Unprecedented stereoselective synthesis of 3-methylisoxazolidine-5-aryl-

1,2,4-oxadiazoles via 1,3-dipolar cycloaddition and study of their in vitro antioxidant activity

Jihed Brahmi, ${ }^{\text {a }}$ Siwar Ghannay, ${ }^{\text {a }}$ Sana Bakari, ${ }^{\text {b }}$ Kaïss Aouadi, ${ }^{\text {a,* }}$ Adel Kadri, ${ }^{\text {b,c }}$ Moncef Msaddek, ${ }^{\text {a }}$ Sébastien Vidal ${ }^{\text {d }}$
${ }^{\text {a }}$ Université de Monastir, Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivités, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5000 Monastir, Tunisia.
${ }^{\mathrm{b}}$ Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, B.P. 11713000, Sfax, Tunisia.
${ }^{c}$ College of Science and Arts in Baljurashi, Al Baha University, P.O.Box (1988). Al Baha, Saudi Arabia.
${ }^{d}$ Université de Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Laboratoire de Chimie Organique 2-Glycochimie, Bâtiment Curien, 43 boulevard du 11 Novembre 1918, F69622 Villeurbanne, France.

Table of Contents

General Procedures and Characterizations S-2
DPPH free radical scavenging activity S-10
Ferric reducing antioxidant power (FRAP) S-10
NMR Spectra S-13
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 2 S-13
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3 S-14
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 4 a S-15
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 4b S-16
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 4 c S-17
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 4 d S-18
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 4 e S-19
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 4 f S-20
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 5 a S-21
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 5 'a S-22
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 5 c S-23
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 5 d S-24
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 5 e S-25

Experimental section

General methods: Thin-layer chromatography was performed on silica gel $60 \mathrm{~F}_{254}$ (Merck). The plates were visualized by using UV light, gentle heating, or ninhydrin spray followed by heating in the case of amines. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a Bruker DRX300 spectrometer with the residual solvent as the internal standard. The chemical shifts are expressed on the δ scale in parts per million (ppm). The following abbreviations are used to explain the observed multiplicities: s, singlet; d, doublet; dd, doublet of doublets; ddd, doublet of doublet of doublets; t, triplet; m, multiplet. NMR solvents were purchased from Eurisotop (Saint Aubin, France). High resolution (HR-ESI-QToF) mass spectra were recorded using a Bruker MicroToF-Q II XL spectrometer. 1D and 2D NMR spectroscopy which allowed signal assignments based on COSY and HSQC correlations.

General procedure (A) for the synthesis of Amidoxime.

To a solution of $\mathbf{2}(2 \mathrm{mmol}, 610 \mathrm{mg})$ in 3 mL of EtOH was added hydroxyl amine 50% in water (1.8 equiv, $3.6 \mathrm{mmol}, 120 \mathrm{mg}$) and a catalytic amount of acetic acid. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 10 min under microwaves irradiation. The mixture was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), washed with brine and dried over anhydrous sodium sulfate. After removal of ethyl acetate by evaporation under reduced pressure, the residue obtained was purified by flash column chromatography using ethyl acetate (100\%) as eluent to afford the desired amidoxime $\mathbf{3}(97 \%, 655 \mathrm{mg})$.

General procedure (B) for the synthesis of 1,2,4-oxadiazoles (4a-f).

To a stirred solution of $\mathbf{3}(1.8 \mathrm{mmol}, 600 \mathrm{mg})$ in 10 mL of freshly distilled toluene were added (1.1 eq, 1.98 mmol) of aldehyde, molecular sieve $4 \AA$ and a catalytic amount of PTSA. The reaction mixture stirred and heated under reflux $\left(110^{\circ} \mathrm{C}\right)$ for 18 h . The solvent was evaporated
and the residue was extracted with EtOAc (3 x 100 mL). The combined organic layer are dried over $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The crude product was purified by flash chromatography on silica gel (EtOAc/PE 8/2).

General procedure (C) for the acidic cleavage of the menthone chiral auxiliary.

1,2,4-Oxadiazole 4 (0.44 mmol) was dissolved in $\mathrm{Ac}_{2} \mathrm{O}(2 \mathrm{~mL})$, $\mathrm{AcOH}(3.2 \mathrm{~mL})$, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.8 \mathrm{~mL})$, and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 6.5 h . After cooling to $0^{\circ} \mathrm{C}$, the aqueous solution of $5 \% \mathrm{NaOH}$ was added drop wise over a period of 2 h until $\mathrm{pH} \sim 8$. The mixture was then poured slowly into a saturated aqueous NaHCO_{3} solution (280 mL). The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, and the combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by flash silica gel chromatography (EtOAc/PE 9/1) to afford the desired compound 5 .
(1S,2S,2'S,3a'S,5R)-2-isopropyl-5,5'-dimethyl-4'-oxotetrahydro-2'H-spiro[cyclohexane-1,6'-imidazo[1,5-b]isoxazol]-2'-yl)acetonitrile (2).

Nitrone $1(2.5 \mathrm{mmol}, 600 \mathrm{mg})$ and the allyl cyanide ($12.5 \mathrm{mmol}, 867 \mathrm{mg}$) were dissolved in toluene (15 mL) and heated at reflux for 48 h , until TLC showed the complete conversion of the nitrone. The solution was concentrated and the residue was purified by flash chromatography (EtOAc/PE 8/2) to afford the desired cycloadduct 2 as a white solid $(96 \%$, $724 \mathrm{mg}): \mathrm{mp} 122-124^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.67[\mathrm{EtOAc} 100 \%] ;[\alpha]^{22}=-89.2\left(c=1 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.4 \mathrm{~Hz}\right), 0.84\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 0.92(\mathrm{~m}$, $1 \mathrm{H}), 0.93\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.2 \mathrm{~Hz}\right), 1.21(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-13, J=12.6 \mathrm{~Hz}), 1.37(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}$, $2 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{ddd}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}), 2.60(\mathrm{t}$, $2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.79(\mathrm{ddd}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}), 3.95$ $(\mathrm{d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 4.20(\mathrm{q}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.6,22.3$,
(C=O) ppm; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=305.2120$, found: 305.2131.

(Z)-N'-hydroxy-2-((1S,2S,2'S,3a'S,5R)-2-isopropyl-5,5'-dimethyl-4'-oxotetrahydro-2'H-spiro[cyclohexane-1,6'-imidazo[1,5-b]isoxazol]-2'-yl)acetimidamide (3).

Obtained as a white solid $(97 \%, 655 \mathrm{mg})$ following general procedure (A): cycloadduct 2 (2, $\mathrm{mmol}, 610 \mathrm{mg}$) and hydroxylamine 50% in water ($1.8 \mathrm{eq}, 3.6 \mathrm{mmol}, 120 \mathrm{mg}$): mp $164-166^{\circ} \mathrm{C}$; $R_{\mathrm{f}}=0.22[\mathrm{EtOAc} 100 \%] ;[\alpha]^{22}=+51\left(c=1 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.83$ $\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.92\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=4.2 \mathrm{~Hz}\right), 0.93(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 1.37(\mathrm{~m}$, $2 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{dd}, 1 \mathrm{H}, J=8$ $\mathrm{Hz}, J=16 \mathrm{~Hz}), 2.46(\mathrm{dd}, 1 \mathrm{H}, J=4 \mathrm{~Hz}, J=18 \mathrm{~Hz}), 2.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.96(\mathrm{~d}, 2 \mathrm{H}, J=8$ Hz), 4.98 ($\mathrm{s}, 2 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 18.5, 22.3, 22.4, 24.3, 24.4, 26.2, 30.1, 34.2, 34.6, 38.7, 40.7, 48.1, 65.9, 75.6, 89.9, 152.3, 172.5 (C=O) ppm; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=339.2391$, found: 339.2381.

(1S,2S,2'S,3a'S,5R)-2-isopropyl-5,5'-dimethyl-2'-((5-phenyl-1,2,4-oxadiazol-3-

 yl)methyl)dihydro-2'H-spiro[cyclohexane-1,6'-imidazo[1,5-b]isoxazol]-4'(5'H)-one (4a). Obtained as a yellow liquid ($70 \%, 530 \mathrm{mg}$) following general procedure (B): amidoxime 3 $(600 \mathrm{mg}, 1.8 \mathrm{mmol})$ and benzaldehyde $(210 \mathrm{mg}, 1.1 \mathrm{eq}.) \cdot[\alpha]^{22}=+38\left(c=1 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}=$ 0.73 [EtOAc 100\%]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.76\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=8 \mathrm{~Hz}\right), 0.82(\mathrm{t}$, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.93(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 1.32(\mathrm{dd}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}), 1.40$ (m, 1H), $1.57(\mathrm{dd}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, J=13.2 \mathrm{~Hz}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H})$, $2.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.80(\mathrm{dd}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, J=8 \mathrm{~Hz}), 3.03(\mathrm{dd}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, J=9.2 \mathrm{~Hz})$, $3.12(\mathrm{dd}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}), 4.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3, J=8.4 \mathrm{~Hz}), 4.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.51$ $(\mathrm{m}, 2 \mathrm{H}), 7.58(\mathrm{~m}, 1 \mathrm{H}), 8.10(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.5,22.3,22.4$,$24.3,24.5,26.2,29.6,30.0,34.7,38.5,40.6,48.2,66.1,74.3,89.8,124.2,128.2,129.2,132.9$, 168.2, 172.8, 175.7 (C=O) ppm; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=425.2547$, found: 425.2546.
(1S,2S,2'S,3a'S,5R)-2-isopropyl-5,5'-dimethyl-2'-((5-methyl-1,2,4-oxadiazol-3-yl)methyl)dihydro-2'H-spiro[cyclohexane-1,6'-imidazo[1,5-b]isoxazol]-4'(5'H)-one (4b). Obtained as a yellow liquid ($58 \%, 377 \mathrm{mg}$) following general procedure (B): amidoxime 3 $(600 \mathrm{mg}, 1.8 \mathrm{mmol})$ and acetaldehyde $(90 \mathrm{mg}, 1.1 \mathrm{eq}.) \cdot[\alpha]^{22}=+37.2\left(c=1 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}=$ 0.75 [EtOAc 100\%]; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.84\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right), 0.86(\mathrm{t}$, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.93(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, 1 \mathrm{H}), 1.33(\mathrm{dd}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}, J=12 \mathrm{~Hz}), 1.39(\mathrm{~m}, 1 \mathrm{H})$, $1.62(\mathrm{dd}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.79(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 2.94(\mathrm{dd}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}, J=15 \mathrm{~Hz}), 3.01$ $(\mathrm{dd}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, J=20 \mathrm{~Hz}), 3.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3, J=8.7 \mathrm{~Hz}), 4.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.3,18.5,22.3,22.6,24.4,24.6,26.1,29.6,30.0,34.9,38.6$, 41.2, 48.5, 66.2, 74.3, 89.8, 167.7, 172.9, $176.5(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=363.2399$, found: 363.2391.

(1S,2S,2'S,3a'S,5R)-2-isopropyl-5,5'-dimethyl-2'-((5-(p-tolyl)-1,2,4-oxadiazol-3-

 yl)methyl)dihydro-2 ${ }^{\prime} H$-spiro[cyclohexane-1,6'-imidazo[1,5-b]isoxazol]-4'(5'H)-one (4c). Obtained as a yellow liquid (65%, 512 mg) following general procedure (B): amidoxime 3 $(600 \mathrm{mg}, 1.8 \mathrm{mmol})$ and 4-tolualdehyde $(240 \mathrm{mg}, 1.1 \mathrm{eq}.) .[\alpha]^{22}=+34\left(c=1 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}=$ 0.72 [EtOAc 100\%]; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.77\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.3 \mathrm{~Hz}\right.$), $0.84(\mathrm{t}$, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.93(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{t}, 1 \mathrm{H}, J=12,6 \mathrm{~Hz}), 1.31(\mathrm{dd}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}, J=6.6 \mathrm{~Hz})$, $1.40(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{dd}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, J=13.2 \mathrm{~Hz}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}$, $1 \mathrm{H}), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.81(\mathrm{dd}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, J=12.3 \mathrm{~Hz}), 3.00(\mathrm{dd}$,$1 \mathrm{H}, J=7 \mathrm{~Hz}, J=16.2 \mathrm{~Hz}), 3.11(\mathrm{dd}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, J=18.6 \mathrm{~Hz}), 4.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-5, J=8.7$ $\mathrm{Hz}), 4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 8.00(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.5,21.8,22.3,22.6,24.3,24.6,26.2,29.6,30.2,30.9,35.0,38.6,48.5$, 66.2, $74.4,89.8,128.2,129.3,129.9,130.3,168.2,173.0,176.0(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=439.2704$, found: 439.2706.
(1S,2S,2'S,3a'S,5R)-2'-((5-(4-chlorophenyl)-1,2,4-oxadiazol-3-yl)methyl)-2-isopropyl-5,5'-dimethyldihydro-2'H-spiro[cyclohexane-1,6'-imidazo[1,5-b]isoxazol]-4'(5'H)-one (4d).

Obtained as a yellow liquid ($62 \%, 480 \mathrm{mg}$) following general procedure (B): amidoxime 3 $(600 \mathrm{mg}, 1.8 \mathrm{mmol})$ and 4-chlorobenzaldehyde ($280 \mathrm{mg}, 1.1 \mathrm{eq}.) .[\alpha]^{22}=+42(c=1$; $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}=0.70$ [EtOAc 100\%]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.74\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.4\right.$ $\mathrm{Hz}), 0.79\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 0.82\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 0.877(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{t}, 1 \mathrm{H}, J$ $=12 \mathrm{~Hz}), 1.32(\mathrm{dd}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, J=12 \mathrm{~Hz}), 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{dd}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, J=$ $13.2 \mathrm{~Hz}), 1.66(\mathrm{dd}, 2 \mathrm{H}, J=2.4, J=9,3 \mathrm{~Hz}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $2.77(\mathrm{dd}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}), 3.01(\mathrm{dd}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}), 3.11(\mathrm{dd}, 1 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}), 3.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3, J=8.8 \mathrm{~Hz}), 4.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.48(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ $\mathrm{Hz}), 8.02(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.5,22.3,22.4,24.2$, $24.4,26.2,29.5,30.0,34.7,38.5,40.6,48.2,66.1,74.1,89.7,122.6,129.4,129.6,139.3$, 168.3, 172.8, $174.8(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{ClN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=459.2167$, found: 459.2157.
(1S,2S,2'S,3a'S,5R)-2-isopropyl-2'-((5-(4-methoxyphenyl)-1,2,4-oxadiazol-3-yl)methyl-5,5-dimethyldihydro-2'H-spiro[cyclohexane-1,6'-imidazol[1,5-b]isoxazol]-4'-(5'H)-one (4e).

Obtained as a yellow liquid ($68 \%, 512 \mathrm{mg}$) following general procedure (B): amidoxime 3 $(600 \mathrm{mg}, 1.8 \mathrm{mmol})$ and 4-methoxybenzaldehyde $(269 \mathrm{mg}, 1.1 \mathrm{eq}.) \cdot[\alpha]^{22}=+29.5(c=1$; $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}=0.69$ [EtOAc 100\%]; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.78\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.3\right.$ $\mathrm{Hz}), 0.84\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.93(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, 1 \mathrm{H}, J=15 \mathrm{~Hz}), 1.35(\mathrm{dd}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}, J=$ $12.3 \mathrm{~Hz}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{dd}, 1 \mathrm{H}, J=3 \mathrm{~Hz}, J=12.6 \mathrm{~Hz}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 2.35$ (m, 1H), $2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.81(\mathrm{dd}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, J=12 \mathrm{~Hz}), 3.01(\mathrm{dd}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}, J$ $=15.3 \mathrm{~Hz}), 3.12(\mathrm{dd}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, J=15.3 \mathrm{~Hz}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3, J=$ $9 \mathrm{~Hz}), 4.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.01(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 8.08(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.6,22.3,22.5,24.3,24.6,26.2,29.6,29.8,30.1,34.9,38.6,40.8,48.4$, 66.2, 74.5, 89.8, 114.7, 115.0, 130.1, 130.5, 163.4, 168.1, 175.7 (C=O) ppm; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}=455.2664$, found: 455.2653.
(1S,2S,2'S,3a'S,5R)-2'-((5-([1,1'-biphenyl]-4-yl)-1,2,4-oxadiazol-3-yl)methyl)-2-isopropyl-5,5'-dimethyldihydro-2' \boldsymbol{H}-spiro[cyclohexane-1,6'-imidazo[1,5-b]isoxazol]-4'(5'H)-one (4f).

Obtained as a yellow liquid ($51 \%, 450 \mathrm{mg}$) following general procedure (B): amidoxime 3 $(600 \mathrm{mg}, 1.8 \mathrm{mmol})$ and biphenyl-4-carboxaldehyde $(360 \mathrm{mg}, 1.1 \mathrm{eq}.) .[\alpha]^{22}=+30.4(c=1$; $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}=0.71$ [EtOAc 100%]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.77\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=6.4\right.$ $\mathrm{Hz}), 0.82\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.91(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 1.33(\mathrm{dd}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, J=$ $12 \mathrm{~Hz}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{dd}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}, J=10 \mathrm{~Hz}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H}), 2.37$ $(\mathrm{m}, 1 \mathrm{H}), 2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.81(\mathrm{dd}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}), 3.03(\mathrm{dd}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, J$ $=14.8 \mathrm{~Hz}), 3.14(\mathrm{dd}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}), 4.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3, J=8.8 \mathrm{~Hz}), 4.27(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-5), 7.40(\mathrm{t}, 1 \mathrm{H}), 7.47(\mathrm{t}, 2 \mathrm{H}), 7.64(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.16(\mathrm{~d}, 2 \mathrm{H}$, $J=8.4 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.5,22.3,22.4,24.3,24.4,26.2,29.6$, $30.1,34.7,38.5,40.6,48.2,66.1,74.3,89.7,122.9,127.3,127.8,128.5,128.6,129.1,139.7$,
145.6, 168.2, 172.8, $175.6(\mathrm{C}=\mathrm{O})$ ppm; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=$ 501.2860, found: 501.2841.
(3S,5S)-2-Acetyl- N-methyl-5-((5-phenyl-1,2,4-oxadiazol-3-yl)methyl)isoxazolidine-3carboxamide (5a) and (3S,5S)- N-methyl-5-((5-phenyl-1,2,4-oxadiazol-3-yl)methyl)isoxazolidine-3-carboxamide (5'a).
$\mathbf{5 a}$ and $\mathbf{5} \mathbf{a}$ were obtained from $\mathbf{4 a}(190 \mathrm{mg}, 0.44 \mathrm{mmol})$ following general procedure (C).
(5a) Yield (52\%); yellow solid: mp 148-150 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.45[$ EtOAc $100 \%] ;[\alpha]^{22}=+36.6(c=$ 1; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.20(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.81\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.97 (dd, 1H, $J=5.2, J=14.8 \mathrm{~Hz}), 3.09(\mathrm{dd}, 1 \mathrm{H}, J=7.6, J=14.8 \mathrm{~Hz}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 4.89$ (m, 2H, H-3, H-5), $7.53(\mathrm{t}, 2 \mathrm{H}), 7.61(\mathrm{t}, 1 \mathrm{H}, J=7,6 \mathrm{~Hz}), 8.11(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=20.9,26.6,30.1,35.1,58.2,78.6,124.0,128.3,129.3,133.9$, 167.3, 169.1, $171.7(\mathrm{C}=\mathrm{O})$, $176.2(\mathrm{C}=\mathrm{O})$ ppm; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$

$=331.1410$, found: 331.1401.

(5'a) Yield (28\%): mp 132-134 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.40[$ EtOAc $100 \%] ;[\alpha]^{22}=+36.6\left(c=1 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.38(\mathrm{~m}, 1 \mathrm{H}), 2.68\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=4.6 \mathrm{~Hz}\right), 2.90(\mathrm{~m}, 1 \mathrm{H})$, $3.10(\mathrm{dd}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}, J=13.6 \mathrm{~Hz}), 3.18(\mathrm{dd}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}), 4.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-$ $3, J=8.2 \mathrm{~Hz}), 4.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.51(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 7.61(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 8.10(\mathrm{~d}$, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.9,25.6,30.9,60.4,78.6,124.0$, 128.3, 129.3, 133.1, 167.4, 167.8, 169.1 (C=O) ppm; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}=289.1242$, found: 289.1260.
(3S,5S)-N,2-dimethyl-5-((5-(p-tolyl)-1,2,4-oxadiazol-3-yl)methyl)isoxazolidine-3carboxamide (5c).

5c Was obtained from $\mathbf{4 c}$ ($190 \mathrm{mg}, 0.43 \mathrm{mmol}$) following general procedure (C). Yield (60%); yellow solid: mp $166-168^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.42[\mathrm{EtOAc} 100 \%] ;[\alpha]^{22}=+32.6\left(c=1 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=2.36(\mathrm{~m}, 1 \mathrm{H}), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.81\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=4.8 \mathrm{~Hz}\right)$, $2.93(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, 1 \mathrm{H}, J=5.6, J=15.2 \mathrm{~Hz}), 3.11(\mathrm{dd}, 1 \mathrm{H}, J=6.0, J=15.6 \mathrm{~Hz}), 4.10(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}-3, J=8 \mathrm{~Hz}), 4.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.78(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.9,26.2,38.5,62.5,78.8,121.3,128.3,130.0,143.9$, 167.7, 171.4, $176.2(\mathrm{C}=\mathrm{O})$ ppm; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=303.1452$, found: 303.1449.
(3S,5S)-5-((5-(4-Chlorophenyl)-1,2,4-oxadiazol-3-yl)methyl)-N,2-dimethylisoxazolidine-3-carboxamide (5d).

5d Was obtained from $4 \mathbf{d}(190 \mathrm{mg}, 0.41 \mathrm{mmol})$ following general procedure (C). Yield (57%); yellow solid: mp $154-156^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.48[$ EtOAc $100 \%] ;[\alpha]^{22}=+42\left(c=1 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.36(\mathrm{~m}, 1 \mathrm{H}), 2.81\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=4.8 \mathrm{~Hz}\right), 2.96(\mathrm{dd}, 1 \mathrm{H}, J$ $=5.2, J=14.8 \mathrm{~Hz}), 3.03(\mathrm{dd}, 1 \mathrm{H}, J=5.6, J=15.2 \mathrm{~Hz}), 3.11(\mathrm{dd}, 1 \mathrm{H}, J=6.8, J=15.2 \mathrm{~Hz})$, 4.13 (d, 1H, H-3, J=7.2), $4.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.51(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.2,30.0,38.6,62.4,78.5,122.4,129.5,129.7,139.6,168.0,171.2,175.1$ $(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=323.0905$, found: 323.0893.
(3S,5S)-2-Acetyl-5-((5-(4-methoxyphenyl)-1,2,4-oxadiazol-3-yl)methyl)-N-methyl-isoxazolidine-3-carboxamide (5e).
$\mathbf{5 e}$ Was obtained from $\mathbf{4 e}(190 \mathrm{mg}, 0.42 \mathrm{mmol})$ following general procedure (C). Yield (68%); yellow solid: mp $190-192^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.42[\mathrm{EtOAc} 100 \%] ;[\alpha]^{22}=+32.6\left(c=1 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.81\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=4 \mathrm{~Hz}\right)$,
$2.94(\mathrm{dd}, 1 \mathrm{H}, J=4.4, J=12 \mathrm{~Hz}), 3.06(\mathrm{dd}, 1 \mathrm{H}, J=6, J=12 \mathrm{~Hz}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $4.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 7.02(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 8.05(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=20.9,26.6,29.9,32.1,55.7,58.2,78.7,114.7,116.6,123.4$, 130.2, 163.5, 167.2, 169.1, $176.0(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$; HR-ESI-QtoF: m / z calcd $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ $=361.2452$, found: 361.2449 .

DPPH free radical scavenging activity

The ability of 3-methylisoxazolidine-5-aryl-1,2,4-oxadiazoles to scavenge free radical was tested using a synthetic compound, 2,2 -diphenyl-1-picrylhydrazyl (DPPH), as reported by Daoud et al. ${ }^{1}$ with slightly modification. In its radical form, DPPH absorbs at 517 nm . Briefly, 2 mL of DPPH (0.005 g DPPH/ 100 mL of ethanol) was added to the samples at different concentrations. The mixture was mixed (vortexes) for 30sg then was kept in the dark for 20 min at room temperature (Daoud et al, 2015). 1 Ethanol alone was used as negative control, DPPH without extract as control for total activity (DPPH), while ascorbic acid was used as positive control. The percentage of activity was calculated as:
\% Activity $=[($ absorbance DPPH-absorbance of test sample)/absorbance DPPH $] \times 100$
The concentration of extract capable of inhibiting 50% of the DPPH activity was designated as IC50. This last was calculated by plotting the percentage of radical scavenging activity against different concentrations of sample.

Ferric reducing antioxidant power (FRAP)

In this assay, the yellow color of the test solution changes to green depending on the reducing power of test specimen. The presence of reductants in the solution causes the reduction of the $\mathrm{Fe}^{3+/}$ ferricyanide complex to the ferrous form. Therefore, Fe^{2+} can be monitored by the measurement of the absorbance at 700 nm (Sana et al., 2015). ${ }^{2} 1 \mathrm{~mL}$ of different
concentrations of extract were mixed with 2.5 mL of a 0.2 M sodium phosphate buffer (pH 6.6, prepared from 62.5 mL of a $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 37.5 mL of $0.2 \mathrm{M} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$) and 2.5 mL of $1 \% \mathrm{~K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ and incubated in a aqueous bath at $50^{\circ} \mathrm{C}$ for 20 min . Then, 2.5 mL of 10% trichloroacetic acid were added to the mixture that was centrifuged at 650 g -force for 10 min . The supernatant (2.5 mL) was then mixed with 2.5 mL distilled aqueous and 0.5 mL of 0.1% ferric chloride solution. The intensity of the blue-green colour was measured at 700 nm . The EC_{50} value $(\mathrm{mg} / \mathrm{mL})$ is the extract concentration at which the absorbance was 0.5 for the reducing power and was calculated from the graph of absorbance at 700 nm against extract concentration. Ascorbic acid was used as a positive control. Tests were carried out in triplicate.

Table 1. Antioxidant activity: IC_{50} values of the DPPH free radical scavenging.

Samples	$\mathbf{0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 5 0}$	$\mathbf{1 . 0 0}$	$\mathbf{1 . 5 0}$	$\mathbf{2 . 0 0}$	$\mathbf{I C}_{\mathbf{5 0} \mathbf{(m g} / \mathbf{m L})}$
$\mathbf{5 a}$	0	36.08 ± 0.10	38.65 ± 0.40	49.072 ± 1.03	53.81 ± 0.06	58.45 ± 0.34	1.4 ± 0.15
$\mathbf{5} \mathbf{a}$	0	29.17 ± 0.37	39.48 ± 0.25	47.11 ± 0.11	56.18 ± 0.15	68.65 ± 0.27	1.2 ± 0.20
5c	0	39.17 ± 0.20	48.04 ± 0.16	53.40 ± 0.06	55.77 ± 0.20	60.20 ± 0.64	0.64 ± 0.20
5d	0	39.16 ± 0.15	47.01 ± 0.27	56.70 ± 0.17	66.80 ± 0.19	65.67 ± 0.15	0.62 ± 0.06
5e	0	33.50 ± 1.02	37.11 ± 0.20	50.20 ± 0.20	61.54 ± 0.09	68.86 ± 0.41	0.88 ± 0.60
Ascorbic acid	0	45.71 ± 0.15	61.26 ± 0.15	77.52 ± 0.06	88.55 ± 0.09	87.65 ± 0.10	0.41 ± 0.05

$\mathrm{IC}_{50}(\mathrm{mg} / \mathrm{mL})$: Values corresponding to the amount of extract required to scavenge 50% of radicals present in the reaction mixture.

Table 2. Antioxidant activity: EC_{50} values of the FRAP assay.

Samples	$\mathbf{0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 5 0}$	$\mathbf{1 . 0 0}$	$\mathbf{1 . 5 0}$	$\mathbf{2 . 0 0}$	$\mathbf{E C}_{\mathbf{5 0}}(\mathbf{m g} / \mathbf{m L})$
$\mathbf{5 a}$	0	0.05 ± 0.11	0.11 ± 0.03	0.21 ± 0.03	0.28 ± 0.05	0.47 ± 0.05	-
$\mathbf{5} \mathbf{a}$	0	0.08 ± 0.02	0.18 ± 0.05	0.35 ± 0.07	0.50 ± 0.08	0.55 ± 0.17	1.50 ± 0.11
$\mathbf{5 c}$	0	0.18 ± 0.12	0.29 ± 0.05	0.39 ± 0.15	0.60 ± 0.07	0.64 ± 0.04	1.25 ± 0.05
$\mathbf{5 d}$	0	0.19 ± 0.05	0.30 ± 0.05	0.45 ± 0.11	0.55 ± 0.01	0.74 ± 0.02	1.17 ± 0.15
$\mathbf{5 e}$	0	0.14 ± 0.10	0.25 ± 0.05	0.31 ± 0.05	0.39 ± 0.05	0.54 ± 0.01	1.81 ± 0.15
Ascorbic acid	0	0.21 ± 0.05	0.40 ± 0.02	0.60 ± 0.07	0.85 ± 0.05	0.98 ± 0.02	0.85 ± 0.04

$\mathrm{EC}_{50}(\mathrm{mg} / \mathrm{mL})$: Effective concentration corresponding to the value of absorbance (0.5).
[1] Daoud, A., Drira, M., Bakari, S., Hfaiedh, N., Mnafgui, K., Kadri, A., \& Gharsallah, N. Arab. J. Chem., 2015, 8, 1-12.
[2] Bakari, S.; Ncir, M.; Felhi, S.; Hajlaoui, H.; Saoudi, M.; Gharsallah, N.; Kadri, A. Food Sci. Biotechnol. 2015, 24, 1943-1949.

${ }^{1} \mathrm{H}$ NMR of compound (2)

${ }^{13} \mathrm{C}$ NMR of compound (2)

${ }^{1} \mathrm{H}$ NMR of compound (3)

${ }^{1} \mathrm{H}$ NMR of compound (4a)

${ }^{13} \mathrm{C}$ NMR of compound (4a)

${ }^{1} \mathrm{H}$ NMR of compound (4b)

${ }^{13} \mathrm{C}$ NMR of compound (4c)

${ }^{1} \mathrm{H}$ NMR of compound (4d)

${ }^{13} \mathrm{C}$ NMR of compound (4d)

${ }^{1} \mathrm{H}$ NMR of compound (4e)

${ }^{13} \mathrm{C}$ NMR of compound (4e)

JB047
H1.ab CDCl3 /opt/topspin IcO2_jp 49

${ }^{1} \mathrm{H}$ NMR of compound (4f)

${ }^{13} \mathrm{C}$ NMR of compound (4f)

${ }^{1} \mathrm{H}$ NMR of compound (5a)

${ }^{13} \mathrm{C}$ NMR of compound (5a)

${ }^{1} \mathrm{H}$ NMR of compound (5c)

${ }^{13} \mathrm{C}$ NMR of compound (5c)

${ }^{1} \mathrm{H}$ NMR of compound (5d)

${ }^{13} \mathrm{C}$ NMR of compound (5d)

${ }^{1} \mathrm{H}$ NMR of compound (5e)

