propanoate

The general procedure **A** was followed. Yield: 50.2 mg (76%) for X = I; 44.0 mg (67%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.16 (m, 10H), 6.85 (d, *J* = 7.7 Hz, 2H), 6.54 (d, *J* = 7.8 Hz, 2H), 3.67 (s, 5H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 142.9, 135.8, 134.1, 130.8, 129.4, 128.3, 127.7, 126.9, 62.1, 52.3, 44.1, 21.1. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₂Na⁺ [M+Na⁺] 353.1512, found 353.1512.

methyl 3-(2-methoxyphenyl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 38.8 mg (56%) for X = I.

¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.08 (m, 12H), 6.79 (t, *J* = 7.4 Hz, 1H), 6.51 (d, *J* = 8.2 Hz, 1H), 3.83 (s, 2H), 3.69 (s, 3H), 3.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 158.0, 143.0, 131.1, 129.3, 127.8, 127.4, 126.7, 126.3, 119.9, 109.7, 61.8, 54.7, 52.3, 36.4. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₃Na⁺ [M+Na⁺] 369.1461, found 369.1460.

methyl 3-(3-methoxyphenyl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 49.2 mg (71%) for X = I; 47.1 mg (68%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 6H), 7.20 – 7.16 (m, 4H), 6.97 (t, *J* = 7.9 Hz, 1H), 6.65 (dd, *J* = 8.2, 2.6 Hz, 1H), 6.37 (d, *J* = 7.5 Hz, 1H), 6.10 (s, 1H), 3.69 (s, 5H), 3.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 158.8, 142.8, 138.9, 129.4, 128.5, 127.8, 127.0, 123.4, 115.9, 112.6, 62.1, 55.0, 52.4, 44.5. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₃Na⁺ [M+Na⁺] 369.1461, found 369.1461.

methyl 3-(4-methoxyphenyl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 46.4 mg (67%) for X = I.

¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.15 (m, 10H), 6.60 – 6.55 (m, 4H), 3.72 (s, 3H), 3.68 (s, 3H), 3.65 (s, 2H).¹³C NMR (101 MHz, CDCl₃) δ 174.2, 158.2, 142.9, 132.0, 129.4, 129.3, 127.8, 126.9, 112.9, 62.2, 55.2, 52.3, 43.7. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₃Na⁺ [M+Na⁺] 369.1461, found 369.1460.

methyl 3-(3-(methylthio)phenyl)-2,2-diphenylpropanoate

The general procedure **A** was followed. Yield: 47.8 mg (66%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.22 (m, 6H), 7.19 – 7.15 (m, 4H), 7.02 – 6.95 (m, 2H), 6.58 (d, *J* = 6.9 Hz, 1H), 6.37 (s, 1H), 3.68 (s, 3H), 3.67 (s, 2H), 2.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 142.7, 138.1, 137.2, 129.4, 128.9, 127.9, 127.8, 127.7, 127.0, 124.9, 62.1, 52.4, 44.3, 15.7. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₂SNa⁺ [M+Na⁺] 385.1233, found 385.1233.

methyl 3-(4-(methylthio)phenyl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 48.0 mg (66%) for X = I.

¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.21 (m, 6H), 7.18 – 7.14 (m, 4H), 6.93 (d, *J* = 8.3 Hz, 2H), 6.57 (d, *J* = 8.2 Hz, 2H), 3.67 (s, 3H), 3.66 (s, 2H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 142.7, 136.1, 134.2, 131.5, 129.3, 127.8, 127.0, 125.8, 62.1, 52.3, 44.0, 15.9. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₂SNa⁺ [M+Na⁺] 385.1233, found 385.1232.

methyl 2,2-diphenyl-3-(3-(trifluoromethoxy)phenyl)propanoate

The general procedure **A** was followed. Yield: 53.9 mg (67%) for X = I; 58.8 mg (73%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.23 (m, 6H), 7.17 – 7.14 (m, 4H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 6.61 (d, *J* = 7.6 Hz, 1H), 6.55 (s, 1H), 3.72 (s, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 148.7, 142.5, 139.8, 129.5, 129.2, 128.7, 127.9, 127.2, 123.5, 120.5 (q, *J* = 257.3 Hz), 119.0, 62.1, 52.4, 44.3. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₁₉F₃O₃Na⁺ [M+Na⁺] 423.1178, found 423.1182.

methyl 2,2-diphenyl-3-(4-(trifluoromethoxy)phenyl)propanoate

The general procedure **A** was followed. Yield: 51.9 mg (65%) for X = I; 53.8 mg (67%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.21 (m, 6H), 7.17 – 7.14 (m, 4H), 6.87 (d, *J* = 8.2 Hz, 2H), 6.67 (d, *J* = 8.4 Hz, 2H), 3.70 (s, 2H), 3.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 147.9, 142.5, 136.3, 132.3, 129.3, 127.9, 127.1, 120.6 (q, *J* = 257.6 Hz), 119.9, 62.2, 52.4, 43.8. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₁₉F₃O₃Na⁺ [M+Na⁺] 423.1178, found 423.1181.

methyl 3-(2-fluorophenyl)-2,2-diphenylpropanoate

The general procedure **A** was followed. Yield: 38.7 mg (58%) for X = I; 40.2 mg (60%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.16 (m, 10H), 7.11 – 7.02 (m, 2H), 6.91 (t, *J* = 7.5 Hz, 1H), 6.71 (t, *J* = 9.2 Hz, 1H), 3.80 (s, 2H), 3.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 161.8 (d, *J* = 246.6 Hz), 142.5, 132.1 (d, *J* = 4.0 Hz), 129.2, 128.3 (d, *J* = 8.4 Hz), 127.8, 127.0, 124.8 (d, *J* = 14.7 Hz), 123.5 (d, *J* = 3.6 Hz), 114.9 (d, *J* = 23.4 Hz), 61.6, 52.5, 36.3. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₉FO₂Na⁺ [M+Na⁺] 357.1261, found 357.1261.

methyl 3-(3-fluorophenyl)-2,2-diphenylpropanoate

The general procedure **A** was followed. Yield: 45.1 mg (67%) for X = I; 51.4 mg (77%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.22 (m, 6H), 7.18 – 7.15 (m, 4H), 7.00 – 6.94 (m, 1H), 6.78 (td, J = 8.4, 2.6 Hz, 1H), 6.43 (d, J = 7.7 Hz, 1H), 6.39 (d, J = 10.4 Hz, 1H), 3.70 (s, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 162.2 (d, J = 244.2 Hz), 142.5, 140.0 (d, J = 7.5 Hz), 129.3, 128.8 (d, J = 8.3 Hz), 127.9, 127.1, 126.7 (d, J = 2.7 Hz), 117.7 (d, J = 21.5 Hz), 113.2 (d, J = 20.9 Hz), 62.1, 52.5, 44.2 (d, J = 1.8 Hz). HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₉FO₂Na⁺ [M+Na⁺] 357.1261, found 357.1262.

methyl 3-(4-fluorophenyl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 46.8 mg (70%) for X = I.

¹H NMR (400 MHz, CDCl₃) δ 7.24 –7.21 (m, 6H), 7.18 – 7.14 (m, 4H), 6.71 (t, *J* = 8.7 Hz, 2H), 6.62 – 6.59 (m, 2H), 3.68 (s, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 161.7 (d, *J* = 244.5 Hz), 142.7, 133.0 (d, *J* = 3.3 Hz), 132.4 (d, *J* = 7.8 Hz), 129.4, 127.8, 127.1, 114.3 (d, *J* = 20.9 Hz), 62.2, 52.4, 43.7. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₉FO₂Na⁺ [M+Na⁺] 357.1261, found 357.1261.

methyl 3-(2-chlorophenyl)-2,2-diphenylpropanoate

The general procedure **A** was followed. Yield: 39.1 mg (56%) for X = I; 44.9 mg (64%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.05 (m, 14H), 3.99 (s, 2H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 142.1, 136.4, 135.7, 131.3, 129.2, 129.2, 127.8, 127.0, 126.3, 61.6, 52.5, 39.7. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₉ClO₂Na⁺ [M+Na⁺] 373.0966, found 373.0966.

methyl 3-(3-chlorophenyl)-2,2-diphenylpropanoate

The general procedure **A** was followed. Yield: 45.8 mg (65%) for X = I; 51.5 mg (73%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.24 (m, 6H), 7.17 – 7.14 (m, 4H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.95 (t, *J* = 7.9 Hz, 1H), 6.61 (s, 1H), 6.54 (d, *J* = 7.6 Hz, 1H), 3.69 (s, 3H), 3.67 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 142.5, 139.5, 133.3, 131.1, 129.3, 129.2, 128.7, 127.9, 127.2, 126.5, 62.1, 52.4, 44.2. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₉ClO₂Na⁺ [M+Na⁺] 373.0966, found 373.0965.

methyl 3-(4-chlorophenyl)-2,2-diphenylpropanoate

The general procedure **A** was followed. Yield: 47.2 mg (67%) for X = I; 43.5 mg (62%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.22 (m, 6H), 7.18 – 7.14 (m, 4H), 6.99 (d, *J* = 8.4 Hz, 2H), 6.58 (d, *J* = 8.4 Hz, 2H), 3.67 (s, 3H), 3.66 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 142.5, 135.9, 132.4, 132.3, 129.3, 127.9, 127.6, 127.1, 62.1, 52.4, 43.9. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₉ClO₂Na⁺ [M+Na⁺] 373.0966, found 373.0966.

methyl 2,2-diphenyl-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoate

The general procedure A was followed. Yield: 48.9 mg (55%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.9 Hz, 2H), 7.32 – 7.03 (m, 10H), 6.67 (d, *J* = 7.6 Hz, 2H), 3.72 (s, 2H), 3.67 (s, 3H), 1.32 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 142.8, 140.8, 134.0, 130.5, 129.3, 127.8, 127.0, 83.8, 62.1, 52.3, 44.8, 25.0. HRMS (m/z, ESI-TOF): Calcd for C₂₈H₃₁BO₄Na⁺ [M+Na⁺] 465.2208, found 465.2208.

methyl 2,2-diphenyl-3-(2-(trifluoromethyl)phenyl)propanoate

The general procedure **A** was followed. Yield: 53.1 mg (69%) for X = Br; 36.6 mg (48%) for X = Cl. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.8 Hz, 1H), 7.29 – 7.01 (m, 13H), 4.03 (s, 2H), 3.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.77, 142.54, 137.24 (q, *J* = 1.6 Hz), 131.21, 130.59, 129.45 (q, *J* = 29.1 Hz), 128.97, 128.00, 127.05, 126.24, 126.14 (q, *J* = 6.1 Hz), 124.44 (q, *J* = 274.4 Hz), 60.72, 52.65, 39.05 (d, *J* = 2.5 Hz). HRMS (m/z, ESI-TOF): Calcd for C₂₃H₁₉F₃O₂Na⁺ [M+Na⁺] 407.1229, found 407.1228.

methyl 2,2-diphenyl-3-(3-(trifluoromethyl)phenyl)propanoate

The general procedure **A** was followed. Yield: 47.1 mg (61%) for X = I; 53.9 mg (70%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 7.8 Hz, 1H), 7.26 – 7.23 (m, 6H), 7.18 – 7.14 (m, 5H), 6.93 (d, *J* = 7.7 Hz, 1H), 6.77 (s, 1H), 3.74 (s, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 142.3, 138.3, 134.3, 129.7 (q, *J* = 31.9 Hz), 129.2, 127.9, 127.83, 127.78, 127.2, 124.1 (q, *J* = 273.3 Hz), 123.1 (q, *J* = 3.8 Hz), 62.1, 52.3, 44.2. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₁₉F₃O₂Na⁺ [M+Na⁺] 407.1229, found 407.1229.

methyl 2,2-diphenyl-3-(4-(trifluoromethyl)phenyl)propanoate

The general procedure **A** was followed. Yield: 52.2 mg (68%) for X = I; 53.8 mg (70%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 8H), 7.17 – 7.15 (m, 4H), 6.77 (d, *J* = 7.9 Hz, 2H), 3.76 (s, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 142.4, 141.7, 131.3, 129.3, 128.6 (q, *J* = 32.6 Hz), 127.9, 127.2, 124.4 (q, *J* = 272.6 Hz), 124.3 (q, *J* = 3.8 Hz), 62.1, 52.5, 44.3. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₁₉F₃O₂Na⁺ [M+Na⁺] 407.1229, found 407.1225.

methyl 3-(3-methoxy-3-oxo-2,2-diphenylpropyl)benzoate

The general procedure **A** was followed. Yield: 48.1 mg (64%) for X = I; 52.3 mg (70%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.8 Hz, 1H), 7.42 (s, 1H), 7.25 – 7.22 (m, 6H), 7.18 – 7.14 (m, 4H), 7.08 (t, *J* = 7.7 Hz, 1H), 6.77 (d, *J* = 7.7 Hz, 1H), 3.83 (s, 3H), 3.75 (s, 2H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 167.2, 142.5, 137.7, 135.7, 132.1, 129.4, 129.3, 127.9, 127.7, 127.5, 127.1, 62.1, 52.4, 52.0, 44.3. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₂O₄Na⁺ [M+Na⁺] 397.1410, found 397.1409.

methyl 4-(3-methoxy-3-oxo-2,2-diphenylpropyl)benzoate

The general procedure A was followed. Yield: 49.6 mg (66%) for X = I; 57.6 mg (77%) for X = Br; 52.1 mg (70%) for X = Cl.

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.25 – 7.21 (m, 6H), 7.18 – 7.14 (m, 4H), 6.74 (d, *J* = 8.3 Hz, 2H), 3.86 (s, 3H), 3.75 (s, 2H), 3.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 167.3, 143.1, 142.4, 131.0, 129.3, 128.7, 128.2, 127.9, 127.1, 62.1, 52.5, 52.1, 44.5. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₂O₄Na⁺ [M+Na⁺] 397.1410, found 397.1410.

methyl 3-(4-(methylsulfonyl)phenyl)-2,2-diphenylpropanoate

The general procedure **A** was followed. Yield: 50.6 mg (64%) for X = Br; 48.7 mg (62%) for X = Cl. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.4 Hz, 2H), 7.26 – 7.24 (m, 6H), 7.17 – 7.14 (m, 4H), 6.87 (d, *J* = 8.3 Hz, 2H), 3.79 (s, 2H), 3.69 (s, 3H), 2.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 144.3, 142.1, 138.3, 132.0, 129.2, 128.0, 127.3, 126.4, 62.1, 52.6, 44.6, 44.4. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₄SNa⁺ [M+Na⁺] 417.1131, found 417.1131.

25

methyl 3-(3-acetylphenyl)-2,2-diphenylpropanoate

The general procedure **A** was followed. Yield: 48.8 mg (68%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.8 Hz, 1H), 7.26 –7.23 (m, 6H), 7.19 – 7.14 (m, 5H), 7.07 (s, 1H), 7.01 (d, J = 7.6 Hz, 1H), 3.76 (s, 2H), 3.69 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.3, 173.8, 142.5, 137.8, 136.3, 135.8, 131.5, 129.4, 127.9, 127.8, 127.2, 126.1, 62.1, 52.4, 44.3, 26.6. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₂O₃Na⁺ [M+Na⁺] 381.1461, found 381.1460.

methyl 3-(4-acetylphenyl)-2,2-diphenylpropanoate

The general procedure **A** was followed. Yield: 43.1 mg (60%) for X = I; 47.5 mg (66%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.3 Hz, 2H), 7.25 – 7.23 (m, 6H), 7.17 – 7.15 (m, 4H), 6.76 (d, J = 8.2 Hz, 2H), 3.76 (s, 2H), 3.69 (s, 3H), 2.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.2, 173.9, 143.4, 142.4, 135.3, 131.2, 129.3, 127.9, 127.6, 127.2, 62.1, 52.5, 44.5, 26.7. HRMS (m/z, ESI-TOF): Calcd for $C_{24}H_{22}O_3Na^+$ [M+Na⁺] 381.1461, found 381.1461.

methyl 3-(4-benzoylphenyl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 44.8 mg (53%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.2 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.50 – 7.43 (m, 4H), 7.25 – 7.23 (m, 6H), 7.20 – 7.17 (m, 4H), 6.79 (d, *J* = 8.0 Hz, 2H), 3.80 (s, 2H), 3.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.7, 173.9, 142.7, 142.5, 137.9, 135.5, 132.3, 130.9, 130.0, 129.4, 129.3, 128.3, 127.9, 127.2, 62.1, 52.5, 44.5. HRMS (m/z, ESI-TOF): Calcd for C₂₉H₂₄O₃Na⁺ [M+Na⁺] 443.1618, found 443.1616.

methyl 3-(2-cyanophenyl)-2,2-diphenylpropanoate

The general procedure **A** was followed. Yield: 41.2 mg (60%) for X = Br; 43.5 mg (64%) for X = Cl. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 2H), 7.25 – 7.21 (m, 7H), 7.19 – 7.15 (m, 5H), 4.05 (s, 2H), 3.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 141.7, 141.6, 132.6, 132.0, 130.7, 129.3, 128.0, 127.3, 127.0, 117.8, 115.0, 62.1, 52.7, 41.9. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₁₉NO₂Na⁺ [M+Na⁺] 364.1308, found 364.1307.

29

methyl 3-(3-cyanophenyl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 39.6 mg (58%) for X = I; 45.8 mg (67%) for X = Br; 37.2 mg (54%) for X = Cl.

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.7 Hz, 1H), 7.29 – 7.23 (m, 6H), 7.17 – 7.10 (m, 5H), 6.92 – 6.90 (m, 2H), 3.72 (s, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 142.1, 139.0, 135.6, 134.6, 130.1, 129.3, 128.2, 128.0, 127.4, 119.0, 111.4, 62.1, 52.6, 44.1. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₁₉NO₂Na⁺ [M+Na⁺] 364.1308, found 364.1311.

methyl 3-(4-cyanophenyl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 44.4 mg (65%) for X = I; 46.7 mg (68%) for X = Br; 49.2 mg (72%) for X = Cl.

¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.2 Hz, 2H), 7.27 – 7.22 (m, 6H), 7.17 – 7.13 (m, 4H), 6.77 (d, *J* = 8.1 Hz, 2H), 3.75 (s, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 143.3, 142.1, 131.7, 131.2, 129.2, 128.0, 127.3, 119.2, 110.1, 62.1, 52.6, 44.6. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₁₉NO₂Na⁺ [M+Na⁺] 364.1308, found 364.1309.

methyl 3-(3,5-dimethylphenyl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 49.7 mg (72%) for X = I.

¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 6H), 7.18 – 7.15 (m, 4H), 6.74 (s, 1H), 6.22 (s, 2H), 3.68 (s, 3H), 3.61 (s, 2H), 2.10 (s, 6H).; ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 143.0, 137.0, 136.7, 129.5, 128.9, 127.9, 127.7, 126.9, 62.1, 52.2, 44.4, 21.3. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₄O₂Na⁺ [M+Na⁺] 367.1669, found 367.1670.

methyl 3-(3,5-bis(trifluoromethyl)phenyl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 44.8 mg (50%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.29 – 7.25 (m, 6H), 7.17 – 7.14 (m, 4H), 7.06 (s, 2H), 3.79 (s, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 141.9, 139.9, 131.4 (d, *J* = 4.1 Hz), 130.5 (q, *J* = 33.0 Hz), 129.2, 128.2, 127.6, 123.4 (q, *J* = 273.7 Hz), 120.4 – 120.3 (m), 62.2, 52.6, 44.2. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₁₈F₆O₂Na⁺ [M+Na⁺] 475.1103, found 475.1102.

methyl 3-([1,1'-biphenyl]-4-yl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 52.4 mg (67%) for X = I.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.4 Hz, 2H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.31 – 7.18 (m, 13H), 6.72 (d, *J* = 8.0 Hz, 2H), 3.75 (s, 2H), 3.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 142.8, 141.0, 139.1, 136.5, 131.4, 129.4, 128.8, 127.8, 127.2, 127.0, 126.2, 62.2, 52.4, 44.2. HRMS (m/z, ESI-TOF): Calcd for C₂₈H₂₄O₂Na⁺ [M+Na⁺] 415.1669, found 415.1669.

methyl 3-(naphthalen-1-yl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 46.2 mg (63%) for X = I.

¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.64 (m, 2H), 7.32 – 7.02 (m, 15H), 4.24 (s, 2H), 3.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 142.7, 134.0, 133.4, 133.3, 129.2, 128.3, 127.9, 127.8, 127.3, 126.9, 125.2, 125.0, 124.9, 123.6, 62.0, 52.4, 39.2. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₂₂O₂Na⁺ [M+Na⁺] 389.1512, found 389.1512.

methyl 3-(naphthalen-2-yl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 36.5 mg (50%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.70 (m, 1H), 7.57 – 7.54 (m, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.24 – 7.16 (m, 11H), 6.70 (d, *J* = 8.4 Hz, 1H), 3.86 (s, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 142.8, 135.0, 133.1, 132.2, 129.9, 129.4, 127.8, 127.5, 127.0, 126.7, 125.6, 125.5, 62.3, 52.4, 44.7. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₂₂O₂Na⁺ [M+Na⁺] 389.1512, found 389.1512.

methyl 3-cyclohexyl-2,2-diphenylpropanoate

The general procedure **A** was followed. Yield: 38.3 mg (59%) for X = I; 45.9 mg (71%) for X = Br. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.20 (m, 10H), 3.64 (s, 3H), 2.30 (d, *J* = 5.1 Hz, 2H), 1.53 – 1.49 (m, 3H), 1.22 (d, *J* = 12.2 Hz, 2H), 1.11 – 0.96 (m, 4H), 0.90 – 0.81 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 143.8, 129.1, 127.9, 126.8, 59.9, 52.2, 45.5, 34.8, 34.6, 26.5, 26.4. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₆O₂Na⁺ [M+Na⁺] 345.1825, found 345.1826.

tert-butyl 4-(3-methoxy-3-oxo-2,2-diphenylpropyl)piperidine-1-carboxylate

The general procedure A was followed. Yield: 54.4 mg (64%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.22 (m, 10H), 3.86 (s, 2H), 3.66 (s, 3H), 2.45 (t, *J* = 13.4 Hz, 2H), 2.34 (s, 2H), 1.41 (s, 9H), 1.26 – 1.04 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 154.9, 143.4, 129.0, 128.0, 127.0, 79.2, 60.0, 52.4, 44.6, 33.4, 33.3, 28.5. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₃₃NO₄ Na⁺ [M+Na⁺] 446.2302, found 446.2301.

38

methyl 2,2-diphenyl-3-(tetrahydro-2H-pyran-4-yl)propanoate

The general procedure A was followed. Yield: 46.5 mg (72%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 7.77 – 6.74 (m, 10H), 3.77 - 3.73 (m, 2H), 3.66 (s, 3H), 3.14 (t, J = 11.6 Hz, 2H), 2.35 (d, J = 4.9 Hz, 2H), 1.42 - 1.16 (m, 3H), 1.04 (d, J = 12.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 143.4, 129.0, 128.0, 127.0, 68.1, 59.9, 52.4, 45.1, 34.4, 32.4. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₂₄O₃Na⁺ [M+Na⁺] 347.1618, found 347.1618.

methyl 3-((3r,5r,7r)-adamantan-1-yl)-2,2-diphenylpropanoate

The general procedure A was followed. Yield: 48.6 mg (65%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.7 Hz, 4H), 7.25 – 7.15 (m, 6H), 3.61 (s, 3H), 2.44 (s, 2H), 1.75 (s, 3H), 1.56 – 1.53 (m, 3H), 1.47 – 1.44 (m, 3H), 1.23 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 145.5, 129.1, 127.8, 126.5, 56.6, 52.0, 51.9, 42.8, 36.9, 33.8, 28.9. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₃₀O₂Na⁺ [M+Na⁺] 397.2138, found 397.2138.

methyl 2-(2-methoxyphenyl)-2,3-diphenylpropanoate The general procedure **A** was followed. Yield: 47.4 mg (68%).

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.5 Hz, 2H), 7.30 – 7.18 (m, 4H), 7.04 – 6.95 (m, 4H), 6.84 – 6.70 (m, 4H), 4.00 (d, *J* = 13.2 Hz, 1H), 3.59 (s, 3H), 3.47 (d, *J* = 13.1 Hz, 1H), 3.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 157.5, 141.6, 137.9, 131.8, 131.0, 129.9, 129.5, 128.3, 127.7, 127.2, 127.0, 126.0, 120.0, 111.2, 58.5, 55.1, 52.0, 42.7. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₃Na⁺ [M+Na⁺] 369.1461, found 369.1462.

methyl 2,3-diphenyl-2-(o-tolyl)propanoate

The general procedure A was followed. Yield: 43.4 mg (66%).

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.41 (m, 1H), 7.30 – 7.27 (m, 2H), 7.21 – 7.11 (m, 6H), 7.08 – 7.04 (m, 3H), 6.60 (d, *J* = 7.1 Hz, 2H), 3.80 (d, *J* = 12.5 Hz, 1H), 3.66 (s, 3H), 3.63 (d, *J* = 12.5 Hz, 1H), 1.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 142.3, 141.7, 138.0, 136.8, 132.3, 130.9, 129.2, 128.3, 127.58, 127.56, 127.2, 126.6, 125.6, 60.4, 52.2, 46.0, 21.1. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₂Na⁺ [M+Na⁺] 353.1512, found 353.1515.

methyl 2-(2-fluorophenyl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 47.4 mg (71%).

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.5 Hz, 2H), 7.34 – 7.16 (m, 4H), 7.11 – 6.94 (m, 5H), 6.85 (dd, *J* = 11.6, 8.2 Hz, 1H), 6.78 (d, *J* = 7.6 Hz, 2H), 4.08 (d, *J* = 13.2 Hz, 1H), 3.65 (s, 3H), 3.48 (d, *J* = 13.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 161.1 (d, *J* = 247.9 Hz), 141.3, 137.1, 130.9, 130.8, 130.3 (d, *J* = 11.7 Hz), 128.9 (d, *J* = 8.9 Hz), 128.8, 128.1, 127.5, 127.4, 126.4, 123.4 (d, *J* = 3.2 Hz), 115.9 (d, *J* = 23.5 Hz), 58.8 (d, *J* = 1.9 Hz), 52.5, 42.8. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₉FO₂Na⁺ [M+Na⁺] 357.1261, found 357.1261.

methyl 2-(2-chlorophenyl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 47.1 mg (67%).

¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.0 Hz, 2H), 7.31 – 7.23 (m, 4H), 7.17 (t, *J* = 6.8 Hz, 2H), 7.12 – 7.06 (m, 2H), 7.03 (t, *J* = 7.2 Hz, 2H), 6.72 (d, *J* = 7.5 Hz, 2H), 3.92 (d, *J* = 13.4 Hz, 1H), 3.80 (d, *J* = 13.4 Hz, 1H), 3.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 140.9, 140.6, 136.8, 134.9,

131.2, 131.1, 130.8, 129.4, 128.4, 127.9, 127.6, 127.1, 126.6, 126.1, 61.1, 52.5, 42.6. HRMS (m/z, ESI-TOF): Calcd for $C_{22}H_{19}ClO_2Na^+$ [M+Na⁺] 373.0966, found 373.0966.

methyl 2-(3-methoxyphenyl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 50.8 mg (73%).

¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.12 (m, 6H), 7.10 (d, *J* = 7.0 Hz, 1H), 7.05 (t, *J* = 7.2 Hz, 2H), 6.77 (t, *J* = 6.4 Hz, 2H), 6.72 (s, 1H), 6.67 (d, *J* = 7.8 Hz, 2H), 3.73 – 3.64 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 159.0, 144.4, 142.6, 137.4, 130.9, 129.4, 128.7, 127.7, 127.6, 127.0, 126.4, 121.7, 115.6, 112.3, 62.1, 55.3, 52.3, 44.5. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₃Na⁺ [M+Na⁺] 369.1461, found 369.1459.

methyl 2,3-diphenyl-2-(m-tolyl)propanoate

The general procedure A was followed. Yield: 45.8 mg (69%).

¹H NMR (400 MHz, CDCl₃) δ 7.21 – 6.99 (m, 12H), 6.65 (d, *J* = 7.5 Hz, 2H), 3.76 (d, *J* = 12.8 Hz, 1H), 3.68 (s, 3H), 3.62 (d, *J* = 12.8 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 142.79, 142.76, 137.5, 137.3, 131.0, 130.0, 129.5, 127.74, 127.70, 127.6, 127.5, 126.8, 126.4, 126.2, 62.1, 52.3, 44.6, 21.7. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₂Na⁺ [M+Na⁺] 353.1512, found 353.1512.

methyl 2-(3-fluorophenyl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 44.4 mg (66%).

¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.03 (m, 9H), 6.94 – 6.84 (m, 3H), 6.67 (d, *J* = 7.0 Hz, 2H), 3.77 (d, *J* = 12.8 Hz, 1H), 3.70 (s, 3H), 3.62 (d, *J* = 12.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 162.3 (d, *J* = 244.7 Hz), 145.4 (d, *J* = 7.1 Hz), 142.4, 137.0, 130.8, 129.1, 129.0 (d, *J* = 8.2 Hz), 128.0, 127.7, 127.3, 126.6, 125.2 (d, *J* = 2.8 Hz), 116.8 (d, *J* = 23.0 Hz), 113.9 (d, *J* = 21.0 Hz), 62.0 (d, *J* = 1.7 Hz), 52.5, 44.5. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₉FO₂Na⁺ [M+Na⁺] 357.1261, found 357.1261.

methyl 2-(3-chlorophenyl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 49.3 mg (70%).

¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.03 (m, 11H), 6.98 (d, *J* = 7.7 Hz, 1H), 6.65 (d, *J* = 7.7 Hz, 2H), 3.77 (d, *J* = 12.8 Hz, 1H), 3.69 (s, 3H), 3.60 (d, *J* = 12.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 144.9, 142.2, 136.9, 133.6, 130.8, 129.7, 129.1, 128.8, 128.1, 127.8, 127.7, 127.3, 127.1, 126.6, 62.0, 52.5, 44.4. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₉ClO₂Na⁺ [M+Na⁺] 373.0966, found 373.0966.

48

methyl 2,3-diphenyl-2-(3-(trifluoromethyl)phenyl)propanoate

The general procedure A was followed. Yield: 54.2 mg (70%).

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.8 Hz, 1H), 7.31 – 7.19 (m, 8H), 7.12 (t, *J* = 7.3 Hz, 1H), 7.05 (t, *J* = 7.3 Hz, 2H), 6.63 (d, *J* = 7.5 Hz, 2H), 3.92 (d, *J* = 12.8 Hz, 1H), 3.71 (s, 3H), 3.52 (d, *J* = 12.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 143.8, 142.2, 136.7, 133.1, 130.8, 129.8 (q, *J* = 32.0 Hz), 128.9, 128.3, 128.0, 127.9, 127.5, 126.7, 126.6 (q, *J* = 3.9 Hz), 124.2 (q, *J* = 273.3 Hz), 123.7 (q, *J* = 3.9 Hz), 62.2, 52.6, 44.5. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₁₉F₃O₂Na⁺ [M+Na⁺] 407.1229, found 407.1229.

methyl 3-(1-methoxy-1-oxo-2,3-diphenylpropan-2-yl)benzoate

The general procedure A was followed. Yield: 50.2 mg (67%).

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 6.9 Hz, 1H), 7.86 (s, 1H), 7.30 – 7.24 (m, 5H), 7.19 – 7.16 (m, 2H), 7.10 (t, *J* = 7.2 Hz, 1H), 7.03 (t, *J* = 7.3 Hz, 2H), 6.65 (d, *J* = 7.1 Hz, 2H), 3.85 (s, 2H), 3.81 (d, *J* = 12.9 Hz, 1H), 3.70 – 3.66 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 167.1, 143.3, 142.3, 137.0, 134.4, 130.8, 130.2, 129.7, 129.1, 128.2, 128.0, 127.73, 127.70, 127.2, 126.5, 62.1, 52.5, 52.2, 44.4. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₂O₄Na⁺ [M+Na⁺] 397.1410, found 397.1410.

methyl 2-(3-cyanophenyl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 45.1 mg (66%).

¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.4 Hz, 1H), 7.35 – 7.19 (m, 8H), 7.16 – 7.12 (m, 1H), 7.07 (t, *J* = 7.4 Hz, 2H), 6.63 (d, *J* = 7.3 Hz, 2H), 3.99 (d, *J* = 12.8 Hz, 1H), 3.72 (s, 3H), 3.41 (d, *J* = 12.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 144.3, 141.8, 136.4, 134.3, 133.5, 130.6, 130.4, 128.6, 128.5, 128.2, 127.9, 127.8, 126.9, 119.0, 111.5, 61.9, 52.7, 44.3. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₁₉NO₂Na⁺ [M+Na⁺] 364.1308, found 364.1309.

methyl 2-(4-methoxyphenyl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 52.7 mg (76%).

¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.21 (m, 3H), 7.14 – 7.08 (m, 5H), 7.04 (t, *J* = 7.0 Hz, 2H), 6.77 (d, *J* = 8.7 Hz, 2H), 6.67 (d, *J* = 7.5 Hz, 2H), 3.78 (s, 3H), 3.72 (d, *J* = 12.8 Hz, 1H), 3.68 (s, 3H), 3.64 (d, *J* = 12.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 158.4, 143.1, 137.5, 135.0, 131.0, 130.5, 129.3, 127.7, 127.6, 126.9, 126.4, 113.1, 61.5, 55.3, 52.3, 44.7. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₃Na⁺ [M+Na⁺] 369.1461, found 369.1463.

methyl 2-(4-(methylthio)phenyl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 50.7 mg (70%).

¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.02 (m, 12H), 6.67 (d, J = 7.1 Hz, 2H), 3.68 (s, 5H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 142.7, 139.6, 137.2, 137.1, 130.9, 129.8, 129.2, 127.8, 127.6, 127.0, 126.4, 125.6, 61.7, 52.3, 44.4, 15.7. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₂SNa⁺ [M+Na⁺] 385.1233, found 385.1233.

methyl 2,3-diphenyl-2-(p-tolyl)propanoate

The general procedure A was followed. Yield: 47.2 mg (71%).

¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.01 (m, 12H), 6.67 (d, *J* = 7.4 Hz, 2H), 3.76 (d, *J* = 12.8 Hz, 1H), 3.67 (s, 3H), 3.62 (d, *J* = 12.8 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 142.9, 139.9, 137.5, 136.6, 131.0, 129.4, 129.1, 128.5, 127.7, 127.5, 126.8, 126.3, 61.8, 52.3, 44.5, 21.1. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₂Na⁺ [M+Na⁺] 353.1512, found 353.1510.

methyl 2-(4-fluorophenyl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 48.0 mg (72%).

¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.17 (m, 5H), 7.11 – 7.03 (m, 5H), 6.88 (t, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 7.7 Hz, 2H), 3.78 (d, *J* = 12.8 Hz, 1H), 3.69 (s, 3H), 3.59 (d, *J* = 12.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 161.7 (d, *J* = 246.3 Hz), 142.8, 138.6 (d, *J* = 3.3 Hz), 137.2, 131.2 (d, *J* = 7.9 Hz), 130.9, 129.0, 128.0, 127.7, 127.2, 126.5, 114.4 (d, *J* = 21.2 Hz), 61.6, 52.4, 44.6. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₉FO₂Na⁺ [M+Na⁺] 357.1261, found 357.1264.

methyl 2-(4-chlorophenyl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 50.6 mg (72%).

¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.01 (m, 12H), 6.66 (d, *J* = 7.7 Hz, 2H), 3.78 (d, *J* = 12.8 Hz, 1H), 3.69 (s, 3H), 3.58 (d, *J* = 12.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 142.5, 141.3, 137.0, 132.8, 131.0, 130.9, 129.0, 128.0, 127.7, 127.3, 126.6, 61.7, 52.4, 44.4. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₉ClO₂Na⁺ [M+Na⁺] 373.0966, found 373.0963.

methyl 2-([1,1'-biphenyl]-4-yl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 55.8 mg (71%).

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.1 Hz, 2H), 7.48 – 7.18 (m, 12H), 7.12 – 7.02 (m, 3H), 6.70 (d, J = 6.8 Hz, 2H), 3.74 (s, 2H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 142.7, 141.9, 140.6, 139.6, 137.3, 131.0, 129.8, 129.3, 128.8, 127.8, 127.6, 127.4, 127.1, 127.0, 126.4, 126.3, 61.9, 52.4, 44.5. HRMS (m/z, ESI-TOF): Calcd for C₂₈H₂₄O₂Na⁺ [M+Na⁺] 415.1669, found 415.1668.

methyl 2-(2,4-difluorophenyl)-2,3-diphenylpropanoate The general procedure **A** was followed. Yield: 50.0 mg (71%).

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.43 (m, 2H), 7.24 – 7.19 (m, 1H), 7.12 – 6.95 (m, 7H), 6.90 – 6.85 (m, 1H), 6.76 (d, *J* = 7.2 Hz, 2H), 3.99 (d, *J* = 13.2 Hz, 1H), 3.66 (s, 3H), 3.48 (d, *J* = 13.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.30, 162.0 (d, *J* = 247.8 Hz), 161.0 (d, *J* = 249.1 Hz), 137.06 (d, *J* = 3.2 Hz), 136.75, 130.80, 130.58 (d, *J* = 8.0 Hz), 130.42 (d, *J* = 3.7 Hz), 130.24 (d, *J* = 11.8 Hz), 129.14 (d, *J* = 8.9 Hz), 127.63, 126.60, 123.59 (d, *J* = 3.2 Hz), 116.00 (d, *J* = 23.3 Hz), 114.86 (d, *J* = 21.2 Hz), 58.18, 52.53, 43.15. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₈F₂O₂Na⁺ [M+Na⁺] 375.1167, found 375.1168.

methyl 2,2-bis(4-methoxyphenyl)-3-phenylpropanoate

The general procedure A was followed. Yield: 49.9 mg (66%).

¹H NMR (400 MHz, CDCl₃) δ 7.12 – 7.02 (m, 7H), 6.76 (d, *J* = 8.9 Hz, 4H), 6.68 (d, *J* = 7.1 Hz, 2H), 3.79 (s, 6H), 3.68 (s, 3H), 3.65 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 158.4, 137.6, 135.2, 131.1, 130.4, 127.6, 126.3, 113.1, 60.9, 55.3, 52.3, 44.8. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₄O₄Na⁺ [M+Na⁺] 399.1567, found 399.1568.

methyl 3-phenyl-2,2-di-p-tolylpropanoate

The general procedure A was followed. Yield: 46.9 mg (68%).

¹H NMR (400 MHz, CDCl₃) δ 7.10 – 7.01 (m, 11H), 6.68 (d, *J* = 8.1 Hz, 2H), 3.67 (s, 2H), 3.66 (s, 3H), 2.31 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 140.0, 137.6, 136.5, 131.0, 129.2, 128.4, 127.5, 126.3, 61.5, 52.3, 44.5, 21.1. HRMS (m/z, ESI-TOF): Calcd for C₂₄H₂₄O₂Na⁺ [M+Na⁺] 367.1669, found 367.1667.

methyl 2,2-bis(4-fluorophenyl)-3-phenylpropanoate

The general procedure A was followed. Yield: 53.1 mg (75%).

¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.04 (m, 7H), 6.91 (t, *J* = 8.7 Hz, 4H), 6.65 (d, *J* = 7.2 Hz, 2H), 3.70 (s, 3H), 3.66 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 161.8 (d, *J* = 246.7 Hz), 138.5 (d, J = 246.7 Hz), 148.5 (d, J = 246.7 H

3.3 Hz), 136.9, 130.9 (d, J = 7.9 Hz), 130.8, 127.8, 126.7, 114.7 (d, J = 21.2 Hz), 61.1, 52.5, 44.7. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₈F₂O₂Na⁺ [M+Na⁺] 375.1167, found 375.1166.

methyl 2-(naphthalen-2-yl)-2,3-diphenylpropanoate

The general procedure A was followed. Yield: 48.4 mg (66%).

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.74 (m, 3H), 7.68 (d, *J* = 8.7 Hz, 1H), 7. 49 – 7.43 (m, 2H), 7.25 – 7.07 (m, 7H), 7.01 (t, *J* = 7.4 Hz, 2H), 6.67 (d, *J* = 7.4 Hz, 2H), 3.93 (d, *J* = 12.8 Hz, 1H), 3.74 – 3.70 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 142.6, 140.3, 137.3, 132.9, 132.4, 131.0, 129.5, 128.4, 127.84, 127.80, 127.77, 127.6, 127.5, 127.3, 127.0, 126.5, 126.3, 126.1, 62.2, 52.4, 44.5. HRMS (m/z, ESI-TOF): Calcd for C₂₆H₂₂O₂Na⁺ [M+Na⁺] 389.1512, found 389.1513.

methyl 2-(3-chlorophenyl)-2-methyl-3-phenylpropanoate

The general procedure A was followed. Yield: 39.4 mg (68%).

¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.23 (m, 3H), 7.20 – 7.15 (m, 4H), 6.91 – 6.89 (m, 2H), 3.69 (s, 3H), 3.41 (d, *J* = 13.3 Hz, 1H), 3.14 (d, *J* = 13.3 Hz, 1H), 1.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 145.5, 136.9, 134.4, 130.6, 129.7, 128.0, 127.3, 126.80, 126.77, 124.8, 52.4, 51.4, 45.4, 22.1. HRMS (m/z, ESI-TOF): Calcd for C₁₇H₁₇ClO₂Na⁺ [M+Na⁺] 311.0809, found 311.0809.

methyl 2-(4-chlorophenyl)-2-methyl-3-phenylpropanoate

The general procedure A was followed. Yield: 33.9 mg (59%).

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.27 (m, 2H), 7.21 – 7.16 (m, 5H), 6.89 – 6.86 (m, 2H), 3.67 (s, 3H), 3.38 (d, *J* = 13.3 Hz, 1H), 3.15 (d, *J* = 13.3 Hz, 1H), 1.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.1, 141.8, 137.0, 132.9, 130.6, 128.6, 128.01, 127.95, 126.7, 52.4, 51.0, 45.5, 22.1. HRMS (m/z, ESI-TOF): Calcd for C₁₇H₁₇ClO₂Na⁺ [M+Na⁺] 311.0809, found 311.0809.

methyl 2-methyl-3-phenyl-2-(4-(trifluoromethyl)phenyl)propanoate The general procedure **A** was followed. Yield: 39.3 mg (61%).

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 5.2 Hz, 2H), 7.40 (d, *J* = 4.2 Hz, 2H), 7.20 – 7.17 (m, 3H), 6.90 – 6.88 (m, 2H), 3.69 (s, 3H), 3.44 (d, *J* = 12.5 Hz, 1H), 3.19 (d, *J* = 12.5 Hz, 1H), 1.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 147.4, 136.8, 130.6, 129.3 (q, *J* = 32.6 Hz), 128.1, 126.9, 126.8, 125.39 (q, *J* = 3.8 Hz), 124.2 (q, *J* = 272.7 Hz), 52.5, 51.6, 45.4, 22.2. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₁₇F₃O₂Na⁺ [M+Na⁺] 345.1073, found 345.1071.

methyl 2-([1,1'-biphenyl]-4-yl)-2-methyl-3-phenylpropanoate

The general procedure A was followed. Yield: 47.1 mg (71%).

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.9 Hz, 2H), 7.56 (d, J = 8.1 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.37 – 7.31 (m, 3H), 7.19 – 7.17 (m, 3H), 6.95 – 6.93 (m, 2H), 3.69 (s, 3H), 3.48 (d, J = 13.3 Hz, 1H), 3.20 (d, J = 13.2 Hz, 1H), 1.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 142.5, 140.7, 139.8, 137.4, 130.6, 128.9, 128.0, 127.4, 127.13, 127.11, 126.8, 126.6, 52.3, 51.2, 45.5, 22.3. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₂Na⁺ [M+Na⁺] 353.1512, found 353.1511.

methyl 2,2,3-triphenylbutanoate

The general procedure A was followed. Yield: 36.8 mg (56%).

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.8 Hz, 2H), 7.33 – 7.19 (m, 6H), 7.14 – 7.01 (m, 5H), 6.73 (d, *J* = 7.7 Hz, 2H), 4.60 (q, *J* = 7.2 Hz, 1H), 3.51 (s, 3H), 1.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 142.1, 141.6, 138.5, 132.2, 130.8, 130.2, 127.9, 127.2, 127.1, 126.9, 126.6, 126.5, 66.4, 52.1, 42.5, 17.4. HRMS (m/z, ESI-TOF): Calcd for C₂₃H₂₂O₂Na⁺ [M+Na⁺] 353.1512, found 353.1513.

methyl 2-(2-chlorophenyl)-3-phenylpropanoate

The general procedure A was followed. Yield: 28.6 mg (52%).

¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, J = 15.3, 7.6 Hz, 2H), 7.26 – 7.15 (m, 7H), 4.45 (dd, J = 8.7, 6.5 Hz, 1H), 3.61 (s, 3H), 3.36 (dd, J = 13.8, 8.8 Hz, 1H), 3.02 (dd, J = 13.7, 6.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 138.7, 136.4, 133.8, 129.7, 129.0, 128.8, 128.5, 128.3, 127.1, 126.4, 52.1, 49.5, 38.9. HRMS (m/z, ESI-TOF): Calcd for C₁₆H₁₅ClO₂Na⁺ [M+Na⁺] 297.0653, found 297.0651

methyl 2-(2-cyanophenyl)-3-phenylpropanoate

The general procedure A was followed. Yield: 27.0 mg (51%).

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.57 (m, 3H), 7.36 – 7.32 (m, 1H), 7.26 – 7.13 (m, 5H), 4.39 (t, *J* = 7.7 Hz, 1H), 3.64 (s, 3H), 3.44 (dd, *J* = 13.8, 8.2 Hz, 1H), 3.06 (dd, *J* = 13.7, 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 142.2, 137.8, 133.1, 133.1, 129.1, 128.6, 128.1, 127.9, 126.8, 117.6, 113.1, 52.5, 51.2, 39.8. HRMS (m/z, ESI-TOF): Calcd for C₁₇H₁₅NO₂Na⁺ [M+Na⁺] 288.0995, found 288.0995.

methyl 2-(3-cyanophenyl)-3-phenylpropanoate

The general procedure A was followed. Yield: 25.1 mg (47%).

¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.56 – 7.51 (m, 2H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.26 – 7.17 (m, 3H), 7.06 (d, *J* = 7.0 Hz, 2H), 3.88 (t, *J* = 7.8 Hz, 1H), 3.64 (s, 3H), 3.41 (dd, *J* = 13.8, 8.1 Hz, 1H), 3.01 (dd, *J* = 13.7, 7.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 140.0, 138.0, 132.7, 131.9, 131.3, 129.5, 129.0, 128.6, 126.9, 118.7, 112.9, 53.2, 52.5, 39.8. HRMS (m/z, ESI-TOF): Calcd for C₁₇H₁₅NO₂Na⁺ [M+Na⁺] 288.0995, found 288.0993.

methyl 3-phenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoate The general procedure **A** was followed. Yield: 41.1 mg (56%).

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.27 – 7.13 (m, 3H), 7.10 (d, *J* = 7.2 Hz, 2H), 3.86 (dd, *J* = 8.5, 6.9 Hz, 1H), 3.58 (s, 3H), 3.42 (dd, *J* = 13.8, 8.6 Hz, 1H), 3.02 (dd, *J* = 13.7, 6.9 Hz, 1H), 1.33 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 141.8, 139.0, 135.3, 129.0, 128.5, 127.5, 126.5, 83.9, 53.9, 52.2, 39.7, 25.0. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₇BO₄Na⁺ [M+Na⁺] 389.1895, found 389.1897.

methyl 3-phenyl-2-(4-(trifluoromethyl)phenyl)propanoate

The general procedure A was followed. Yield: 33.4 mg (54%).

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 7.9 Hz, 2H), 7.26 – 7.16 (m, 3H), 7.09 (d, J = 7.0 Hz, 2H), 3.92 (t, J = 7.7 Hz, 1H), 3.61 (s, 3H), 3.43 (dd, J = 13.8, 8.4 Hz, 1H), 3.02 (dd, J = 13.8), 8.4

J = 13.7, 7.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 142.6, 138.5, 129.8 (q, J = 32.5 Hz), 129.0, 128.59, 128.55, 126.7, 125.7 (q, J = 3.8 Hz), 124.2 (q, J = 273.1 Hz), 53.5, 52.3, 39.8. HRMS (m/z, ESI-TOF): Calcd for C₁₇H₁₅F₃O₂Na⁺ [M+Na⁺] 331.0916, found 331.0918.

methyl 2-(4-cyanophenyl)-3-phenylpropanoate

The general procedure A was followed. Yield: 29.2 mg (55%).

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 7.5 Hz, 2H), 7.26 – 7.16 (m, 3H), 7.06 (d, *J* = 7.2 Hz, 2H), 3.90 (t, *J* = 7.6 Hz, 1H), 3.63 (s, 3H), 3.42 (dd, *J* = 13.4, 8.2 Hz, 1H), 3.02 (dd, *J* = 13.4, 7.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 143.7, 138.0, 132.4, 129.0, 128.9, 128.5, 126.8, 118.7, 111.4, 53.6, 52.4, 39.6. HRMS (m/z, ESI-TOF): Calcd for C₁₇H₁₅NO₂Na⁺ [M+Na⁺] 288.0995, found 288.0995.

methyl 2-([1,1'-biphenyl]-4-yl)-3-phenylpropanoate

The general procedure A was followed. Yield: 35.1 mg (55%).

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.52 (m, 4H), 7.44 – 7.30 (m, 5H), 7.26 – 7.13 (m, 5H), 3.90 (dd, J = 8.9, 6.6 Hz, 1H), 3.60 (s, 3H), 3.45 (dd, J = 13.7, 8.9 Hz, 1H), 3.06 (dd, J = 13.7, 6.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 140.7, 140.4, 139.1, 137.8, 129.0, 128.9, 128.49, 128.46, 127.5, 127.4, 127.1, 126.5, 53.4, 52.2, 39.9. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₂₀O₂Na⁺ [M+Na⁺] 339.1356, found 339.1355.

74

methyl 2-(perfluorophenyl)-3-phenylpropanoate

The general procedure A was followed. Yield: 32.8 mg (50%).

¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.15 (m, 3H), 7.05 – 7.02 (m, 2H), 4.26 (dd, *J* = 10.5, 5.7 Hz, 1H), 3.74 (s, 3H), 3.61 (dd, *J* = 13.9, 5.7 Hz, 1H), 3.06 (dd, *J* = 14.0, 10.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, the signal of the peaks of the carbons on the pentafluoroarene are very low and not interpreted) δ 170.8, 137.7, 128.73, 128.69, 127.0, 52.9, 42.4, 36.3. HRMS (m/z, ESI-TOF): Calcd for C₁₆H₁₁F₅O₂Na⁺ [M+Na⁺] 353.0571, found 353.0567.

methyl 2-(4-fluorophenyl)-3-phenyl-2-(thiophen-2-yl)propanoate

The general procedure A was followed. Yield: 38.2 mg (56%).

¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.23 (m, 1H), 7.17 – 7.07 (m, 5H), 6.96 – 6.90 (m, 4H), 6.72 (d, *J* = 7.1 Hz, 2H), 3.80 (d, *J* = 12.8 Hz, 1H), 3.73 (s, 3H), 3.66 (d, *J* = 12.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 161.9 (d, *J* = 246.5 Hz), 146.3, 138.8, 136.6, 130.7, , 130.1 (d, *J* = 8.0 Hz), 127.8, 127.6, 126.9, 126.3, 125.3, 114.7 (d, *J* = 21.4 Hz), 59.2, 52.7, 46.2. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₁₇FO₂SNa⁺ [M+Na⁺] 363.0825, found 363.0821.

methyl 2-methyl-3-phenyl-2-(pyridin-3-yl)propanoate

The general procedure **B** was followed. Yield: 23.0 mg (45%).

¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.51 (d, *J* = 4.2 Hz, 1H), 7.57 (d, *J* = 8.1 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.20 – 7.17 (m, 3H), 6.90 – 6.88 (m, 2H), 3.70 (s, 3H), 3.43 (d, *J* = 13.3 Hz, 1H), 3.20 (d, *J* = 13.3 Hz, 1H), 1.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 148.2, 148.2, 138.7, 136.5, 134.4, 130.6, 128.1, 126.9, 123.2, 52.5, 50.2, 45.4, 21.9. HRMS (m/z, ESI-TOF): Calcd for C₁₆H₁₇NO₂Na⁺ [M+Na⁺] 278.1151, found 278.1152.

methyl 2,2-diphenyl-3-(pyridin-2-yl)propanoate

The general procedure **B** was followed. Yield: 40.5 mg (64%) for X = I; 35.1 mg (55%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 4.3 Hz, 1H), 7.35 (td, *J* = 7.7, 1.9 Hz, 1H), 7.22 – 7.16 (m, 10H), 7.01 – 6.98 (m, 1H), 6.69 (d, *J* = 7.8 Hz, 1H), 3.96 (s, 2H), 3.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 158.1, 148.8, 143.0, 135.6, 129.1, 127.8, 126.8, 124.6, 121.3, 60.6, 52.5, 46.7. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₁₉NO₂Na⁺ [M+Na⁺] 340.1308, found 340.1308.

3-(3-methylpyridin-2-yl)-2,2-diphenylpropanoic acid

The general procedure **B** was followed. Yield: 37.3 mg (56%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 5.3 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.26 – 7.16 (m, 6H), 7.11 – 7.07 (m, 5H), 4.05 (s, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.1, 155.5, 143.7, 142.4, 140.9, 133.8, 128.4, 128.2, 126.9, 122.5, 62.6, 40.4, 19.2. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₁₉NO₂Na⁺ [M+Na⁺] 340.1308, found 340.1308.

methyl 3-(3-fluoropyridin-2-yl)-2,2-diphenylpropanoate

The general procedure **B** was followed. Yield: 58.1 mg (87%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 4.5 Hz, 1H), 7.27–7.14 (m, 10H), 7.08 (t, *J* = 8.9 Hz, 1H), 7.04 – 7.00 (m, 1H), 4.03 (s, 2H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 157.9 (d, *J* = 257.1 Hz), 146.7 (d, *J* = 14.1 Hz), 144.4, 143.2, 128.9, 127.7, 126.8, 122.7 (d, *J* = 3.7 Hz), 122.0 (d, *J* = 19.7 Hz), 58.9, 52.3, 38.9 (d, *J* = 2.2 Hz). HRMS (m/z, ESI-TOF): Calcd for C₂₁H₁₈FNO₂Na⁺ [M+Na⁺] 358.1214, found 358.1215.

methyl 3-(3-chloropyridin-2-yl)-2,2-diphenylpropanoate

The general procedure **B** was followed. Yield: 45.5 mg (65%) for X = Br.

¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 4.7, 1.5 Hz, 1H), 7.49 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.28 – 7.14 (m, 10H), 7.00 (dd, *J* = 8.1, 4.7 Hz, 1H), 4.12 (s, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 155.4, 146.4, 143.6, 136.4, 131.7, 129.0, 127.8, 126.7, 122.3, 58.5, 52.2, 42.9. HRMS (m/z, ESI-TOF): Calcd for C₂₁H₁₈ClNO₂Na⁺ [M+Na⁺] 374.0918, found 374.0918.

methyl 2,2-diphenyl-3-(5-(trifluoromethyl)pyridin-2-yl)propanoate

The general procedure **B** was followed. Yield: 60.3 mg (78%) for X = Br; 52.5 mg (68%) for X = Cl. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.58 (d, *J* = 8.2 Hz, 1H), 7.24 – 7.19 (m, 10H), 6.83 (d, *J* = 8.2 Hz, 1H), 4.05 (s, 2H), 3.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 162.4 (d, *J* = 1.6 Hz), 145.6 (q, *J* = 4.1 Hz), 142.6, 132.7 (q, *J* = 3.5 Hz), 129.0, 127.9, 127.1, 124.4, 124.3 (q, *J* = 33.0 Hz),

123.8 (q, *J* = 273.2 Hz), 60.5, 52.6, 46.7. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₈F₃NO₂Na⁺ [M+Na⁺] 408.1182, found 408.1182.

methyl 2,2-diphenyl-3-(4-(trifluoromethyl)pyridin-2-yl)propanoate

The general procedure **B** was followed. Yield: 43.3 mg (56%) for X = Cl.

¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, *J* = 5.1 Hz, 1H), 7.26 (d, *J* = 2.1 Hz, 11H), 6.82 (s, 1H), 4.09 (s, 2H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 159.9, 149.6, 142.4, 137.8 (q, *J* = 33.9 Hz), 129.1, 128.0, 127.1, 122.8 (q, *J* = 274.1 Hz), 120.5 (q, *J* = 3.6 Hz), 116.9 (q, *J* = 3.3 Hz), 60.8, 52.6, 46.7. HRMS (m/z, ESI-TOF): Calcd for C₂₂H₁₈F₃NO₂Na⁺ [M+Na⁺] 408.1182, found 408.1182.

2.3 Mechanistic studies

Stern-Volmer fluorescence quenching experiments

Fluorescence spectra were collected on Edinburgh FS5 spectrofluorimeter. Samples for the quenching experiments were prepared in a 4 mL glass cuvette with a septum screw cap. **1a** was irradiated at 465 nm and the emission intensity at 590 nm was observed. In a typical experiment, the emission spectrum of a 5.0×10^{-5} M solution of **1a** in DMSO was collected.

DABCO: A stock solution of DABCO (56.1 mg, 0.5 mmol) in 1 ml of DMSO was prepared. Then, different amounts of this stock solution were added to a solution of the photocatalyst **1a.** in DMSO (5.0 x 10^{-5} M). As shown, a significant decrease of [Ir(ppy)₂(dtbbpy)]PF₆ (**1a**) luminescence was observed, suggesting that the mechanism might operate via a canonical photo-redox cycle consisting of a reductive quenching with DABCO.

Figure S1. Stern-Volmer quenching by DABCO.

Figure S2. Stern-Volmer quenching by HCOOK.

Figure S3. Stern-Volmer quenching by iodobenzene.

Figure S4. Stern-Volmer quenching by 1,1-diphenylethylene.

Control experiment without using aryl halide:

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with 1,1 diphenylethylene (36 μ L, 0.2 mmol), [Ir(ppy)₂(dtbbpy)]PF₆ (3.6 mg, 0.004 mmol, 2 mmol%), DABCO (11.2 mg, 0.1 mmol), K₂CO₃ (69.1 mg, 0.5 mmol), HCOOK (33.6 g, 0.4 mmol), and anhydrous DMSO (2 mL) (Note that ahydrous condition is important in order to avoid the alkene reduction reactions with water). N₂ gas in a balloon was bubbled into the mixture under stirring for 30 seconds through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a

30 W blue LED (λ max=465 nm, 3 cm-4.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 24 h. Upon completion of the reaction, the reaction was quenched with H₂O, then extracted 3 times with EtOAc. The combined aqueous layers were acidized by 1N HCl, then extracted 5 times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude residue was dissolved in 10 mL acetone, and K₂CO₃ (5 equiv) and CH₃I (10 equiv) were added. The mixture was stirred at 70 °C for 2 h and then cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo. The resulting residue was purified by preparative thin layer chromatography to give the product **83** in10% yield (6.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 6.76 (m, 10H), 3.67 (s, 3H), 3.49 (s, 3H), 3.43 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 171.2, 142.5, 128.7, 128.1, 127.2, 57.7, 52.7, 51.8, 43.8. HRMS (m/z, ESI-TOF): Calcd for C₁₈H₁₈O₄Na⁺ [M+Na⁺] 321.1097, found 321.1097.

Control experiment without using aryl halide in the presence of water:

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with 1,1 diphenylethylene (36 µL, 0.2 mmol), [Ir(ppy)₂(dtbbpy)]PF₆ (1.8 mg, 0.002 mmol, 1 mmol%), DABCO (11.2 mg, 0.1 mmol), K₂CO₃ (69.1 mg, 0.5 mmol), HCOOK (33.6 g, 0.4 mmol), H₂O (36 µL, 2 mmol) and anhydrous DMSO (2 mL) (Note that ahydrous condition is important in order to avoid the alkene reduction reactions with water). N₂ gas in a balloon was bubbled into the mixture under stirring for 30 seconds through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (\lambda max=465 nm, 3 cm-4.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 24 h. Upon completion of the reaction, all the solvent were removed under reduced pressure at high temperature. The crude residue was dissolved in 10 mL acetone, and K₂CO₃ (5 equiv) and CH₃I (10 equiv) were added. The mixture was stirred at 70 °C for 2 h and then cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo. The resulting residue was purified by preparative thin layer chromatography to the product 84 in 24% yield (11.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 6.95 (m, 10H), 4.49 (t, J = 8.0 Hz, 1H), 3.51 (s, 3H), 2.99 (d, J = 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 143.6, 128.7, 127.8, 126.7, 51.8, 47.1, 40.7. HRMS (m/z, ESI-TOF): Calcd for C₁₆H₁₆O₂Na⁺ [M+Na⁺] 263.1043, found 263.1043.

Reaction with radical clock:

4-(2-(1-phenylvinyl)cyclopropyl)-1,1'-biphenyl was synthesized following the literature procedures.^{S1}

The general procedure A was followed. Yield 85: 42.6 mg (49%).

¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.36 (m, 9H), 7.36 – 7.09 (m, 10H), 5.96 (t, *J* = 7.3 Hz, 1H), 3.98 (d, *J* = 16.0 Hz, 1H), 3.89 (d, *J* = 15.9 Hz, 1H), 3.81 (t, *J* = 7.5 Hz, 1H), 3.75 (s, 3H), 3.17 – 3.09 (m, 1H), 2.88 – 2.80 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 140.8, 140.5, 139.9, 139.5, 137.7, 128.9, 128.5, 128.5, 128.3, 128.3, 127.5, 127.4, 127.2, 127.1, 127.0, 126.5, 126.0, 52.3, 51.4, 36.0, 33.2. HRMS (m/z, ESI-TOF): Calcd for C₃₁H₂₈O₂Na⁺ [M+Na⁺] 455.1982, found 455.1981.

Isotope-labelling study:

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with 1,1 diphenylethylene (36 μ L, 0.2 mmol), iodobenzene (45 μ L, 0.4 mmol), [Ir(ppy)₂(dtbbpy)]PF₆ (3.6 mg, 0.004 mmol, 2 mmol%), DABCO (11.2 mg, 0.1 mmol), K₂CO₃ (69.1 mg, 0.5 mmol), HCOOK (33.6 g, 0.4 mmol) D₂O (72 μ L, 4 mmol) and anhydrous DMSO (2 mL) (Note that ahydrous condition is important in order to avoid the alkene reduction reactions with water). N₂ gas in a balloon was bubbled into the mixture under stirring for 30 seconds through a needle and the tube was then evacuated and back-filled with N₂ for 3 times. The mixture was placed under a 30 W blue LED (λ max=465 nm, 3 cm-4.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 24 h. Upon completion of the reaction, the reaction was quenched with H₂O, then extracted 3 times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by prepared TLC to give the product **86** in 82% yield (42.3 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.13 (m, 13H), 7.06 (d, *J* = 6.9 Hz, 2H), 3.41 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 140.4, 129.2, 128.5, 128.2, 128.2, 126.3, 126.0, 53.2, 42.1. HRMS (m/z, ESI-TOF): Calcd for C₂₀H₁₇D Na⁺ [M+Na⁺] 282.1363, found 282.1368.

Investigation of using aldehyde as the electrophile:

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with 1,1 diphenylethylene (36 μ L, 0.2 mmol), iodobenzene (45 μ L, 0.4 mmol), [Ir(ppy)₂(dtbbpy)]PF₆ (3.6 mg, 0.004 mmol, 2 mmol%), DABCO (11.2 mg, 0.1 mmol), K₂CO₃ (69.1 mg, 0.5 mmol), HCOOK (33.6 g,

0.4 mmol), 4-Fluorobenzaldehyde (172 μ L, 1.6 mmol) and anhydrous DMSO (2 mL) (Note that ahydrous condition is important in order to avoid the alkene reduction reactions with water). N₂ gas in a balloon was bubbled into the mixture under stirring for 30 seconds through a needle and the tube was then evacuated and back-filled with N₂ for 3 times. The mixture was placed under a 30 W blue LED (λ max=465 nm, 3 cm-4.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 24 h. Upon completion of the reaction, the reaction was quenched with H₂O, then extracted 3 times with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by prepared TLC to give the product **87** in 73% yield (55.8 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.21 (m, 8H), 7.21 – 7.09 (m, 3H), 7.05 (t, *J* = 7.3 Hz, 2H), 6.86 (t, *J* = 8.7 Hz, 2H), 6.74 – 6.71 (m, 2H), 6.62 (d, *J* = 7.3 Hz, 2H), 5.63 (d, *J* = 3.1 Hz, 1H), 3.54 (d, *J* = 13.5 Hz, 1H), 3.12 (d, *J* = 13.6 Hz, 1H), 2.25 (d, *J* = 3.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (d, *J* = 246.4 Hz), 143.8, 141.9, 137.6, 136.3 (d, *J* = 3.2 Hz), 131.1, 131.0, 130.6 (d, *J* = 8.0 Hz), 130.3, 127.7, 127.5, 127.1, 126.5, 126.2, 114.2 (d, *J* = 21.1 Hz), 76.2, 58.7, 44.3. HRMS (m/z, ESI-TOF): Calcd for C₂₇H₂₃FO Na⁺ [M+Na⁺] 405.1625, found 405.1625.

Reaction with ¹³C labled CO₂:

The general procedure A was followed for this reaction to give 1^{-13} C.

1-¹³C

methyl 2,2,3-triphenylpropanoate

Yield: 50.8 mg (80%), 74% ¹³C (calculated from GC-MS)

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.12 (m, 10H), 7.11 – 7.07 (m, 1H), 7.03 (t, *J* = 7.8 Hz, 2H), 6.66 (d, *J* = 8.1 Hz, 2H), 3.73 – 3.69 (m, 2H), 3.69 – 3.66 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 142.9, 137.4, 131.0, 129.4, 129.4, 127.8, 127.6, 12.0, 126.4, 62.2, 62.1 (d, *J* = 56.9 Hz), 52.3, 44.5. HRMS (m/z, ESI-TOF): Calcd for C₂₁¹³CH₂₀O₂Na⁺ [M+Na⁺] 340.1389, found 340.1389.

1-K was prepared by treating 1-H (120.9 mg, 0.4 mmol) with KOH (22.4 mg, 0.4 mmol) and stirred for 5 min at 0 °C. EtOH and H₂O were then removed under high vacuum to afford 1-K as white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.17 – 6.86 (m, 13H), 6.69 (d, *J* = 7.2 Hz, 2H), 3.58 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 179.7, 145.8, 139.6, 131.0, 129.6, 127.5, 127.4, 126.0, 125.8, 64.5, 45.2.

Stability of potassium salt of product in presence of N2 or CO2:

The oven-dried Schlenk tube (38 mL) containing a stirring bar was charged with **1-K** (34.0 mg, 0.10 mmol), $[Ir(ppy)_2(dtbbpy)]PF_6$ (1.8 mg, 0.002 mmol, 2 mol%), DABCO (6.1 mg, 0.05 mmol), K₂CO₃ (34.5 mg, 0.25 mmol), HCOOK (16.8 mg, 0.2 mmol) and anhydrous DMSO (1 mL). N₂ gas in a balloon was bubbled into the mixture under stirring for 30 seconds through a needle and the tube was then evacuated and back-filled with CO₂ or N₂ for 3 times. The mixture was placed under a 30 W blue LED (λ max=465 nm, 3 cm away, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 24 h. Upon completion of the reaction, all the solvent were removed under reduced pressure at high temperature. The crude residue was dissolved in 10 mL acetone, and K₂CO₃ (5 equiv) and CH₃I (10 equiv) were added. The mixture was stirred at 70 °C for 2 h and then cooled to room temperature. The crude reaction mixture was diluted with EtOAc (5 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional 25 mL of EtOAc. The filtrate was concentrated in vacuo, and rcude ¹H NMR spectrum was taken using CH₂Br₂ as internal standard, which indicated formation of 87% of **1**.

2.4 Gram-scale experiment

The oven-dried Schlenk tube (250 mL) containing a stirring bar was charged with 1,1 diphenylethylene (0.9 g, 5 mmol), iodobenzene (1.11 ml, 10 mmol), $[Ir(ppy)_2(dtbbpy)]PF_6$ (91.4 mg, 0.1 mmol, 2 mmol%), DABCO (280.4 mg, 2.5 mmol, 50 mol%), K₂CO₃ (1.73 g, 12.5 mmol), HCOOK (0.84 g, 10 mmol) and anhydrous DMSO (50 mL). N₂ gas in a balloon was bubbled into the mixture under stirring for 10 min through a needle and the tube was then evacuated and back-filled with CO₂ for 3 times. The mixture was placed under a 30 W blue LED (λ max=465 nm, 7.5 cm away from the LEDs, with cooling fan to keep the reaction temperature at 25~30 °C) light source and stirred at ambient temperature for 24 h. Upon completion of the reaction, all the solvent were removed under reduced pressure at high temperature. The crude residue was dissolved in 50 mL acetone, and K₂CO₃ (3.46 g, 25 mmol) and CH₃I (3 mL, 50 mmol) were added. The mixture was stirred at 70 °C for 2 h and then cooled to room temperature. The crude reaction mixture was diluted with EtOAc (25 mL) and filtered through a short pad of Celite. The sealed tube and Celite pad were washed with an additional

125 mL of EtOAc. The filtrate was concentrated in vacuo, and crude ¹H NMR spectrum was taken using CH_2Br_2 as internal standard. The resulting residue was purified by flash silica gel chromatography or preparative thin layer chromatography using petroleum ether/EtOAc (100:1) as the eluent to give **1** in 69% yield (1.09 g).

3. X-Ray Crystallographic Spectrum of 78

The CCDC number of this compound is 1942129

Table S3.	Crystal	data	and	structure	refinemen	it for	78
-----------	---------	------	-----	-----------	-----------	--------	----

Empirical formula	C21 H19 N O2
Formula weight	317.37
Temperature	108(3) K
Wavelength	1.34050 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$a = 16.6583(2) \text{ Å}$ $\alpha = 90$
	$b = 9.92980(10) \text{ Å} \qquad \beta = 90$
	$c = 19.3483(2) \text{ Å}$ $\gamma = 90^{\circ}$
Volume	3200.47(6) Å ³
Z	8
Density (calculated)	1.317 Mg/m ³
Absorption coefficient	0.430 mm ⁻¹
F(000)	1344
Crystal size	0.1 x 0.1 x 0.1 mm ³
Theta range for data collection	4.60 to 60.41°.
Index ranges	-20<=h<=21, -12<=k<=9, -25<=l<=2
Reflections collected	13499
Independent reflections	3565 [R(int) = 0.0163]
Completeness to theta = 60.41°	97.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1 and 0.90836
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3565 / 1 / 222
Goodness-of-fit on F^2	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0355, wR2 = 0.0877
-------------------------------	------------------------------------
R indices (all data)	R1 = 0.0375, wR2 = 0.0891
Largest diff. peak and hole	0.326 and -0.177 e.Å ⁻³

O(1)-C(2)	1.3073(12)
O(1)-H(1)	0.960(16)
C(2)-O(3)	1.2147(13)
C(2)-C(4)	1.5580(13)
C(4)-C(19)	1.5350(13)
C(4)-C(13)	1.5418(13)
C(4)-C(5)	1.5627(13)
C(5)-C(11)	1.5091(14)
C(5)-H(5A)	0.9700
C(5)-H(5B)	0.9700
N(6)-C(11)	1.3406(13)
N(6)-C(7)	1.3422(14)
C(7)-C(8)	1.3740(16)
C(7)-H(7)	0.9300
C(8)-C(9)	1.3832(16)
C(8)-H(8)	0.9300
C(9)-C(10)	1.3897(15)
C(9)-H(9)	0.9300
C(10)-C(11)	1.3999(14)
C(10)-C(12)	1.5009(14)
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(13)-C(18)	1.3879(14)
C(13)-C(14)	1.3983(14)
C(14)-C(15)	1.3856(15)
C(14)-H(14)	0.9300
C(15)-C(16)	1.3869(17)
C(15)-H(15)	0.9300
C(16)-C(17)	1.3804(16)
C(16)-H(16)	0.9300

Table S4. Bond lengths [Å] and angles [°] for 78.

C(17)-C(18)	1.3951(15)
C(17)-H(17)	0.9300
C(18)-H(18)	0.9300
C(19)-C(24)	1.3960(14)
C(19)-C(20)	1.3989(14)
C(20)-C(21)	1.3870(14)
C(20)-H(20)	0.9300
C(21)-C(22)	1.3894(15)
C(21)-H(21)	0.9300
C(22)-C(23)	1.3888(15)
C(22)-H(22)	0.9300
C(23)-C(24)	1.3907(14)
C(23)-H(23)	0.9300
C(24)-H(24)	0.9300
C(2)-O(1)-H(1)	111.8(14)
O(3)-C(2)-O(1)	121.59(9)
O(3)-C(2)-C(4)	121.13(9)
O(1)-C(2)-C(4)	117.20(8)
C(19)-C(4)-C(13)	110.87(8)
C(19)-C(4)-C(2)	106.93(8)
C(13)-C(4)-C(2)	107.80(8)
C(19)-C(4)-C(5)	112.45(8)
C(13)-C(4)-C(5)	106.30(8)
C(2)-C(4)-C(5)	112.44(8)
C(11)-C(5)-C(4)	119.70(8)
C(11)-C(5)-H(5A)	107.4
C(4)-C(5)-H(5A)	107.4
C(11)-C(5)-H(5B)	107.4
C(4)-C(5)-H(5B)	107.4
H(5A)-C(5)-H(5B)	106.9
C(11)-N(6)-C(7)	120.70(9)
N(6)-C(7)-C(8)	121.38(10)
N(6)-C(7)-H(7)	119.3
C(8)-C(7)-H(7)	119.3
C(7)-C(8)-C(9)	118.51(10)
C(7)-C(8)-H(8)	120.7
C(9)-C(8)-H(8)	120.7

C(8)-C(9)-C(10)	120.85(10)
C(8)-C(9)-H(9)	119.6
C(10)-C(9)-H(9)	119.6
C(9)-C(10)-C(11)	117.32(9)
C(9)-C(10)-C(12)	120.83(9)
C(11)-C(10)-C(12)	121.83(9)
N(6)-C(11)-C(10)	121.22(9)
N(6)-C(11)-C(5)	117.45(9)
C(10)-C(11)-C(5)	121.30(9)
C(10)-C(12)-H(12A)	109.5
C(10)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(10)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(18)-C(13)-C(14)	118.02(9)
C(18)-C(13)-C(4)	122.54(9)
C(14)-C(13)-C(4)	119.43(9)
C(15)-C(14)-C(13)	120.95(10)
C(15)-C(14)-H(14)	119.5
C(13)-C(14)-H(14)	119.5
C(14)-C(15)-C(16)	120.37(10)
C(14)-C(15)-H(15)	119.8
C(16)-C(15)-H(15)	119.8
C(17)-C(16)-C(15)	119.37(10)
C(17)-C(16)-H(16)	120.3
C(15)-C(16)-H(16)	120.3
C(16)-C(17)-C(18)	120.24(10)
C(16)-C(17)-H(17)	119.9
C(18)-C(17)-H(17)	119.9
C(13)-C(18)-C(17)	121.04(10)
C(13)-C(18)-H(18)	119.5
C(17)-C(18)-H(18)	119.5
C(24)-C(19)-C(20)	118.01(9)
C(24)-C(19)-C(4)	121.86(9)
C(20)-C(19)-C(4)	120.05(9)
C(21)-C(20)-C(19)	121.14(9)
C(21)-C(20)-H(20)	119.4

C(19)-C(20)-H(20)	119.4
C(20)-C(21)-C(22)	120.18(9)
C(20)-C(21)-H(21)	119.9
C(22)-C(21)-H(21)	119.9
C(23)-C(22)-C(21)	119.44(9)
C(23)-C(22)-H(22)	120.3
C(21)-C(22)-H(22)	120.3
C(22)-C(23)-C(24)	120.24(9)
C(22)-C(23)-H(23)	119.9
C(24)-C(23)-H(23)	119.9
C(23)-C(24)-C(19)	120.99(9)
C(23)-C(24)-H(24)	119.5
C(19)-C(24)-H(24)	119.5

4. NMR Spectra of Compounds

S43

S47

S48

S74

S86

S88

7.921 7.7302 7.7302 7.7302 7.7287 7.7287 7.7287 7.7287 7.7287 7.7287 7.7285 7.7295 7.7205 7.7

S96

7,7,596 7,7,741 7,7,471 7,459 7,459 7,459 7,440 7,440 7,440 7,440 7,440 7,440 7,440 7,440 7,440 7,440 7,440 7,440 7,440 7,440 7,740 7,7100 7,7100 7,7100 7,7100 7,7100 7,7100 7,7100 7,7100 7,7100 7,7100 7,7100 7,7100 7,7100

24 7,465 7,445 7,445 7,445 7,445 7,445 7,445 7,445 7,445 7,445 7,445 7,445 7,721 7,721 7,721 7,721 7,729 7,719 7,7

7,801 7,782 7,782 7,782 7,782 7,782 7,782 7,784 7,746 7,746 7,746 7,446 7,746 7,446 7,746 7,446 7,714 7,7126 7,714 7,7116

S103

S107

 $\langle 7,7,62 \rangle$ $\langle 7,7,23 \rangle$ $\langle 7,7,23 \rangle$ $\langle 7,247 \rangle$ $\langle 7,247 \rangle$ $\langle 7,227 \rangle$ $\langle 7,227 \rangle$ $\langle 7,227 \rangle$ $\langle 7,227 \rangle$ $\langle 7,217 \rangle$

S112

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S117

S118

Control Contro

85

7,326 7,328 7,3318 7,3318 7,232 7,229 7,229 7,229 7,229 7,749 7,74

S128

5. References

^{S1} Combee, L. A.; Johnson, S. L.; Laudenschlager, J. E.; Hilinski, M. K., Rh(II)-Catalyzed Nitrene-Transfer [5 + 1] Cycloadditions of Aryl-Substituted Vinylcyclopropanes. *Org. Lett.* **2019**, *21*, 2307-2311.