posted on 2021-04-13, 17:36authored byWilfred R. Hagen
A previously developed
spectrometer for broadband electron paramagnetic
resonance (EPR) spectroscopy of dilute randomly oriented systems has
been considerably modified to extend the frequency reach down to the
hundred MHz range and to boost concentration sensitivity by 1 to 2
orders of magnitude. The instrument is now suitable for the study
of biological systems in particular metalloproteins. As a proof of
concept, examples from the class of low-spin ferric hemoproteins are
studied in terms of frequency-dependent changes in their EPR spectra.
Mono-heme cytochrome c EPR is determined by g-strain
over a wide frequency range, whereas a combination of unresolved ligand
hyperfine interaction and concentration-dependent intermolecular dipolar
interaction becomes dominant at very low frequencies. In the four
heme containing cytochrome c3, g-strain
combines with intramolecular dipolar interaction over the full-studied
frequency range of 0.23–12.0 GHz. It is concluded that the
point-dipole approach is inappropriate to describe magnetic interactions
between low-spin ferric heme systems and that a body of literature
on redox interactions in multi-heme proteins will be affected by this
conclusion.