Two New Troponoides with Anti-inflammatory Activity from the Stems of *Juniperus* formosana Hayata

Dong Zheng ^a, Jian-Yu Zhang ^b, Wen-Hao Fu^b, Shun-Zhi Liu^b, Su-Zhi Xie^c, Zheng Wang ^d, and Ying-Kun Qiu^{b,*}

^a. Department of Pharmacy, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361001, China;

^b. Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China;

^c. Department of Pharmacy, Xiamen Haichang Hospital, Xiamen 361026, China;

^d. Department of Pharmacy, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, China;

ABSTRACT: Two new troponoides (1–2) were isolated from a 95% ethanol extract of the stems of *Juniperus formosana* (Cupressaceae), together with six known compounds (3–8). The structures of the new compounds were comprehensively characterized by high resolution electrospray ionization-mass spectrometry (HR-ESI-MS), 1D and 2D nuclear magnetic resonance (NMR). All isolated compounds were evaluated for their anti-inflammatory against the expression of IL-1 β , IL-6 and TNF- α in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. The new compounds showed moderate anti-inflammatory effect, while other compounds did show no activity.

Content	Page
Table S 1. 1 H (C ₅ D ₅ N, 600 MHz) and 13 C NMR (150 MHz) data of the new compounds 1-2	3
Fable S2. Cytotoxicity were evaluated by MTT assay in RAW264.7 cells	4
Table S3. The primer gene sequence of TNF- α , IL-6, IL-1 β , and GAPDH	5
Figure S 1. UV spectrum of compound 1	6
Figure S 2. IR spectrum of compound 1	7
Figure S 3. HR-ESI-MS spectra of compound 1	8
Figure S 4. ¹ H-NMR spectrum of compound 1	9
Figure S 5. ¹³ C-NMR spectrum of compound 1	10
Figure S 6. DEPT spectrum of compound 1	11
Figure S 7. HSQC spectrum of compound 1	12
Figure S 8. ¹ H- ¹ H COSY spectrum of compound 1	13
Figure S 9. HMBC spectrum of compound 1	14
Figure S 10. NOESY spectrum of compound 1	15
Figure S 11. UV spectrum of compound 2	16
Figure S 12. IR spectrum of compound 2	17
Figure S 13. HR-ESI-MS spectra of compound 2	18
Figure S 14. ¹ H-NMR spectrum of compound 2	19
Figure S 15. ¹³ C-NMR spectrum of compound 2	20
Figure S 16. DEPT spectrum of compound 2	21
Figure S 17. HSQC spectrum of compound 2	22
Figure S 18. ¹ H- ¹ H COSY spectrum of compound 2	23
Figure S 19. HMBC spectrum of compound 2	24
Figure S 20. NOESY spectrum of compound 2	25
Figure S 21. Inhibitory effect of compounds 1-7 on the mRNA transcription of important pro-inflammatory	26
Figure S 22. Inhibitory effect of compound 2 on the mRNA transcription of important pro-inflammatory	27

NI-	1		2	
NO.	¹³ C NMR	¹ H NMR	¹³ C NMR	¹ H NMR
1	173.8		174.3	
2	168.8		167.9	
3	120.8	7.54 (1H, s)	127.3	7.33 (1H, br. s)
4	155.5		147.9	
5	138.8		138.0	
6	140.5	7.32 (1H, d, J = 12.1 Hz)	140.0	7.32 (1H, d, <i>J</i> = 12.1 Hz)
7	126.2	7.34 (1H, d, J = 12.1 Hz)	122.9	7.34 (1H, d, J = 12.1 Hz)
1'	35.3	3.44 (2H, br. d, <i>J</i> = 6.8 Hz)	34.9	3.37 (1H, br. d, <i>J</i> = 7.2 Hz)
2'	121.9	5.74 (1H, br. t, <i>J</i> = 6.5 Hz)	122.4	5.76 (1H, br. t, <i>J</i> = 6.9 Hz)
3'	137.7		137.8	
4'	67.2	4.32 (2H, br. s)	67.3	4.32 (2H, br. s)
5'	13.9	1.88 (3H, br. s)	13.9	1.84 (3H, br. s)
1"	32.2	3.24 (1H, spt, <i>J</i> = 6.8 Hz)	151.0	
2"	22.9	1.13 (3H, d, J = 6.8 Hz)	114.5	5.12 (1H, br. s) & 4.84 (1H, br. s)
3"	22.9	1.13 (3H, d, J = 6.8 Hz)	24.1	1.93 (3H, br. s)

Table S1. 1 H (C₅D₅N, 600 MHz) and 13 C NMR (150 MHz) data of the new compounds 1-2.

	concentration	cell viability	SD
Blank		100.00%	15.52%
LPS	1 μg/ml	98.50%	1.92%
1	20 µM	27.02%	0.69%
2	20 µM	10.52%	1.36%
3	20 µM	90.97%	0.49%
4	20 µM	67.57%	1.44%
5	20 µM	80.38%	1.07%
6	20 µM	95.92%	10.28%
7	20 µM	95.57%	0.28%

Table S2. Cytotoxicity were evaluated by MTT assay in RAW264.7 cells.

The results were showed as means \pm SD of at least three independent experiments.

Table S3. The primer gene sequence of TNF-α, IL-6, IL-1β, and GAPDH.

Gene	Sense	Antisense
TNF-α	5'-GAACTGGCAGAAGAGGCACT-3'	5'-AGGGTCTGGGCCATAGAACT-3'
IL-1β	5'-AGAGCATCCAGCTTCAAAT-3'	5'-CATCTCGGAGCCTGTAGTG-3'
IL-6	5'-AGTTGCCTTCTTGGGACTGA-3'	5'-TCCACGATTTCCCAGAGAAC-3'
GAPDH	5'-CCTTCCGTGTTCCTACCC-3'	5'-CAACCTGGTCCTCAGTGTAG-3'

Figure S 1. UV spectrum of compound 1

Figure S 5. ¹³C-NMR spectrum of compound 1

Figure S 6. DEPT spectrum of compound 1

Figure S 8. ¹H-¹H COSY spectrum of compound 1

Figure S 9. HMBC spectrum of compound 1

Figure S 10. NOESY spectrum of compound 1

Figure S 11. UV spectrum of compound 2

Figure S 12. IR spectrum of compound 2

Figure S 13. HR-ESI-MS spectra of compound 2

Figure S 15. ¹³C-NMR spectrum of compound 2

Figure S 16. DEPT spectrum of compound 2

Figure S 18. ¹H-¹H COSY spectrum of compound 2

Figure S 19. HMBC spectrum of compound 2

Figure S 21. Inhibitory effect of compounds 1-7 on the mRNA transcription of important pro-inflammatory proteins, including TNF- α , IL-1 β , IL-6 in LPS-stimulated macrophages. RAW 264.7 cells were pretreated with compounds (20 μ M) for 0.5 h. Thereafter, cells were stimulated with or without LPS (1 μ g/ml) for 12 h; Total RNA was extracted and subjected to real time-qPCR for TNF- α , IL-6 and IL-1 β . The values were normalized to GAPDH, and compared with the LPS group. *, p < 0.05; **, p < 0.01; ***, p < 0.001, vs. LPS, ### p < 0.001 compared with the blank group.

Figure S 22. Inhibitory effect of compound **2** on the mRNA transcription of important pro-inflammatory proteins, including TNF- α , IL-1 β , IL-6 in LPS-stimulated macrophages. RAW 264.7 cells were pretreated with the indicated doses of compound **2** for 0.5h. Cells were incubated with LPS for 124 h. Total RNA was extracted and subjected to real time-qPCR for TNF-a, IL-6 and IL-1b. The values were normalized to GAPDH, and compared with the LPS group. *, p < 0.05; **, p < 0.01; ***, p < 0.001, vs. LPS, ### p < 0.001 compared with the blank group.