SUPPLEMENTARY MATERIAL

Two triterpene glycosides with antiproliferative activities on hepg2 from *Phytolacca acinosa* fruit fermentation broth

Biao Li^{a,b}, Yuxing Wang^{a,b}, Changfu Wang^{a,b}, Donghui Peng^{a,c}, Huilin Su^{a,b}, Congjing Shi^{a,b}, Wenlong Liu^d, Haixue Kuang^{c,*} and Qiuhong Wang^{a,b,*}

^aGuangdong Standardised Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China

^bDepartment of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China

^cCollege of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China ^dHunan Wenlong Pharmaceutical Co. LTD, Hengyang, 421200, China

* To whom correspondence should be addressed:

Haixue Kuang, E-mail: <u>hxkuang@163.com</u>

Qiuhong Wang, E-mail: <u>qhwang668@sina.com</u>

Abstract: Two new oleanane-type triterpene glycosides, phytolasides A (1) and B (2), and six known ones (3–8), were isolated from *Phytolacca acinosa* fruit fermentation broth. Their structures were elucidated by HR-ESI-MS and 1D- and 2D-NMR spectroscopic methods. Antiproliferation of compounds 1 and 2 against HepG2 cells was examined by using CCK8 assays.

Key words: *Phytolacca acinosa*; fruit fermentation broth; triterpene glycosides; antiproliferation

mean ± SD)	
Compounds	$IC_{50} \left(x \pm SD \right) \mu M$
	HepG2
1	12.524 ± 0.659
2	14.738 ± 0.725
DOX*	1.463 ± 0.059

Table S1. Antiproliferation of compounds 1 and 2 against HepG2 cells (IC₅₀, μ M,

DOX*: Doxorubicin was used as the positive control.

Figure S1. 1 H- 1 H COSY and key HMBC correlations of compounds 1 and 2

Figure S2. NOESY correlations of compounds 1 and 2.

Figure S3. ¹H NMR spectrum of **1** in methanol- d_4 .

Figure S4. ¹³C NMR and DEPT spectra of **1** in methanol- d_4 .

Figure S5. ¹H-¹H COSY spectrum of **1** in methanol- d_4 .

Figure S8. Enlarged HMBC spectrum of in methanol- d_4 .

Figure S10. NOESY spectrum of 1 in methanol-*d*₄.

Figure S13. ¹³C NMR and DEPT spectra of 2 in methanol- d_4 .

Figure S16. HMBC spectrum of **2** in methanol- d_4 .

Figure S17. Enlarged HMBC spectrum of 1 in methanol- d_4 .

Figure S19. NOESY spectrum of **2** in methanol- d_4 .

Figure S20. HRESIMS of 2.