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I. Data consistency in inverse design problems 

The issue of data consistency in training data can be shown with the following example. Let X 

be an 8×1 real vector and Y be a 4×1 real vector (i.e., 8X R , 4Y R ), while a nonlinear operator 

Ô  defines a many-to-one mapping from the X space to the Y space: 

 ˆY OX . (S1) 

The forward problem, i.e., calculating Y from X, is well-defined, and can be solved by training 

a forward neural network. However, when taking Y as the input and X as the output, the inverse 

network cannot be trained accurately. The following experiment shows that this is not only 

caused by non-unique instances in the training data, but also by inconsistency of the data set. 

Let 1

1Ô  and 1

2Ô  be two different operators.  For 4Y R  , the two operators satisfy 

  1

1
ˆ ˆO O Y Y  . (S2) 

  1

2
ˆ ˆO O Y Y  . (S3) 

We generate data set 𝐷1 from 1

1Ô  so that for each instance < 𝑋𝑖, 𝑌𝑖 >∈ 𝐷1, 𝑋𝑖 = �̂�1
−1𝑌𝑖.  In 

this case, we say the data set 𝐷1 is self-consistent, since instances in 𝐷1 are sampled from the 

same mapping 1

1Ô . Another self-consistent data set 𝐷2 is generated from 1

2Ô  in the same way.  

When 𝐷1 and 𝐷2 are put together to get a new data set 
3 1 2D D D  , the data set 𝐷3 is not self-

consistent. 

The data set 𝐷1, 𝐷2, 𝐷3 is used to train the inverse network, and the learning curves are shown 

in Fig. S1. The inverse networks are well trained by 𝐷1 and 𝐷2. However, the inconsistent data 

set 𝐷3 cannot train an accurate neural network, even though instances are unique in 𝐷3 (i.e., all 

instances have different Y values in 𝐷3). 

 

 

FIG. S1.  Learning curve of an inverse network trained by data set D1, D2 and D3.  The sets D1 and D2 are self-

consistent and can train accurate networks. The set D3 fails to train an accurate network even though instances are 

unique within D3. 

 



 

II. Training forward neural network 

In the following, we describe a specific implementation of the forward modeling network 

training process. To train the forward-modeling network for the multi-layer transmission 

problem, we experiment with networks having different sizes and depths. Fig. 6(a) compares the 

learning curves of the networks with different hidden layers. The architectures are as follows. 

Architecture 1:   20 − 500 − 200 

Architecture 2:  20 − 500 − 200 − 200 

Architecture 3:  20 − 500 − 200 − 200 − 200 

Architecture 4:  20 − 500 − 200 − 200 − 200 − 200 

The 20 at the beginning and the 200 at the end are the numbers of input and output units, 

respectively. As the network becomes deeper, the error decreases, indicating more accurate 

predictions by the neural network. The network with four hidden layers (i.e., Architecture 4) has 

error ≈0.19 after 10,000 epochs of training. 

 

 

FIG. S2. (a) The learning curve for forward networks with different hidden layers. Architectures 1 to 4 have 1, 2, 3, 

and 4 hidden layers respectively. (b) The learning curve for forward networks with the same depth but different 

network sizes.  

 

Fig. S2(b) compares networks with the same depth but different network sizes (number of 

hidden units in the hidden layers). The architectures are as follows. 

Architecture 4:  20 − 500 − 200 − 200 − 200 − 200, 

Architecture 5:  20 − 500 − 500 − 200 − 200 − 200, 

Architecture 6:  20 − 500 − 500 − 500 − 200 − 200. 

The results indicate that larger networks could be trained faster, although as the training goes on, 

the performance difference becomes very little. 



The network with Architecture 5 has an error ≈0.16 after 12,000 epochs of training. Fig. S3 

shows its predictions on three instances randomly chosen from the test set.  The ground truth 

(true transmission spectra) is shown in blue lines for comparison. 

 

 

 

FIG. S3.   Example test results of the forward network. The predictions by the network fit well with the ground truth. 

 

III. Training neural network to design transmission phase delay of 2D 

structure  

When designing 2D structures to modulate transmission phase delay, the forward modeling 

neural network has 6 hidden layers with each layer having 1024 – 512 – 512 – 256 – 256 – 128 

hidden units. The inverse design network has 2 hidden layers with 512 and 256 hidden units. The 

learning rate is initially 0.0005 and exponentially decays to 10−6  at the end of the training. 

Learning curves of the forward modeling network and the tandem network are shown in Fig. S4. 

 

 

FIG. S4. Learning curve of (a) the forward modeling neural network and (b) the tandem network. 

 


