Online supplement: Transient staffing at the beginning of work

Benjamin Legros ${ }^{1} \bullet$ Oualid Jouini ${ }^{2}$
${ }^{1}$ EM Normandie, Laboratoire Métis, 30-32 Rue Henri Barbusse, 92110 Clichy, France
${ }^{2}$ Université Paris-Saclay, CentraleSupélec, Laboratoire Genie Industriel, 3 rue Joliot-Curie, 91190 Gif-sur-Yvette, France benjamin.legros@centraliens.net • oualid.jouini@centralesupelec.fr

This document is an online supplement that provides additional numerical support for our observations.

1 Numerical experiments - effect of the arrival rate

In this first section, we present two tables that confirm the observations made for the effect of the arrival rate.

\mathbf{y}	$\boldsymbol{\lambda}=\mathbf{0 . 5}$	$\boldsymbol{\lambda}=\mathbf{1}$	$\boldsymbol{\lambda}=\mathbf{1 . 5}$	$\boldsymbol{\lambda}=\mathbf{2}$	$\boldsymbol{\lambda}=\mathbf{2 . 5}$	$\boldsymbol{\lambda}=\mathbf{3}$	$\boldsymbol{\lambda}=\mathbf{3 . 5}$	$\boldsymbol{\lambda}=\mathbf{4}$	$\boldsymbol{\lambda}=\mathbf{4 . 5}$	$\boldsymbol{\lambda}=\mathbf{5}$
1	10.00	5.00	3.33	2.50	2.00	1.67	1.43	1.25	1.11	1.00
2	13.3	6.26	4.12	3.08	2.46	2.05	1.76	1.54	1.37	1.23
3	21.52	7.88	5.02	3.69	2.93	2.43	2.07	1.81	1.61	1.45
4	-	10.18	6.08	4.39	3.44	2.84	2.41	2.10	1.86	1.67
5	-	14.08	7.41	5.18	4.01	3.28	2.77	2.41	2.13	1.91
6	-	25.48	9.15	6.11	4.64	3.76	3.16	2.73	2.40	2.15
7	-	-	11.67	7.23	5.36	4.28	3.57	3.07	2.70	2.40
8	-	-	16.20	8.62	6.17	4.86	4.02	3.44	3.00	2.67
9	-	-	33.76	10.48	7.14	5.50	4.51	3.83	3.33	2.95
10	-	-	-	13.27	8.30	6.24	5.04	4.25	3.67	3.24
11	-	-	-	18.73	9.77	7.08	5.63	4.70	4.04	3.55
12	-	-	-	65.11	11.78	8.08	6.30	5.19	4.44	3.88
13	-	-	-	-	14.94	9.30	7.05	5.74	4.87	4.23
14	-	-	-	-	22.15	10.88	7.93	6.35	5.33	4.61
15	-	-	-	-	-	13.1	8.97	7.03	5.83	5.01
16	-	-	-	-	-	16.88	10.27	7.81	6.39	5.44
17	-	-	-	-	-	30.44	12.00	8.73	7.02	5.92
18	-	-	-	-	-	-	14.60	9.84	7.73	6.44
19	-	-	-	-	-	-	20.09	11.28	8.55	7.01
20	-	-	-	-	-	-	-	13.32	9.55	7.67
21	-	-	-	-	-	-	-	16.97	10.81	8.44
22	-	-	-	-	-	-	-	37.32	12.57	9.36
23	-	-	-	-	-	-	-	-	15.56	10.54
24	-	-	-	-	-	-	-	-	25.56	12.20
25	-	-	-	-	-	-	-	-	-	15.06
26	-	-	-	-	-	-	-	-	-	24.79
S	44.82	68.88	96.74	148.39	105.09	132.67	123.58	160.71	151.43	154.82
s	3	6	9	12	14	17	19	22	24	26

Table 1: Effect of the arrival rate $\left(\mu=0.2, \gamma=0, q^{*}=5, N=50, \epsilon=0.001\right)$

2 Numerical experiments - effect of the abandonment rate

We now present two tables that confirm the observations made for the effect of the abandonment rate.

\mathbf{y}	$\boldsymbol{\lambda}=\mathbf{0 . 5}$	$\boldsymbol{\lambda}=\mathbf{1}$	$\boldsymbol{\lambda}=\mathbf{1 . 5}$	$\boldsymbol{\lambda}=\mathbf{2}$	$\boldsymbol{\lambda}=\mathbf{2 . 5}$	$\boldsymbol{\lambda}=\mathbf{3}$	$\boldsymbol{\lambda}=\mathbf{3 . 5}$	$\boldsymbol{\lambda}=\mathbf{4}$	$\boldsymbol{\lambda}=\mathbf{4 . 5}$	$\boldsymbol{\lambda}=\mathbf{5}$
1	-	-	5.49	3.47	2.55	2.03	1.68	1.44	1.26	1.12
2	-	-	8.06	4.60	3.29	2.58	2.12	1.81	1.57	1.40
3	-	-	13.47	6.03	4.12	3.16	2.57	2.17	1.88	1.66
4	-	-	-	8.02	5.11	3.82	3.07	2.57	2.21	1.95
5	-	-	-	11.38	6.34	4.58	3.62	3.00	2.57	2.25
6	-	-	-	27.10	7.98	5.47	4.23	3.47	2.94	2.56
7	-	-	-	-	10.42	6.55	4.93	3.98	3.35	2.90
8	-	-	-	-	15.36	7.93	5.73	4.55	3.79	3.26
9	-	-	-	-	-	9.84	6.70	5.20	4.28	3.65
10	-	-	-	-	-	12.97	7.89	5.94	4.82	4.07
11	-	-	-	-	-	23.11	9.46	6.81	5.42	4.53
12	-	-	-	-	-	-	11.75	7.85	6.10	5.04
13	-	-	-	-	-	-	16.11	9.18	6.89	5.6
14	-	-	-	-	-	-	-	10.99	7.82	6.23
15	-	-	-	-	-	-	-	13.86	8.97	6.95
16	-	-	-	-	-	-	-	21.33	10.47	7.79
17	-	-	-	-	-	-	-	-	12.61	8.81
18	-	-	-	-	-	-	-	-	16.46	10.08
19	-	-	-	-	-	-	-	-	-	11.80
20	-	-	-	-	-	-	-	-	-	14.45
21	-	-	-	-	-	-	-	-	-	20.56
S	0.00	0.00	27.02	60.60	55.17	82.04	79.86	104.15	103.41	126.66
s	0	0	3	6	8	11	13	16	18	21

Table 2: Effect of the arrival rate $\left(\mu=0.2, \gamma=0.2, q^{*}=5, N=50, \epsilon=0.001\right)$

\mathbf{y}	$\gamma=\mathbf{0}$	$\gamma=\mathbf{0 . 1}$	$\gamma=\mathbf{0 . 2 5}$	$\gamma=\mathbf{0 . 5}$	$\gamma=\mathbf{0 . 7 5}$	$\gamma=\mathbf{0 . 9}$	$\gamma=\mathbf{1}$
1	2.50	2.88	3.92	-	-	-	-
2	3.08	3.64	5.44	-	-	-	-
3	3.69	4.50	7.58	-	-	-	-
4	4.39	5.53	11.45	-	-	-	-
5	5.18	6.82	-	-	-	-	-
6	6.11	8.53	-	-	-	-	-
7	7.23	11.11	-	-	-	-	-
8	8.62	16.39	-	-	-	-	-
9	10.48	-	-	-	-	-	-
10	13.27	-	-	-	-	-	-
11	18.73	-	-	-	-	-	-
12	65.11	-	-	-	-	-	-
S	148.39	59.40	28.39	0	0	0	0
s	12	8	4	0	0	0	0

Table 3: Effect of the abandonment rate $\left(\mu=0.2, \lambda=2, q^{*}=5, N=50, \epsilon=0.001\right)$

\mathbf{y}	$\gamma=\mathbf{0}$	$\gamma=\mathbf{0 . 1}$	$\gamma=\mathbf{0 . 2 5}$	$\gamma=\mathbf{0 . 5}$	$\gamma=\mathbf{0 . 7 5}$	$\gamma=\mathbf{0 . 9}$	$\gamma=\mathbf{1}$
1	0.63	0.65	0.68	0.75	0.84	0.92	0.98
2	0.78	0.81	0.85	0.95	1.09	1.21	1.31
3	0.91	0.94	1.01	1.14	1.33	1.49	1.63
4	1.04	1.09	1.16	1.33	1.58	1.79	1.98
5	1.18	1.23	1.33	1.53	1.84	2.11	2.35
6	1.32	1.38	1.50	1.74	2.11	2.45	2.76
7	1.46	1.54	1.67	1.96	2.41	2.82	3.20
8	1.61	1.70	1.85	2.19	2.72	3.21	3.68
9	1.76	1.86	2.03	2.43	3.05	3.64	4.22
10	1.91	2.03	2.23	2.68	3.40	4.11	4.83
11	2.07	2.20	2.43	2.94	3.79	4.63	5.52
12	2.24	2.38	2.63	3.22	4.20	5.22	6.33
13	2.41	2.57	2.85	3.52	4.65	5.88	7.31
14	2.58	2.76	3.08	3.83	5.15	6.65	8.57
15	2.76	2.96	3.32	4.17	5.70	7.57	10.36
16	2.95	3.17	3.56	4.53	6.33	8.71	15.77
17	3.14	3.38	3.83	4.91	7.04	10.25	-
18	3.34	3.61	4.10	5.33	7.88	12.78	-
19	3.55	3.84	4.40	5.79	8.90	-	-
20	3.76	4.09	4.71	6.30	10.20	-	-
21	3.99	4.35	5.04	6.86	12.02	-	-
22	4.23	4.63	5.39	7.50	15.50	-	-
23	4.48	4.93	5.78	8.23	-	-	-
24	4.76	5.25	6.20	9.10	-	-	-
25	5.05	5.59	6.67	10.16	-	-	-
26	5.38	5.98	7.20	11.55	-	-	-
27	5.76	6.42	7.81	13.67	-	-	-
28	6.20	6.94	8.57	20.63	-	-	-
29	6.73	7.59	9.56	-	-	-	-
30	7.44	8.46	11.09	-	-	-	-
31	8.46	9.82	15.16	-	-	-	-
32	10.34	13.32	-	-	-	-	-
S	114.22	127.47	137.69	148.94	111.73	85.44	80.80
s	32	32	31	28	22	18	16

Table 4: Effect of the abandonment rate $\left(\mu=0.2, \lambda=8, q^{*}=5, N=50, \epsilon=0.001\right)$

3 Numerical experiments - effect of the traffic intensity

We now present two tables that confirm the observations made for the effect of the traffic intensity.

\mathbf{y}	$\boldsymbol{\mu}=\mathbf{0 . 1}$	$\boldsymbol{\mu}=\mathbf{0 . 2 5}$	$\boldsymbol{\mu}=\mathbf{0 . 5}$	$\boldsymbol{\mu}=\mathbf{0 . 7 5}$	$\boldsymbol{\mu}=\mathbf{1}$	$\boldsymbol{\mu}=\mathbf{1 . 5}$	$\boldsymbol{\mu}=\mathbf{2}$
1	3.33	1.33	0.67	0.44	0.33	0.22	0.17
2	4.07	1.64	0.83	0.56	0.43	0.29	0.23
3	4.83	1.95	0.99	0.67	0.51	0.35	0.26
4	5.65	2.27	1.15	0.77	0.59	0.40	0.31
5	6.53	2.63	1.33	0.89	0.67	0.46	0.35
6	7.49	3.01	1.52	1.02	0.77	0.52	0.40
7	8.54	3.43	1.73	1.16	0.88	0.59	0.45
8	9.69	3.89	1.96	1.31	0.99	0.67	0.51
9	10.99	4.41	2.22	1.49	1.12	0.76	0.57
10	12.45	5.00	2.51	1.68	1.27	0.85	0.65
11	14.14	5.67	2.85	1.91	1.44	0.97	0.73
12	16.14	6.47	3.25	2.17	1.63	1.10	0.83
13	18.58	7.45	3.73	2.50	1.88	1.26	0.95
14	21.73	8.71	4.36	2.92	2.20	1.47	1.11
15	26.17	10.48	5.25	3.51	2.64	1.77	1.33
16	33.73	13.51	6.77	4.53	3.39	2.27	1.71
17	60.87	24.36	12.19	8.13	6.11	4.08	3.07
S	264.93	106.21	53.31	35.69	26.88	18.03	13.63
s	17	17	17	17	17	17	17

Table 5: Effect of the traffic intensity $\left(a=15, b=0, q^{*}=5, N=50, \epsilon=0.001\right)$

\mathbf{y}	$\boldsymbol{\mu}=\mathbf{0 . 1}$	$\boldsymbol{\mu}=\mathbf{0 . 2 5}$	$\boldsymbol{\mu}=\mathbf{0 . 5}$	$\boldsymbol{\mu}=\mathbf{0 . 7 5}$	$\boldsymbol{\mu}=\mathbf{1}$	$\boldsymbol{\mu}=\mathbf{1 . 5}$	$\boldsymbol{\mu}=\mathbf{2}$
1	4.05	1.62	0.81	0.54	0.41	0.27	0.20
2	5.13	2.06	1.04	0.70	0.53	0.36	0.28
3	6.30	2.53	1.28	0.86	0.65	0.44	0.34
4	7.62	3.06	1.54	1.03	0.78	0.53	0.40
5	9.13	3.67	1.84	1.24	0.93	0.63	0.48
6	10.92	4.38	2.20	1.47	1.11	0.75	0.56
7	13.08	5.25	2.63	1.76	1.33	0.89	0.67
8	15.85	6.35	3.18	2.13	1.60	1.07	0.81
9	19.67	7.88	3.95	2.64	1.98	1.33	1.00
10	25.93	10.38	5.20	3.47	2.60	1.74	1.31
11	46.22	18.49	9.25	6.16	4.62	3.08	2.31
S	163.90	65.67	32.92	22.00	16.54	11.09	8.36
s	11	11	11	11	11	11	11

Table 6: Effect of the traffic intensity $\left(a=15, b=1, q^{*}=5, N=50, \epsilon=0.001\right)$

4 Numerical experiments - effect of the service level objective

We now present two additional tables that confirm the observations made for the effect of the service level objective.

\mathbf{y}	$\boldsymbol{q}^{*}=\mathbf{0 . 1}$	$\boldsymbol{q}^{*}=\mathbf{0 . 5}$	$\boldsymbol{q}^{*}=\mathbf{1}$	$\boldsymbol{q}^{*}=\mathbf{2}$	$\boldsymbol{q}^{*}=\mathbf{5}$	$\boldsymbol{q}^{*}=\mathbf{1 0}$	$\boldsymbol{q}^{*}=\mathbf{1 5}$
1	0.02	0.10	0.20	0.40	1.00	2.00	3.00
2	0.13	0.27	0.40	0.62	1.23	2.23	3.23
3	0.23	0.42	0.58	0.82	1.45	2.45	3.45
4	0.35	0.59	0.76	1.03	1.67	2.68	3.68
5	0.48	0.76	0.95	1.24	1.91	2.91	3.91
6	0.62	0.94	1.15	1.46	2.15	3.16	4.16
7	0.77	1.12	1.36	1.69	2.40	3.43	4.43
8	0.93	1.32	1.57	1.92	2.67	3.70	4.71
9	1.10	1.52	1.80	2.17	2.95	4.00	5.00
10	1.27	1.74	2.03	2.43	3.24	4.30	5.31
11	1.46	1.96	2.28	2.71	3.55	4.63	5.65
12	1.65	2.20	2.54	3.00	3.88	4.99	6.01
13	1.85	2.45	2.82	3.30	4.23	5.36	6.40
14	2.07	2.71	3.11	3.63	4.61	5.77	6.83
15	2.29	2.98	3.41	3.97	5.01	6.22	7.32
16	2.53	3.28	3.74	4.34	5.44	6.70	7.89
17	2.78	3.59	4.09	4.73	5.92	7.25	8.57
18	3.04	3.92	4.47	5.16	6.44	7.88	9.44
19	3.32	4.28	4.87	5.63	7.01	8.62	10.64
20	3.62	4.67	5.31	6.15	7.67	9.54	12.63
21	3.94	5.08	5.80	6.72	8.44	10.78	17.71
22	4.28	5.54	6.33	7.36	9.36	12.67	-
23	4.65	6.04	6.93	8.11	10.54	16.62	-
24	5.05	6.60	7.61	8.99	12.20	-	-
25	5.48	7.23	8.40	10.08	15.06	-	-
26	5.96	7.96	9.35	11.54	24.79	-	-
27	6.49	8.81	10.56	13.76	-	-	-
28	7.09	9.87	12.24	18.49	-	-	-
29	7.78	11.25	14.98	-	-	-	-
30	8.59	13.29	22.77	-	-	-	-
31	9.57	17.19	-	-	-	-	-
32	10.84	-	-	-	-	-	-
33	12.68	-	-	-	-	-	-
34	15.95	-	-	-	-	-	-
S	138.86	438.80	507.97	393.73	466.43	287.28	265.24
s	34	31	30	28	26	23	21

Table 7: Effect of the service level objective $\left(\lambda=5, \mu=0.2, \gamma=0, N=\max \left(50,10 q^{*}\right), \epsilon=0.001\right)$

\mathbf{y}	$\boldsymbol{q}^{*}=\mathbf{0 . 1}$	$\boldsymbol{q}^{*}=\mathbf{0 . 5}$	$\boldsymbol{q}^{*}=\mathbf{1}$	$\boldsymbol{q}^{*}=\mathbf{2}$	$\boldsymbol{q}^{*}=\mathbf{5}$	$\boldsymbol{q}^{\mathbf{*}}=\mathbf{1 0}$	$\boldsymbol{q}^{*}=\mathbf{1 5}$
1	0.02	0.11	0.22	0.51	-	-	-
2	0.13	0.29	0.45	0.83	-	-	-
3	0.24	0.46	0.67	1.15	-	-	-
4	0.36	0.65	0.91	1.49	-	-	-
5	0.50	0.85	1.16	1.86	-	-	-
6	0.65	1.06	1.43	2.26	-	-	-
7	0.81	1.29	1.71	2.70	-	-	-
8	0.99	1.53	2.02	3.18	-	-	-
9	1.17	1.78	2.35	3.72	-	-	-
10	1.36	2.05	2.70	4.33	-	-	-
11	1.57	2.34	3.08	5.02	-	-	-
12	1.78	2.65	3.50	5.83	-	-	-
13	2.01	2.99	3.95	6.81	-	-	-
14	2.26	3.35	4.45	8.05	-	-	-
15	2.51	3.73	5.01	9.78	-	-	-
16	2.79	4.16	5.65	13.01	-	-	-
17	3.08	4.62	6.38	-	-	-	-
18	3.39	5.14	7.24	-	-	-	-
19	3.73	5.71	8.29	-	-	-	-
20	4.09	6.36	9.65	-	-	-	-
21	4.48	7.12	11.60	-	-	-	-
22	4.91	8.02	15.48	-	-	-	-
23	5.38	9.12	-	-	-	-	-
24	5.90	10.56	-	-	-	-	-
25	6.49	12.68	-	-	-	-	-
26	7.16	17.02	-	-	-	-	-
27	7.93	-	-	-	-	-	-
28	8.86	-	-	-	-	-	-
29	10.00	-	-	-	-	-	-
30	11.51	-	-	-	-	-	-
31	13.74	-	-	-	-	-	-
32	18.24	-	-		-	-	-
S	138.04	369.01	269.23	166.38	0.00	0.00	0.00
s	32	26	22	16	0	0	0

Table 8: Effect of the service level objective $\left(\lambda=5, \mu=0.2, \gamma=1, N=\max \left(50,10 q^{*}\right), \epsilon=0.001\right)$

5 Numerical experiments - Comparison between the two approximations

In this section, we present additional supporting experiments that illustrate the difference between the two approximations for the estimation of appointment times.

| \mathbf{y} | $\boldsymbol{\lambda}=\mathbf{0 . 5}$ | $\boldsymbol{\lambda}=\mathbf{1}$ | $\boldsymbol{\lambda}=\mathbf{1 . 5}$ | $\boldsymbol{\lambda}=\mathbf{2}$ | $\boldsymbol{\lambda}=\mathbf{2 . 5}$ | $\boldsymbol{\lambda}=\mathbf{3}$ | $\boldsymbol{\lambda}=\mathbf{3 . 5}$ | $\boldsymbol{\lambda}=\mathbf{4}$ | $\boldsymbol{\lambda}=\mathbf{4 . 5}$ | $\boldsymbol{\lambda}=\mathbf{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | - | - | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
| 2 | - | - | 0.16% | 0.40% | 0.62% | 1.01% | 0.99% | 1.49% | 1.24% | 2.03% |
| 3 | - | - | -0.52% | 0.17% | 0.37% | 0.54% | 0.62% | 0.75% | 0.89% | 1.06% |
| 4 | - | - | - | -0.34% | 0.03% | 0.24% | 0.51% | 0.62% | 0.60% | 1.12% |
| 5 | - | - | - | -1.15% | -0.39% | -0.03% | 0.26% | 0.36% | 0.62% | 0.83% |
| 6 | - | - | - | - | -0.83% | -0.42% | -0.15% | 0.12% | 0.04% | 0.23% |
| 7 | - | - | - | - | -1.71% | -0.89% | -0.44% | -0.31% | -0.17% | 0.03% |
| 8 | - | - | - | - | -4.56% | -1.46% | -0.99% | -0.69% | -0.54% | -0.29% |
| 9 | - | - | - | - | - | -2.33% | -1.33% | -0.94% | -0.72% | -0.54% |
| 10 | - | - | - | - | - | -4.21% | -1.95% | -1.33% | -0.97% | -0.85% |
| 11 | - | - | - | - | - | - | -2.77% | -1.75% | -1.33% | -1.12% |
| 12 | - | - | - | - | - | - | -4.34% | -2.45% | -1.75% | -1.34% |
| 13 | - | - | - | - | - | - | -9.38% | -3.22% | -2.18% | -1.71% |
| 14 | - | - | - | - | - | - | - | -4.54% | -2.82% | -2.12% |
| 15 | - | - | - | - | - | - | - | -7.47% | -3.59% | -2.60% |
| 16 | - | - | - | - | - | - | - | - | -4.70% | -3.20% |
| 17 | - | - | - | - | - | - | - | - | -6.87% | -3.85% |
| 18 | - | - | - | - | - | - | - | - | -13.52% | -4.92% |
| 19 | - | - | - | - | - | - | - | - | - | -6.56% |
| 20 | - | - | - | - | - | - | - | - | - | -10.22% |
| 21 | - | - | - | - | - | - | - | - | - | - |

Table 9: Relative difference between the two approximations $\left(\mu=0.2, \gamma=0.2, q^{*}=5, N=50, \epsilon=0.001\right)$

\mathbf{y}	$\boldsymbol{\lambda}=\mathbf{0 . 5}$	$\boldsymbol{\lambda}=\mathbf{1}$	$\boldsymbol{\lambda}=\mathbf{1 . 5}$	$\boldsymbol{\lambda}=\mathbf{2}$	$\boldsymbol{\lambda}=\mathbf{2 . 5}$	$\boldsymbol{\lambda}=\mathbf{3}$	$\boldsymbol{\lambda}=\mathbf{3 . 5}$	$\boldsymbol{\lambda}=\mathbf{4}$	$\boldsymbol{\lambda}=\mathbf{4 . 5}$	$\boldsymbol{\lambda}=\mathbf{5}$
1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
2	-0.25%	0.16%	0.43%	0.80%	1.04%	1.29%	1.64%	1.77%	1.96%	1.79%
3	-7.77%	-0.46%	0.17%	0.26%	0.65%	0.90%	0.77%	1.06%	1.41%	1.70%
4	-	-2.27%	-0.70%	-0.11%	0.08%	0.53%	0.46%	0.72%	0.87%	1.03%
5	-	-8.67%	-1.87%	-0.92%	-0.39%	0.01%	0.02%	0.52%	0.74%	1.00%
6	-	-	-4.20%	-1.90%	-1.11%	-0.52%	-0.30%	-0.03%	0.00%	0.42%
7	-	-	-9.43%	-3.32%	-1.86%	-1.27%	-0.95%	-0.58%	-0.11%	-0.18%
8	-	-	-29.21%	-5.74%	-3.15%	-2.02%	-1.48%	-0.94%	-0.85%	-0.45%
9	-	-	-	-10.00%	-4.57%	-3.07%	-2.10%	-1.52%	-1.20%	-0.88%
10	-	-	-	-20.28%	-6.85%	-4.12%	-2.98%	-2.16%	-1.89%	-1.48%
11	-	-	-	-	-10.45%	-5.70%	-3.95%	-2.97%	-2.43%	-1.99%
12	-	-	-	-	-17.30%	-7.74%	-4.99%	-3.88%	-2.96%	-2.49%
13	-	-	-	-	-38.38%	-10.79%	-6.50%	-4.72%	-3.60%	-3.06%
14	-	-	-	-	-	-15.82%	-8.33%	-5.77%	-4.45%	-3.56%
15	-	-	-	-	-	-26.92%	-11.01%	-7.16%	-5.45%	-4.30%
16	-	-	-	-	-	-	-14.98%	-8.89%	-6.48%	-5.14%
17	-	-	-	-	-	-	-22.14%	-11.12%	-7.66%	-5.89%
18	-	-	-	-	-	-	-42.55%	-14.35%	-9.18%	-6.88%
19	-	-	-	-	-	-	-	-19.36%	-11.14%	-8.12%
20	-	-	-	-	-	-	-	-29.85%	-13.58%	-9.37%
21	-	-	-	-	-	-	-	-	-17.17%	-10.81%
22	-	-	-	-	-	-	-	-	-23.28%	-12.63%
23	-	-	-	-	-	-	-	-	-41.03%	-14.86%
24	-	-	-	-	-	-	-	-	-	-18.01%
25	-	-	-	-	-	-	-	-	-	-24.24%
26	-	-	-	-	-	-	-	-	-	-

Table 10: Relative difference between the two approximations ($\mu=0.2, \gamma=0, q^{*}=5, N=50, \epsilon=0.001$)

\mathbf{y}	$\gamma=\mathbf{0}$	$\gamma=\mathbf{0 . 1}$	$\gamma=\mathbf{0 . 2 5}$	$\gamma=\mathbf{0 . 5}$	$\gamma=\mathbf{0 . 7 5}$	$\gamma=\mathbf{0 . 9}$	$\gamma=\mathbf{1}$
1	0.00%	0.00%	0.00%	-	-	-	-
2	0.80%	0.61%	0.33%	-	-	-	-
3	0.26%	0.27%	0.03%	-	-	-	-
4	-0.11%	-0.21%	-0.45%	-	-	-	-
5	-0.92%	-0.83%	-	-	-	-	-
6	-1.90%	-1.96%	-	-	-	-	-
7	-3.32%	-4.03%	-	-	-	-	-
8	-5.74%	-11.45%	-	-	-	-	-
9	-10.00%	-	-	-	-	-	-
10	-20.28%	-	-	-	-	-	-

Table 11: Relative difference between the two approximations ($\mu=0.2, \lambda=2, q^{*}=5, N=50, \epsilon=0.001$)

\mathbf{y}	$\gamma=\mathbf{0}$	$\gamma=\mathbf{0 . 1}$	$\gamma=\mathbf{0 . 2 5}$	$\gamma=\mathbf{0 . 5}$	$\gamma=\mathbf{0 . 7 5}$	$\gamma=\mathbf{0 . 9}$	$\gamma=\mathbf{1}$
1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
2	3.56%	3.65%	2.48%	2.18%	1.88%	1.98%	1.85%
3	2.85%	2.03%	2.65%	2.08%	1.74%	1.38%	1.14%
4	1.97%	2.33%	1.46%	1.44%	1.52%	1.13%	1.02%
5	1.83%	1.37%	1.69%	1.11%	1.17%	0.97%	0.66%
6	1.41%	1.02%	1.48%	0.93%	0.69%	0.77%	0.73%
7	0.78%	1.08%	0.94%	0.82%	0.89%	0.78%	0.57%
8	0.61%	0.82%	0.70%	0.73%	0.74%	0.48%	0.34%
9	0.20%	0.31%	0.16%	0.61%	0.58%	0.40%	0.32%
10	-0.41%	0.09%	0.28%	0.42%	0.34%	0.30%	0.36%
11	-0.69%	-0.37%	0.04%	0.14%	0.47%	0.22%	0.26%
12	-0.75%	-0.63%	-0.49%	0.06%	0.29%	0.30%	0.21%
13	-1.04%	-0.75%	-0.57%	0.08%	0.18%	0.20%	0.17%
14	-1.55%	-1.13%	-0.66%	-0.14%	0.17%	0.17%	0.23%
15	-1.88%	-1.40%	-0.77%	-0.12%	0.05%	0.17%	0.17%
16	-2.09%	-1.61%	-1.22%	-0.21%	0.10%	0.10%	-
17	-2.52%	-2.08%	-1.19%	-0.47%	-0.03%	0.08%	-
18	-2.87%	-2.24%	-1.54%	-0.57%	-0.07%	-0.16%	-
19	-3.16%	-2.68%	-1.56%	-0.64%	-0.10%	-	-
20	-3.69%	-2.91%	-1.77%	-0.68%	-0.16%	-	-
21	-3.95%	-3.21%	-2.00%	-0.85%	-0.37%	-	-
22	-4.24%	-3.39%	-2.30%	-0.92%	-1.66%	-	-
23	-4.58%	-3.53%	-2.39%	-1.07%	-	-	-
24	-4.59%	-3.66%	-2.54%	-1.11%	-	-	-
25	-4.75%	-3.83%	-2.54%	-1.17%	-	-	-
26	-4.52%	-3.63%	-2.41%	-1.00%	-	-	-
27	-3.87%	-3.18%	-2.08%	0.31%	-	-	-
28	-2.77%	-2.20%	-0.99%	19.86%	-	-	-
29	-0.93%	-0.25%	1.24%	-	-	-	-
30	2.65%	3.42%	6.87%	-	-	-	-
31	9.19%	11.26%	31.51%	-	-	-	-
32	24.53%	39.23%	-	-	-	-	-

Table 12: Relative difference between the two approximations ($\mu=0.2, \lambda=8, q^{*}=5, N=50, \epsilon=0.001$)

\mathbf{y}	$\boldsymbol{\mu}=\mathbf{0 . 1}$	$\boldsymbol{\mu}=\mathbf{0 . 2 5}$	$\boldsymbol{\mu}=\mathbf{0 . 5}$	$\boldsymbol{\mu}=\mathbf{0 . 7 5}$	$\boldsymbol{\mu}=\mathbf{1}$	$\boldsymbol{\mu}=\mathbf{1 . 5}$	$\boldsymbol{\mu}=\mathbf{2}$
1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
2	0.55%	1.29%	2.53%	3.76%	6.24%	7.47%	13.65%
3	0.27%	1.21%	2.76%	4.32%	5.88%	8.99%	7.95%
4	0.00%	0.44%	1.77%	2.21%	4.42%	6.19%	9.73%
5	-0.45%	0.24%	1.38%	1.76%	2.15%	5.19%	6.72%
6	-0.92%	-0.45%	0.54%	1.20%	1.86%	3.18%	5.83%
7	-1.50%	-1.10%	-0.24%	0.34%	1.49%	2.07%	3.80%
8	-2.32%	-1.97%	-1.21%	-0.96%	-0.21%	1.31%	2.82%
9	-3.16%	-2.85%	-2.19%	-1.53%	-1.31%	0.45%	0.45%
10	-4.35%	-3.96%	-3.58%	-3.19%	-2.42%	-2.04%	-0.12%
11	-5.83%	-5.60%	-5.10%	-4.60%	-4.10%	-3.10%	-2.77%
12	-7.85%	-7.65%	-7.23%	-7.08%	-6.94%	-5.80%	-5.23%
13	-10.88%	-10.67%	-10.55%	-10.07%	-9.83%	-9.35%	-8.87%
14	-15.93%	-15.76%	-15.66%	-15.28%	-14.89%	-14.70%	-14.12%
15	-27.00%	-26.92%	-26.78%	-26.57%	-26.36%	-25.94%	-25.80%

Table 13: Relative difference between the two approximations $\left(a=15, b=0, q^{*}=5, N=50, \epsilon=0.001\right)$

\mathbf{y}	$\boldsymbol{\mu}=\mathbf{0 . 1}$	$\boldsymbol{\mu}=\mathbf{0 . 2 5}$	$\boldsymbol{\mu}=\mathbf{0 . 5}$	$\boldsymbol{\mu}=\mathbf{0 . 7 5}$	$\boldsymbol{\mu}=\mathbf{1}$	$\boldsymbol{\mu}=\mathbf{1 . 5}$	$\boldsymbol{\mu}=\mathbf{2}$
1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
2	0.43%	0.82%	1.80%	2.77%	3.75%	5.71%	9.63%
3	0.22%	0.62%	1.81%	2.61%	3.40%	4.99%	8.18%
4	-0.02%	0.38%	1.03%	1.36%	2.34%	4.31%	4.97%
5	-0.36%	0.13%	0.40%	1.50%	1.50%	3.13%	4.77%
6	-0.60%	-0.33%	0.13%	0.35%	1.04%	2.40%	1.95%
7	-1.04%	-0.70%	-0.51%	-0.13%	0.62%	1.00%	1.38%
8	-1.52%	-1.36%	-1.21%	-0.74%	-0.59%	-0.28%	0.66%
9	-2.38%	-2.23%	-1.98%	-1.73%	-1.73%	-0.99%	-0.74%
10	-4.25%	-4.17%	-3.99%	-3.90%	-3.99%	-3.62%	-3.25%

Table 14: Relative difference between the two approximations $\left(a=15, b=1, q^{*}=5, N=50, \epsilon=0.001\right)$

\mathbf{y}	$\boldsymbol{q}^{*}=\mathbf{0 . 1}$	$\boldsymbol{q}^{*}=\mathbf{0 . 5}$	$\boldsymbol{q}^{*}=\mathbf{1}$	$\boldsymbol{q}^{*}=\mathbf{2}$	$\boldsymbol{q}^{*}=\mathbf{5}$	$\boldsymbol{q}^{*}=\mathbf{1 0}$	$\boldsymbol{q}^{*}=\mathbf{1 5}$
1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
2	-43.07%	-12.43%	-2.04%	1.92%	1.79%	0.98%	0.68%
3	-48.40%	-20.11%	-7.31%	-0.69%	1.70%	1.00%	0.71%
4	-47.99%	-21.65%	-10.90%	-2.18%	1.03%	1.02%	0.74%
5	-47.32%	-23.32%	-12.93%	-3.96%	1.00%	0.65%	0.49%
6	-46.60%	-24.26%	-14.25%	-5.26%	0.42%	0.60%	0.46%
7	-45.94%	-25.54%	-15.23%	-6.33%	-0.18%	0.76%	0.58%
8	-45.36%	-25.93%	-16.58%	-7.78%	-0.45%	0.49%	0.60%
9	-44.89%	-26.79%	-17.28%	-8.68%	-0.88%	0.60%	0.48%
10	-44.99%	-27.16%	-18.43%	-9.62%	-1.48%	0.26%	0.40%
11	-44.74%	-27.99%	-19.21%	-10.32%	-1.99%	0.17%	0.50%
12	-44.98%	-28.55%	-20.10%	-11.22%	-2.49%	0.22%	0.52%
13	-45.33%	-29.27%	-20.87%	-12.32%	-3.06%	-0.07%	0.57%
14	-45.53%	-30.16%	-21.87%	-13.17%	-3.56%	-0.18%	0.73%
15	-46.18%	-31.26%	-23.11%	-14.35%	-4.30%	-0.24%	1.18%
16	-46.79%	-32.16%	-24.21%	-15.48%	-5.14%	-0.52%	2.00%
17	-47.65%	-33.40%	-25.51%	-16.88%	-5.89%	-0.56%	3.37%
18	-48.78%	-34.84%	-26.91%	-18.30%	-6.88%	-0.45%	5.88%
19	-50.07%	-36.40%	-28.69%	-19.91%	-8.12%	-0.11%	10.49%
20	-51.62%	-38.25%	-30.71%	-21.79%	-9.37%	0.81%	20.71%
21	-53.55%	-40.68%	-33.05%	-24.18%	-10.81%	3.03%	-
22	-56.03%	-43.54%	-36.15%	-27.22%	-12.63%	8.17%	-
23	-59.21%	-47.39%	-40.15%	-31.15%	-14.86%	24.22%	-
24	-63.67%	-52.79%	-45.95%	-37.04%	-18.01%	-	-
25	-71.00%	-61.91%	-55.97%	-47.72%	-24.24%	-	-

Table 15: Relative difference between the two approximations $\left(\lambda=5, \mu=0.2, \gamma=0, N=\max \left(50,10 q^{*}\right)\right.$, $\epsilon=0.001$)

\mathbf{y}	$\boldsymbol{q}^{*}=\mathbf{0 . 1}$	$\boldsymbol{q}^{*}=\mathbf{0 . 5}$	$\boldsymbol{q}^{*}=\mathbf{1}$	$\boldsymbol{q}^{*}=\mathbf{2}$	$\boldsymbol{q}^{*}=\mathbf{5}$	$\boldsymbol{q}^{*}=\mathbf{1 0}$	$\boldsymbol{q}^{*}=\mathbf{1 5}$
1	0.00%	0.00%	0.00%	0.00%	-	-	-
2	-39.00%	-7.78%	-1.48%	1.69%	-	-	-
3	-42.00%	-13.65%	-4.54%	0.73%	-	-	-
4	-42.20%	-14.58%	-5.18%	0.00%	-	-	-
5	-40.56%	-15.02%	-5.82%	-0.25%	-	-	-
6	-39.22%	-15.30%	-5.88%	-0.44%	-	-	-
7	-38.10%	-14.92%	-6.29%	-0.44%	-	-	-
8	-36.54%	-14.80%	-6.05%	-0.55%	-	-	-
9	-35.88%	-14.92%	-5.94%	-0.44%	-	-	-
10	-35.37%	-14.84%	-6.03%	-0.29%	-	-	-
11	-34.60%	-14.71%	-6.06%	-0.31%	-	-	-
12	-34.45%	-14.64%	-5.92%	-0.28%	-	-	-
13	-34.14%	-14.43%	-6.09%	-0.26%	-	-	-
14	-33.78%	-14.47%	-6.22%	-0.37%	-	-	-
15	-33.99%	-14.83%	-6.37%	-0.93%	-	-	-
16	-33.97%	-14.94%	-6.52%	-	-	-	-
17	-34.30%	-15.40%	-6.93%	-	-	-	-
18	-34.79%	-15.84%	-7.61%	-	-	-	-
19	-35.35%	-16.70%	-8.79%	-	-	-	-
20	-36.25%	-17.85%	-11.31%	-	-	-	-
21	-37.46%	-19.46%	-	-	-	-	-
22	-39.01%	-22.19%	-	-	-	-	-
23	-41.20%	-28.22%	-	-	-	-	-
24	-44.42%	-	-	-	-	-	-
25	-50.13%	-	-	-	-	-	-

Table 16: Relative difference between the two approximations $\left(\lambda=5, \mu=0.2, \gamma=1, N=\max \left(50,10 q^{*}\right)\right.$, $\epsilon=0.001$)

