SUPPLEMENTARY MATERIAL

Two new alkaloids from the roots of Cocculus hirsutus (L.) W. Theob.

Shivani,^{a,b} Surekha Kumari,^{a,b} Prithvi Pal Singh,^{a,b} Prateek Singh Bora,^{a,b} and Upendra Sharma^{a,b,*}

^{*a*}C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

Abstract

Two undescribed alkaloids, 15-carboxydihydroerysotrine (1) and (14*R*)-4-methoxy-13,14-dihydrooxypalmatine (2), along with six known compounds, 1,6-didehydro-3,15,16-trimethoxy-9-methylerythrinanium (3), 8-oxytetrahydropalmatine (4), 20-hydroxyecdysone (5), makisterone A (6) turkesterone (7) and magnoflorine (8) were isolated from the root part of *Cocculus hirsutus* (L.) W. Theob. Their structures were established based on detailed analysis of NMR, UV-Vis, HRESIMS, and single-crystal XRD spectroscopic experiments. Compounds 3, 4 and 7 were reported for the first time from the genus *Cocculus*. All the compounds were analysed *in silico* to investigate their human acetylcholinesterase inhibition potential. This analysis revealed that compounds 1 and 8 interacted well with the selected protein, which suggested their further exploration as acetylcholinesterase inhibitors *via in vitro* and *in vivo* investigation.

Keywords: *Cocculus hirsutus*, erythrinan-type alkaloids, protoberberine alkaloids, acetylcholinesterase, molecular docking.

*Correspondence:

Dr. Upendra Sharma, C-H Activation and Phytochemistry Group, Chemical Technology Division CSIR-IHBT, Palampur, Himachal Pradesh-176061, INDIA; **E-mail:** <u>upendra@ihbt.res.in; upendraihbt@gmail.com;</u> Tel.: +91-1894-230426 Fax: +91-1894-23043

List of supplementary material

Details	Page No.
Fig. S1. ($^{1}H-^{1}H$) COSY and ($^{1}H\rightarrow^{13}C$) HMBC correlations of compound 1 and 4	3
Fig. S2(a)-S2(f). ¹ H-NMR, ¹³ C-NMR, DEPT-135, HMQC, HMBC and COSY spectra of compound 1	3-6
Fig. S3. HR-ESI-MS spectrum of compound 1	6
Fig. S4. UV-Vis. spectrum of compound 1	6
Fig. S5(a)-S5(f). ¹ H-NMR, ¹³ C-NMR, DEPT-135, HMQC, HMBC and COSY spectra	7-9
of compound 2	
Fig. S6. HR-ESI-MS spectrum of compound 2	10
Fig. S7. UV-Vis. spectrum of compound 2	10
Fig. S8(a)-S8(b). ¹ H-NMR and ¹³ C-NMR, spectra of compound 3	10-11
Fig. S9(a)-S9(b). ¹ H-NMR and ¹³ C-NMR, spectra of compound 4	11-12
Fig. S10(a)-S10(b). ¹ H-NMR and ¹³ C-NMR, spectra of compound 5	12-13
Fig. S11(a)-S11(b). ¹ H-NMR and ¹³ C-NMR, spectra of compound 6	13-14
Fig. S12(a)-S12(b). ¹ H-NMR and ¹³ C-NMR, spectra of compound 7	14-15
Fig. S13(a)-S13(b). ¹ H-NMR and ¹³ C-NMR, spectra of compound 8	15-16
Table S1. ¹ H (500 MHz) and ¹³ C-NMR (125 MHz) data of compound 1 in CD ₃ OD	17
Table S2. ¹ H (500 MHz) and ¹³ C-NMR (125 MHz) data of compound 2 in CD ₃ OD	18
Table S3. Crystal data and structure refinement for compound 2	19
Table S4. Bond Lengths for compound 2	20
Table S5. Bond Angles for compound 2	20
Table S6. ¹ H (500 MHz) and ¹³ C-NMR (125 MHz) data of compound 3 in CD ₃ OD	21
Table S7. ¹ H (500 MHz) and ¹³ C-NMR (125 MHz) data of compound 4 in CD ₃ OD	22
Table S8. ¹ H (600 MHz) and ¹³ C-NMR (150 MHz) data of compound 5 in CD ₃ OD	23
Table S9. ¹ H (600 MHz) and ¹³ C-NMR (150 MHz) data of compound 6 in DMSO	24
Table S10. ¹ H (600 MHz) and ¹³ C-NMR (150 MHz) data of compound 7 in CD ₃ OD	25
Table S11. ¹ H (600 MHz) and ¹³ C-NMR (150 MHz) data of compound 8 in CD ₃ OD	26
Fig. S14 (a): Binding modes of compound 8 with human AChE	27
Fig. S14 (b): Binding modes of compound 1 with human AChE	27
Table S12. Docking score and Glide energy score in Kcal/mol of isolated molecules from <i>C. hirsutus</i> against human AChE <i>in silico</i> screened by the Schrodinger.	27

Fig. S1: ($^{1}H-^{1}H$) COSY and ($^{1}H\rightarrow^{13}C$) HMBC correlations of compound 1 and 2.

Fig. S2 (c) DEPT-135 NMR spectrum of compound 1

Fig. S3 HR-ESI-MS spectrum of compound 1

Wavelength	Absorbance
287.0	1.062
252.0	0.981

Fig. S4 UV-Vis spectrum of compound 1

Fig. S5 (b) ¹³C-NMR spectrum of compound 2

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 Counts vs. Mass-to-Charge (m/z) Fig. S6 HR-ESI-MS spectrum of compound 2

Wavelength	Absorbance
307.0	1.351
267.0	2.208

Fig. S7 UV-Vis. spectrum of compound 2

Fig. S8 (a) ¹H-NMR spectrum of compound 3

Fig. S9 (a) ¹H-NMR spectrum of compound 4

Fig. S11 (a) ¹H-NMR spectrum of compound 6

Fig. S12 (a) ¹H-NMR spectrum of compound 7

Fig. S13 (a) ¹H-NMR spectrum of compound 8

Positions	δ _C (ppm)	б н (ppm)
1	120.0	5.65 (s)
2	32.9	2.00-2.06, (m); 2.79-2.82 (overlapped)
3	74.6	3.86-3.91 (m)
4	41.8	2.29-2.32 (m ^a); 1.52-1.57 (m)
5	65.6	-
6	141.2	-
7	27.7	2.38-2.45 (m); 2.24-2.29 (m ^a)
8	47.6	2.93-2.97 (m); 2.73-2.76 (m ^a)
10	41.3	3.51-3.54 (m); 3.13-3.17 (m)
11	23.2	2.76-2.79 (m ^a); 3.07-3.12 (m)
12	129.20	-
13	135.6	-
14	129.27	7.20 (s)
15	129.1	-
16	157.0	-
17	113.0	6.76 (s)
3(-OCH ₃)	56.2	3.28 (s)
16(-OCH ₃)	56.0	3.80 (s)
15(-COOH)	176.2	-

Table S1. ¹H NMR (500 MHz) and ¹³C-NMR (125 MHz) data of compound 1 in CD₃OD

a = overlapped

Positions	$\delta_{\rm C}$, Type (ppm)	$\delta_{\rm H} ({\rm ppm})$
1	106.9	6.72 (s)
2	153.9	-
3	142.1	-
4	151.8	-
4a	133.0	-
5	24.2	2.56-2.63 (m); 2.99-3.02 (m)
6	39.1	2.77-2.83 (m); 4.89-4.93 (m)
8	164.6	-
8a	123.6	-
9	151.1	-
10	154.2	-
11	117.1	7.14 (d, <i>J</i> = 8.5 Hz)
12	123.7	7.06 (d, <i>J</i> = 8.5 Hz)
12a	132.6	-
13	39.6	2.69-2.75 (m); 3.19 (dd $I = 15.5, 3.0$ Hz)
14	56.4	4.68 (dd, J = 13.0, 3.5 Hz)
14a	122.6	-
2(-OCH ₃)	61.8	3.86 (s*)
3(-OCH ₃)	61.2	3.81 (s)
4(-OCH ₃)	61.3	3.86 (s*)
9(-OCH ₃)	56.68	3.86 (s*)
10(-OCH ₃)	56.67	3.86 (s*)

Table S2. ¹H NMR (500 MHz) and ¹³C-NMR (125 MHz) data of compound 2 in CD₃OD

* = overlapped

Identification code	US_2_Rt_Cu
Empirical formula	C22H25NO6
Formula weight	399.43
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	7.9434(4)
b/Å	11.4579(7)
c/Å	22.5173(13)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2049.4(2)
Ζ	4
$\rho_{calc}g/cm^3$	1.295
μ/mm^{-1}	0.779
F(000)	848.0
Crystal size/mm ³	$0.243 \times 0.16 \times 0.117$
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	7.852 to 139.07
Index ranges	$-9 \le h \le 4, -13 \le k \le 13, -27 \le l \le 21$
Reflections collected	3706
Independent reflections	2838 [$R_{int} = 0.0231$, $R_{sigma} = 0.0353$]
Data/restraints/parameters	2838/0/268
Goodness-of-fit on F ²	1.045
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0436, wR_2 = 0.1129$
Final R indexes [all data]	$R_1 = 0.0529, wR_2 = 0.1230$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.15
Flack parameter	0.8(2)

Table S3. Crystal data and structure refinement for compound $\mathbf{2}$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O2	C4	1.374(3)	C5	C4	1.400(4)
O2	C11	1.419(5)	C7	C19	1.514(4)
03	C6	1.232(3)	C7	C8	1.511(4)
01	C3	1.365(4)	C9	C1	1.370(5)
01	C10	1.421(4)	C9	C8	1.503(5)
05	C16	1.385(4)	C3	C4	1.398(4)
05	C21	1.418(5)	C3	C2	1.387(4)
N1	C6	1.356(4)	C19	C18	1.394(4)
N1	C7	1.474(4)	C19	C14	1.394(4)
N1	C12	1.455(4)	C18	C17	1.383(5)
06	C17	1.372(4)	C1	C2	1.383(5)
06	C22	1.413(5)	C14	C15	1.407(5)
O4	C15	1.378(4)	C14	C13	1.499(5)
O4	C20	1.403(5)	C16	C17	1.393(5)
C6	C5	1.490(4)	C16	C15	1.367(5)
C5	C9	1.406(4)	C12	C13	1.507(6)

Table S4. Bond Lengths for compound $\mathbf{2}$

Table S5. Bond Angles for compound 2

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C4	O2	C11	113.9(3)	C14	C19	C7	122.0(3)
C3	01	C10	117.9(3)	C14	C19	C18	120.5(3)
C16	05	C21	114.1(3)	O2	C4	C5	121.7(3)
C6	N1	C7	121.7(3)	O2	C4	C3	117.3(3)
C6	N1	C12	119.0(3)	C3	C4	C5	120.9(3)
C12	N1	C7	118.1(3)	C17	C18	C19	120.3(3)
C17	06	C22	118.3(3)	C9	C1	C2	121.4(3)
C15	O4	C20	117.9(3)	C19	C14	C15	117.9(3)
O3	C6	N1	120.7(3)	C19	C14	C13	120.4(3)
O3	C6	C5	121.9(3)	C15	C14	C13	121.6(3)
N1	C6	C5	117.2(2)	C1	C2	C3	120.1(3)
C9	C5	C6	119.9(3)	O5	C16	C17	118.6(3)
C4	C5	C6	121.5(3)	C15	C16	05	121.6(3)
C4	C5	C9	118.6(3)	C15	C16	C17	119.8(3)
N1	C7	C19	112.1(3)	C9	C8	C7	112.4(3)
N1	C7	C8	108.4(2)	06	C17	C18	124.7(3)
C8	C7	C19	110.4(3)	06	C17	C16	115.6(3)
C5	C9	C8	118.7(3)	C18	C17	C16	119.8(3)
C1	C9	C5	119.9(3)	O4	C15	C14	117.0(3)
C1	C9	C8	121.3(3)	C16	C15	O4	121.2(3)
01	C3	C4	115.9(3)	C16	C15	C14	121.7(3)
01	C3	C2	125.1(3)	N1	C12	C13	109.5(3)
C2	C3	C4	119.0(3)	C14	C13	C12	109.6(3)
C18	C19	C7	117.5(3)	 			

Positions	$\delta_{\rm C}({\rm ppm})$	$\delta_{\rm H} ({\rm ppm})$
1	128.0	6.15 (s)
2	74.1	3.78-3.79 (m)
3	35.9	2.06-2.11, (m); 2.26-2.28 (m)
4	31.7	2.21-2.24 (m); 2.77-2.80 (m)
5	79.2	-
6	133.8	-
7	24.2	3.19-3.21 (m)
8	59.2	3.55-3.60, (m); 3.47-3.51, (m)
9-(N-CH ₃)	49.8	3.10 (s)
10	54.1	3.77-3.80 (m); 3.81-3.84 (m)
11	25.5	2.73-2.77 (m); 2.51-2.56 (m)
12	123.0	-
13	126.4	-
14	111.6	6.59 (s)
15	149.5	-
16	151.3	-
17	113.2	6.85 (s)
2-(OCH ₃)	56.5	3.24 (s)
15-(OCH ₃)	56.6	3.75 (s)
16-(OCH ₃)	56.6	3.80 (s)

Table S6. ¹H NMR (500 MHz) and ¹³C-NMR (125 MHz) data of compound 3 in CD₃OD

Positions	$\delta_{\rm C} ({\rm ppm})$	$\delta_{\rm H} ({\rm ppm})$
1	111.1	6.88 (s)
2	149.5	-
3	149.6	-
4	112.9	6.80 (s)
4a	128.7	-
5	30.1	2.79-2.81 (m); 2.86-2.89 (m)
6	39.6	3.17-3.21 (dd, <i>J</i> =15.3, 3.5 Hz); 4.88-
8	164.7	4.90 (d, J = 10.8 Hz)
0	104.7	-
0a	123.7	-
9	151.1	-
10	154.2	-
11	117.1	7.17-7.15 (d, <i>J</i> = 8.2 Hz)
12	123.7	7.05-7.07 (d, <i>J</i> = 8.2 Hz)
12a	132.8	-
13	39.6	2.69-2.75 (m); 2.91-2.94 (m)
14	56.4	4.71-4.74, (dd, <i>J</i> = 13.3, 3.1 Hz)
14a	129.1	-
2-(OCH ₃)	56.7	3.82 (s)
3-(OCH ₃)	56.4	3.84 (s)
9-(OCH ₃)	61.8	3.86 (ovd
	566)
$10-(OCH_3)$	56.6	3.86 (s)

Table S7. ¹H NMR (500 MHz) and ¹³C-NMR (125 MHz) data of compound 4 in CD₃OD

Positions	$\delta_{\rm C}$	$\delta_{\rm H} ({\rm ppm})$	Positions	$\delta_{\rm C} ({\rm ppm})$	δ _H (ppm)
	(ppm)				
1	37.3	1.77-1.79 (m ^a);	15	31.7	1.97-2.00 (m ^a);
		1.41-1.43 (m ^a)			1.57-1.62 (m ^a)
2	697	2.92.2.95 (m)	16	21.5	1.05.1.07 (m ³).
2	00.7	5.62-5.65 (11)	10	21.3	1.93-1.97 (III), 1.08.2.02 (m ^a)
2	<0. 7		17	50.5	1.70-2.02 (III)
3	68.5	3.95 (br s)	1/	50.5	2.38-2.40 (m [*])
4	32.8	1.72-1.73 (m ^a).	18	18.0	0.89(s)
		1.70-1.71 (m ^a)	_		
5	51.7	2.37-2.38 (m)	19	24.4	0.97(s)
5	0117	2.07 2.00 (m)	17	2	
6	206.4	-	20	77.9	-
7	122.1	5.81 (s)	21	21.0	1.20 (s ^a)
8	167.9	-	22	78.4	3.33 -3.35 (m)
	05.1			05.0	
9	35.1	3.14-3.17 (m)	23	27.3	1.65-1.68 (m ^a);
					1.27-1.32 (m)
10	39.2	-	24	42.3	1.41-1.45 $(m^a);$
					$1.80 (m^{a})$
11	21.5	1.82-1.84 (m ^a):	25	71.2	_
		$1.75-1.77 (m^{a})$			
12	32.5	2.11-2.16 (m); 1.86	26	28.9	$1.19 (s^{a})$
		-1.90 (m ^a)			
13	48.6	-	27	29.6	1.20 (s ^a)
14	85.2	-			

Table S8. ¹H NMR (600 MHz) and ¹³C-NMR (150 MHz) data of compound 5 in CD₃OD

a = overlapped signal

Positions	$\delta_{\rm C}$ (ppm)	δ _H (ppm)	Positions	$\delta_{\rm C}$ (ppm)	<i>δ</i> _H (ppm)
1	36.5	1.23-1.24 (m ^a); 1.26-1.28 (m)	15	31.5	1.50 (m ^a); 1.63- 1.66 (m ^a)
2	66.7	3.60-3.61 (m ^a)	16	20.0	1.86-1.91 (m); 1.76-1.81 (m ^a)
3	66.5	3.76 (br s)	17	48.5	2.21-2.23 (m)
4	30.2	$\begin{array}{ccc} 1.48\text{-}1.49 & (m^{a}); \\ 1.55 & (m^{a}) \end{array}$	18	17.1	0.76 (m)
5	50.0	2.18-2.20 (m); 1.57-1.58 (m ^a)	19	23.8	0.83 (s)
6	202.5	-	20	75.7	-
7	120.3	5.62 (s)	21	20.7	1.06 (s)
8	165.13	-	22	73.0	3.24 (dd, <i>J</i> = 11.1, 5.0 Hz)
9	33.1	2.98-3.02 (m)	23	33.0	$\begin{array}{cccc} 1.39\text{-}1.43 & (m^{a}); \\ 0.90\text{-}0.96 & (m^{a}) \end{array}$
10	37.5	-	24	40.0	1.61-1.62 (m ^a)
11	20.0	1.52 (m ^a); 1.59- 1.61 (m ^a)	25	70.9	-
12	30.8	1.99-2.04 (m ^a); 1.71-1.73 (m ^a)	26	26.6	1.01 (s)
13	46.8	-	27	27.1	1.02 (s)
14	82.9	-	28	14.1	0.80 (s)

Table S9. 1 H (600 MHz) and 13 C-NMR (150 MHz) data of compound 6 in DMSO

a = overlapped signal

Positions	$\delta_{\rm C}$ (ppm)	δ_{H} (ppm)	Positions	$\delta_{\rm C}$ (ppm)	$\delta_{\mathrm{H}} (\mathrm{ppm})$
1	39.0	1.36-1.40 (t, $J = 12.4$ Hz,), 2.58 (dd, $J = 12.8$, 3.9 Hz)	15	31.8	1.56-1.60 (t, $J = 10.2$ Hz), 1.99-2.02 (m ^a)
2	68.9	4.00-4.02 (m)	16	21.5	1.74-1.76 (m ^a); 1.93-1.98 (m ^a)
3	68.5	3.96 (br s)	17	50.3	2.42-2.45 (m)
4	33.2	1.65-1.68 (m ^a); 1.77- 1.78 (m ^a)	18	18.9	0.88 (s)
5	52.7	2.34 (dd, $J = 13.2$, 3.5 Hz)	19	24.6	1.06 (s)
6	206.6	-	20	77.8	-
7	122.7	5.80 (s)	21	21.0	1.22 (s)
8	165.7	-	22	78.4	-
9	42.9	3.15 (d, <i>J</i> = 7.2 Hz)	23	27.3	1.26-1.31 (m)
10	39.9	-	24	42.3	1.81-1.82 (m ^a); 1.41-1.46 (m ^a)
11	69.5	4.09-4.13, (m)	25	71.2	-
12	43.7	2.20-2.24 (t, $J = 11.4$ Hz); 2.16, (dd, $J = 12.1$, 6.0 Hz)	26	28.9	1.19 (s)
13	48.5	-	27	29.7	1.21 (s)
14	84.8	-			

Table S10. 1 H NMR (600 MHz) and 13 C-NMR (150 MHz) data of compound 7 in CD₃OD

a = overlapped signal

Positions	δ c (ppm)	<i>б</i> н (ppm)	
1	150.9	-	
2	153.3	-	
3	109.6	6.55 (s)	
3a	123.6	-	
3b	121.0	-	
4	24.7	2.72-2.76 (m); 3.17-3.20 (m)	
5	62.5	3.39-3.44 (m); 3.55-3.58 (m)	
6 -(N-CH ₃)	43.5	2.89 (s)	
6 -(N-CH ₃)	53.9	3.30 (s)	
6a	71.4	4.04 (d, <i>J</i> =13.6 Hz)	
7	31.8	2.57-2.63 (m); 3.03-3.06 (m)	
7a	126.0	-	
8	117.0	6.56 (d, <i>J</i> = 7.9 Hz)	
9	110.7	6.71 (d, <i>J</i> = 7.9 Hz)	
10	151.9	-	
11-(OH)	149.9	-	
11a	123.7	-	
11b	115.8	-	
2- (OCH ₃)	56.0	3.79 (s)	
10- (OCH ₃)	56.4	3.82 (s)	

Table S11. ¹H NMR (600 MHz) and ¹³C-NMR (150 MHz) data of compound 8 in CD₃OD

Fig. S14 (a) Binding modes of compound 8 with human AChE

Fig. S14 (b) Binding modes of compound 1 with human AChE

Table S12. Docking score and Glide energy score in Kcal/mol of isolated molecules from C.*hirsutus* against human AChE *in silico* screened by the Schrodinger.

Compounds	Docking score	Glide energy (kcal/mol)	Interactions with residues
1	-11.49	-24.12	Trp86, Tyr124
2	-8.36	-42.88	Phe295
3	-9.36	-31.17	Trp86, Tyr124
4	-7.43	-41.30	Phe295, His447
5	-4.30	-30.44	Tyr72, Tyr341, Ser293
6	-9.14	-31.08	Tyr124, Tyr341, Ser293
7	-6.5	-34.33	Tyr124, Phe295
8	-12.96	-41.97	Tyr337, Tyr341, Phe338, Tyr124