ef1c03210_si_001.pdf (1.3 MB)
Download fileTwofold Effects of Zirconium Doping into TiN on Durability and Oxygen Reduction Reactivity in an Acidic Environment
journal contribution
posted on 09.12.2021, 18:06 authored by Mitsuharu Chisaka, Rong Xiang, Shigeo Maruyama, Hirofumi DaigujiCarbon-support-free
TiN-based catalysts have recently been developed
to avoid both carbon oxidation and the use of scarce platinum group
metals in acidic polymer electrolyte fuel cell cathodes. However,
providing sufficient durability at high potentials above 1.0 V remains
a challenge. Herein, zirconium doping is revealed as a new route that
enhances catalyst activity and selectivity toward the four-electron
oxygen reduction reaction (ORR) in an acidic environment. The TiN
surface is oxidized to form rutile TiO2 layers, and some
zirconium atoms are dissolved into both the bulk TiN and the surface
rutile layers. The zirconium atoms distort the rutile lattice to increase
the number of oxygen vacancies which are critical for the ORR, whereas
some others segregate to form monoclinic and tetragonal ZrO2 phases to inhibit the TiN crystallite growth. The optimized Ti0.8Zr0.2OxNy catalysts exhibit excellent durability during 5000
start-up and shut-down cycles between 1.0 and 1.5 V versus the reversible
hydrogen electrode in 0.1 mol dm–3 H2SO4 solution. The decrease in the halfwave potential during
the 5000 cycles is only 0.04 V, which is half that of the previous
best phosphorus-doped TiN catalyst.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
reversible hydrogen electrodeprevious best phosphorusenhances catalyst activity5 v versusoxygen reduction reactivitytin crystallite growthform rutile tiodoped tin catalystproviding sufficient durability1 mol dmzirconium atoms distort8 </ sub4 </ sub2 </ sub0 v remainsacidic environment carbonsurface rutile layersacidic environmentzirconium atomstin surfacerutile lattice04 voxygen vacanciesform monocliniccarbon oxidationx </zirconium dopingsub ><></ subfree tinbulk tintwofold effectstetragonal zroselectivity towardothers segregateoptimized tinew routehigh potentialshalfwave potentialbased catalysts5000 start