SUPPLEMENTARY MATERIAL

Two new terpenoids from Kalimeris indica

Guo-Kai Wang^{a, b}, Yang Yu^a, Zheng Wang^a, Bai-Xiang Cai^a, Zhong-yu Zhou^c, Gang Wang^{a,b*}, Jin-Song Liu^{a,b*}

^aSchool of Pharmacy, Anhui University of Chinese Medicine, Anhui Key Laboratory of Modern Chinese Materia Medica, Hefei 230012, China

^bSynergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, P.R China

^cGuang dong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

*To whom correspondence should be addressed. E-mail: jinsongliu108@163.com (J.-S. Liu); kunhong_8@163.com (G. Wang)

Tel.: +86-551-68129167; Fax: +86-551-68129125

Address: School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R.China.

Abstract: A new sesquiterpenoid kalimerislactone A (1), a new nor-triterpenoid kalimerislactone B (2) and with eight known compounds 7-hydroxy-4'methoxyisoflavone (3), episyringaresinol (4), epipinoresinol (5), rhamnetin (6), vanillin (7), p-hydroxybenzaldehyde (8), syringic acid (9), and 3, 4-dihydroxybenzaldehyde (10) were isolated from the herbs of *Kalimeris indica*. The structures of these compounds were elucidated and determined using spectroscopic techniques such as NMR and MS. All of the compounds were isolated from this genus for the first time. The cytotoxicities against four cancer cell lines (including SMMC-7721, MCF-7, K-562, and A-549) were evaluated in vitro, but were inactive.

Keywords: Kalimeris indica; Nor-triterpenoid; Sesquiterpenoids; Cytotoxicity

- Table S1 ¹H and ¹³C NMR chemical shifts of compounds 1 (J in Hz)
- Table S2 1 H and 13 C NMR chemical shifts of compounds 2 (*J* in Hz)
- Figure S1. Selected HMBC (\rightarrow) correlations of **1** and **2**.
- Figure S3. HR-EIMS spectrum of compound 1
- Figure S4. UV spectrum of compound 1
- Figure S5. IR spectrum of compound 1
- Figure S6. ¹H NMR spectrum of compound **1** in CD₃OD
- Figure S7. ¹³C NMR spectrum of compound **1** in CD₃OD
- Figure S8. HSQC spectrum of compound 1 in CD₃OD
- Figure S9. HMBC spectrum of compound 1 in CD₃OD
- Figure S10. H-H COSY spectrum of compound 1 in CD₃OD
- Figure S11. ROESY spectrum of compound 1 in CD₃OD
- Figure S12. HR-EIMS spectrum of compound 2
- Figure S13. UV spectrum of compound 2
- Figure S14. IR spectrum of compound 2
- Figure S15. ¹H NMR spectrum of compound **2** in CD₃Cl₃
- Figure S16. ¹³C NMR spectrum of compound **2** in CD₃Cl₃
- Figure S17. HSQC spectrum of compound 2 in CD₃Cl₃
- Figure S18. HMBC spectrum of compound 2 in CD₃Cl₃
- Figure S19. H-H COSY spectrum of compound 2 in CD₃Cl₃
- Figure S20. ROESY spectrum of compound 2 in CD₃Cl₃

Position	δ (H) ^a)	$\delta(C)^{0}$
1	1.19 (<i>m</i>)	31.8 (<i>d</i>)
2	2.14 (<i>m</i>), 1.98 (<i>m</i>)	33.7 (<i>t</i>)
3		217.8 (s)
4	2.14 (<i>m</i>), 2.07 (<i>m</i>)	23.9 (t)
5	1.98 (<i>m</i>)	29.7 (d)
6	1.62 <i>(m)</i>	35.6 (<i>d</i>)
7	0.73 (<i>m</i>)	47.6 (<i>d</i>)
8	1.79 (<i>m</i>)	32.4 (<i>d</i>)
9	0.93 (<i>d</i> , 6.8)	19.4 (q)
10	0.94 (<i>d</i> , 6.8)	20.1 (q)
11	1.74 (<i>m</i>), 1.65 (m)	25.7(t)
12	2.63 (<i>m</i>)	42.2 (<i>t</i>)
13		211.9 (s)
14	2.17(s)	29.7 (q)

Table S1 ¹H- and ¹³C-NMR chemical shifts of compound $\mathbf{1}$ (*J* in Hz)

a) Measured at 400 MHz. in CD₃OD, b) Measured at 100 MHz. in CD₃OD

1	13			
Table S2 ¹ H- and	¹³ C-NMR	chemical shifts	of compound 2	L(J in Hz)

Position	δ (H) ^c)	$\delta(\mathbf{C})^{\mathbf{d}}$	Position	δ (H) ^c)	$\delta(\mathbf{C})^{\mathbf{d}}$
1	1.31 (<i>m</i>)	40.7 (<i>t</i>)	16	1.39 (<i>m</i>)	27.9 (t)
2	1.25 (<i>m</i>)	35.3 (<i>t</i>)	17		47.5 (s)
3		213.8 (s)	18	2.25 (dd, 12.3, 4.9)	45.0 (<i>d</i>)
4	2.33 (<i>m</i>)	44.7 (<i>d</i>)	19	2.46 (<i>m</i>)	37.6 (<i>t</i>)
5	1.08 (<i>m</i>)	53.3 (d)	20		30.1 (s)
6	1.57 (<i>m</i>)	21.7 (<i>t</i>)	21	1.23 (<i>m</i>)	36.3 (<i>t</i>)
7	1.48 (<i>m</i>)	33.7 (<i>t</i>)	22	1.65 (<i>m</i>)	31.7 (<i>t</i>)
8		41.2(s)	23	0.98 (d, 6.6)	11.8(q)
9	1.32 (<i>m</i>)	47.7 (d)	24		
10		36.7 (s)	25	1.08(s)	13.9(q)
11	1.55 (<i>m</i>)	19.0 (<i>t</i>)	26	1.22(s)	18.0(q)
12	1.86(d, 6.5)	26.7 (<i>t</i>)	27	1.12(s)	19.5(q)
13		89.7 (s)	28		179.5(s)
14		44.0 (s)	29	0.88 (s)	33.2 (q)
15	1.33 (<i>m</i>)	26.0 (<i>t</i>)	30	0.83 (s)	23.3 (q)

c) Measured at 500 MHz. in CD₃Cl₃, d) Measured at 125 MHz. in CD₃Cl₃

Fig. S1. Selected HMBC (\rightarrow) correlations of 1 and 2

Fig S2. Key NOE correlations ($\leftarrow \rightarrow \rightarrow$) of 1 and 2.

Figure S4. UV spectrum of compound 1

Figure S5. IR spectrum of compound 1

Figure S6. ¹H NMR spectrum of compound **1** in CD₃OD

Figure S7. 13 C NMR spectrum of compound **1** in CD₃OD

Figure S8. HSQC spectrum of compound 1 in CD₃OD

Figure S9. HMBC spectrum of compound 1 in CD₃OD

Figure S10. H-H COSY spectrum of compound 1 in CD₃OD

Figure S11. ROESY spectrum of compound 1 in CD₃OD

Figure S12. HR-EIMS spectrum of compound 2

Figure S13. UV spectrum of compound 2

Figure S14. IR spectrum of compound $\mathbf{2}$

Figure S16. ¹³C NMR spectrum of compound **2** in CD_3Cl_3

Figure S17. HSQC spectrum of compound **2** in CD₃Cl₃

Figure S19. H-H COSY spectrum of compound $\mathbf{2}$ in CD₃Cl₃

Figure S20. ROESY spectrum of compound 2 in CD₃Cl₃