## Total Synthesis of Darobactin A

Marko Nesic ${ }^{\ddagger \dagger}$, David B. Ryffel ${ }^{\ddagger \dagger}$, Jonathan Maturano ${ }^{\dagger}$, Michael Shevlin ${ }^{\S}$, Scott R. Pollack ${ }^{\S}$, Donald R. Gauthier, Jr. ${ }^{\S}$, Pablo Trigo-Mouriñoll, Li-Kang Zhang\|, Danielle M. Schultz ${ }^{\S}$, Jamie M. McCabe Dunn ${ }^{\S}$, Louis-Charles Campeau ${ }^{\S}$, Niki R. Patel ${ }^{* \S}$, David A. Petrone ${ }^{* \S}$, David Sarlah* ${ }^{*}$
${ }^{\dagger}$ Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
${ }^{\text {§ }}$ Department of Process Research \& Development, Merck \& Co., Inc., MRL, Rahway, NJ 07065, United States
"Analytical Research \& Development, Merck \& Co., Inc., Rahway, New Jersey 07065, United States
correspondence to:
Niki R. Patel (niki.patel1@merck.com)
David A. Petrone (david.petrone@merck.com) David Sarlah (sarlah@illinois.edu)

## Supporting Information

## TABLE OF CONTENTS

General Procedures ..... 4
Abbreviations ..... 5
Preliminary Macrocyclization studies. ..... 6
Experimental Procedures ..... 8
Ether 8 ..... 8
Aniline SI 1 ..... 9
Acetanilide 9 ..... 9
Alcohol 10 ..... 10
Acid SI 2 ..... 11
Dipeptide 11 ..... 11
Dipeptide 4 ..... 12
Ethyl ((benzyloxy)carbonyl)- $L$-serinate SI 3 ..... 12
Mesylate 12 ..... 13
Z-enamide 13 ..... 13
Z-Bromoenamide 14 . ..... 14
Tetrasubstituted enamide 16 ..... 15
HTE optimization for the synthesis of 17 ..... 16
$\beta$-Aryl Lysine 17 ..... 20
Iodide 18 ..... 21
Amine 5 ..... 22
Tripeptide 19 ..... 22
Macrocycles 20 and atrop-20 ..... 23
Acid SI 4 ..... 25
Pentapeptide 21 ..... 26
Hydrochloride Salt SI 5 ..... 26
Heptapeptide 22 ..... 26
Protected darobactin 23 ..... 27
Darobactin A (1) ..... 29
NMR comparison between synthetic and natural darobactin $A$ ..... 32
Sequence for the Synthesis of Sidechain 3•TFA ..... 36
Protected sidechain SI 6 ..... 36
Ammonium salt $3 \cdot$ TFA ..... 36
Sequence for the Synthesis of Dipeptide 2 ..... 37
Alkyne SI 7 ..... 37
Acid SI 8 ..... 37
Methyl Ester SI 9 ..... 38
Dipeptide 2 ..... 38
References ..... 40
Spectroscopic Data ..... 41

## General Procedures

All chemicals were purchased from commercial suppliers and used as received, unless otherwise noted. $N$-bromosuccinimide was recrystallized from hot water prior to use. Diethyl ether (ACS grade), dichloromethane (ACS grade), tetrahydrofuran (HPLC grade), acetonitrile (HPLC grade), and toluene (ACS grade) were dried for reactions using the MB-SPS solvent purification system containing activated alumina manufactured by MBRAUN. Reaction temperatures correspond to the external temperature of the reaction vessel unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel 60 F254 aluminum sheets. Visualization was accomplished with UV light and/or potassium permanganate ( $\mathrm{KMnO}_{4}$ ). Retention factor $\left(\mathrm{R}_{\mathrm{f}}\right)$ values reported were measured using a $10 \times 2 \mathrm{~cm}$ TLC plate in a developing chamber containing the solvent system described. Silicycle SiliaFlash® P60 ( $\mathrm{SiO}_{2}, 40-63 \mu \mathrm{~m}$ particle size, 230-400 mesh) was used for flash column chromatography. Some compounds were purified using Biotage ${ }^{\circledR}$ Isolera ${ }^{\text {TM }}$ One (AQ C18 column Spherical; $20-35 \mu \mathrm{~m}$; 100A) or Shimadzu Prominence reverse phase preparative HPLC with SPD-20A UV/Vis Photodiode array detector. ${ }^{1} \mathrm{H}$ NMR spectra were obtained at $500 \mathrm{MHz}, 600 \mathrm{MHz}$, or $800 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR were obtained at $126 \mathrm{MHz}, 151 \mathrm{MHz}$, or 201 MHz . NMR spectra were recorded using a Bruker Avance III 500 MHz spectrometer equipped with BB CryoProbe, Bruker NEO NMR 600 MHz equipped with BBO prodigy probe, or Bruker 800 MHz Avance NEO NMR spectrometer equipped with 5 mm TCI CryoProbe and were referenced to residual chloroform ( $7.26 \mathrm{ppm}, 1 \mathrm{H}$ ), residual DMSO $(2.50,6 \mathrm{H})$, or DCM $(5.32,2 \mathrm{H})$. High temperature NMR experiments were recorded using Varian UNITY INOVA 600 MHz spectrometer equipped with 3 mm BB probe. Chemical shifts are reported in parts per million (ppm) and multiplicities are indicated as: $s$ (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), and br (broad). Coupling constants, J, are reported in Hertz. Mass spectrometry (MS) was performed by the University of Illinois Mass Spectrometry Laboratory. Electron Impact (EI+) spectra were performed at 70 eV using methane as the carrier gas, with time-of-flight (TOF) mass analyzer. Electrospray ionization (ESI+) spectra were performed using a time-of-flight (TOF) mass analyzer. Data are reported in the form of $\mathrm{m} / \mathrm{z}$. Infrared (IR) spectra were measured neat on a Perkin-Elmer Spectrum Two FT-IR ATR spectrometer. Peaks are reported in $\mathrm{cm}^{-1}$ with indicated relative intensities: s (strong, $0-33 \% \mathrm{~T}$ ); m (medium, $34-66 \% \mathrm{~T}$ ), w (weak, $67-100 \% \mathrm{~T}$ ), and br (broad). Melting points were measured on a Buchi B-540 melting point apparatus and are uncorrected.


#### Abstract

Abbreviations THF = tetrahydrofuran, $\mathrm{DCE}=1,2$-dichloroethane, $\mathrm{MeCN}=$ acetonitrile, $\mathrm{PhMe}=$ toluene, HOAt = 1-hydroxy-7-azabenzotriazole, EDC = 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, DIPEA/DIEA $=N, N$-Diisopropylethylamine, IPA $=$ isopropyl alcohol, TFA $=$ trifluoroacetic acid, NBS $=N$-Bromosuccinimide, NIS $=N$-iodosuccinimide, TEMPO $=(2,2,6,6-$ Tetramethylpiperidin-1-yl)oxyl, PIDA = (Diacetoxyiodo)benzene, DME = 1,2-dimethoxyethane, NIS $=N$-iodosuccinimide, $\mathrm{DMS}=$ dimethyl sulfide, $\mathrm{DCM}=$ dichloromethane, $\mathrm{DMF}=$ dimethylformamide EtOAc = ethyl acetate, Hex = hexanes, TMS = trimethylsilyl, TES = triethylsilyl.


## Preliminary Macrocyclization studies

Attempted one-pot double Larock macrocyclization led to the formation of the undesired atropisomer of the eastern macrocycle:


West-to-east sequential macrocyclization approach resulted in the formation of the undesired atropisomer of the eastern atropisomer as well, due to steric/conformational constraints imposed by the western macrocycle:


An east-to-west strategy successfully furnished the desired atropisomer of the eastern macrocycle:


## Experimental Procedures



Alcohol 7 was prepared according to a known procedure ${ }^{1}$ :
TMS-acetylene ( $13.0 \mathrm{~mL}, 91.6 \mathrm{mmol}, 1.75$ equiv.) was dissolved in THF ( 200 mL ). The obtained solution was cooled to $0^{\circ} \mathrm{C}$, followed by dropwise addition of $\operatorname{EtMgBr}(26.2 \mathrm{~mL}, 3.0 \mathrm{M}$ in ether, $28.3 \mathrm{mmol}, 1.5$ equiv.) at the same temperature. The mixture was heated to reflux and stirred for 1 hour. The solution was then cooled down to room temperature and cannulated into a solution of CuI ( $21.9 \mathrm{~g}, 115 \mathrm{mmol}, 2.2$ equiv.) in THF/DMS $=5: 1\left(300 \mathrm{~mL}\right.$ total volume) at $-78{ }^{\circ} \mathrm{C}$. The obtained mixture was warmed to $-30^{\circ} \mathrm{C}$, stirred for 30 min at this temperature then cooled back to $-78{ }^{\circ} \mathrm{C}$. To this solution was added dropwise D-Garner's aldehyde (6) ( $12.0 \mathrm{~g}, 52.3 \mathrm{mmol}$, 1.0 equiv.) as a solution in THF ( 50 mL ). The reaction mixture was left to stir overnight, slowly warming up to room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$ was added to quench the reaction. After stirring for 30 min , the reaction mixture was transferred to a separatory funnel and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( 3 x 200 mL ). The organic extracts were combined, washed with brine ( 300 mL ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{Hex} / \mathrm{EtOAc}=5: 1$ to $4: 1$ ) afforded alcohol 7 as a yellow oil ( $14.5 \mathrm{~g}, 52.3 \mathrm{mmol}, 85 \%,>20: 1$ d.r.). Characterization data matched previously reported values. ${ }^{1}$


## Ether 8

Alcohol 7 ( $14.25 \mathrm{~g}, 43.5 \mathrm{mmol}$, 1.0 equiv.) was dissolved in THF ( $870 \mathrm{~mL}, 0.05 \mathrm{M}$ ). The obtained solution was cooled to $0{ }^{\circ} \mathrm{C}$, followed by portionwise addition of $\mathrm{NaH}(2.20 \mathrm{~g}, 54.4 \mathrm{mmol}$, 1.25 equiv., $60 \%$ in mineral oil). After 15 minutes of stirring at $0{ }^{\circ} \mathrm{C}$, 1-bromo-3-fluoro-2nitrobenzene ( $11.5 \mathrm{~g}, 52.2 \mathrm{mmol}, 1.2$ equiv.) was added in one portion. The reaction was allowed to slowly warm to room temperature and stir overnight. Upon completion (monitored by HPLC), the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched carefully with saturated aqueous $\mathrm{NaHCO}_{3}$ ( 400 mL ). The obtained solution was transferred to a separatory funnel and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $3 \times 400 \mathrm{~mL}$ ). The organic extracts were combined, washed with brine ( 400 mL ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. Flash column chromatography (Biotage Isolera, $\mathrm{C}_{18}-\mathrm{SiO}_{2}$, $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=60 \%$ to $90 \%$ ) afforded the ether ( $\mathbf{8}$ ) as a clear oil ( $13.0 \mathrm{~g}, 24.6 \mathrm{mmol}, 58 \%$ ).
$\mathbf{R}_{\mathbf{f}} \quad 0.3\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=8: 1\right)$
${ }^{1} \mathrm{H}$ NMR $\quad\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 80^{\circ} \mathrm{C}\right) \delta 7.56-7.46(\mathrm{~m}, 3 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H})$, $4.09-3.97(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 12 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\quad\left(151 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 148.4,142.5,132.0,126.1,116.4,111.9,98.9,94.7$, 93.8, 79.9, 70.3, 63.4, 58.0, 27.6, 25.7, -1.1.

HRMS (ES+) $m / z:[M+H]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{79} \mathrm{BrSi} 527.1213$; found 527.1196
IR (ATR, neat, $\mathrm{cm}^{-1}$ ) 2975 (w), 2936 (w), 1688 (m), 1545 (m), 1390 (m), 1366 (s), 1251 (m), 1169 (m), 1007 (w), 846 (s), 762 (m)
$[\alpha]_{D}^{23}$
$\left(c=0.19, \mathrm{CHCl}_{3}\right)+75.1^{\circ}$
Due to rotamerism at room temperature, NMR spectra used for assignment were taken at $80{ }^{\circ} \mathrm{C}$ in DMSO-d $d_{6}$.


## Aniline SI 1

To a solution of ether $\mathbf{8}$ ( $3.85 \mathrm{~g}, 7.30 \mathrm{mmol} 1.0$ equiv.) in THF ( 73 mL ) was added $\mathrm{Zn}(9.54 \mathrm{~g}, 146$ mmol , 20 equiv., non-activated) and glacial $\mathrm{AcOH}(8.0 \mathrm{~mL})$ at room temperature. After 1 hour of stirring (monitored by HPLC), the reaction mixture was filtered through celite. Water ( 200 mL ) was added to the filtrate which was followed by neutralization with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ until effervescence ceased. The obtained mixture was transferred to a separatory funnel and extracted with EtOAc ( $3 \times 150 \mathrm{~mL}$ ). The organic extracts were combined, washed with brine ( 150 mL ), dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated to afford SI 1 as an off-white foam that was taken forward without purification (quantitative yield was assumed, $3.63 \mathrm{~g}, 7.30 \mathrm{mmol}$ ).


## Acetanilide 9

SI 1 ( $3.63 \mathrm{~g}, 7.30 \mathrm{mmol}, 1.0$ equiv.) was dissolved in acetic anhydride ( 40 mL ) and left to stir overnight. After full consumption of the starting material, acetic anhydride was removed at room temperature under high vacuum (heating the reaction mixture during concentration on the rotovap led to decomposition). The crude material was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$ $\mathrm{Hex} / \mathrm{EtOAc}=2: 1)$ to afford acetanilide $9(2.74 \mathrm{~g}, 5.08 \mathrm{mmol}, 70 \%$ over 2 steps $)$ as a white foam.
$\mathbf{R}_{\mathbf{f}} \quad 0.3\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=2: 1\right)$
${ }^{1} H$ NMR $\quad\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 80^{\circ} \mathrm{C}\right) \delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{dd}, \mathrm{J}=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{dd}$,
$\mathrm{J}=9.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{dd}, \mathrm{J}=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ -1.97 (s, 3H), 1.59 (s, 3H), 1.47 (s, 3H), 1.43 (s, 9H), 0.14 (s, 9H).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\quad\left(151 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 80{ }^{\circ} \mathrm{C}\right) \delta 167.7,154.0,128.2,127.3,125.3,123.3$, $114.5,100.4,93.8,93.1,79.7,68.9,63.6,58.1,27.6,25.4,21.8,-0.9$.
HRMS (ES+) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{79} \mathrm{BrSi} 539.1577$; found 539.1583
IR (ATR, neat, $\mathrm{cm}^{-1}$ ): 3255 (br), 2976 (s), 1689 (s), 1473 (m), 1446 (m), 1392 (m), 1366 (m), 1251 (m), 1167 (m), 1062 (m), 1018 (m), 843 (m), 763 (m).
$[\alpha]_{D}^{23} \quad\left(c=0.49, \mathrm{CHCl}_{3}\right)+38.8^{\circ}$
Due to rotamerism at room temperature, NMR spectra used for assignment were taken at $80{ }^{\circ} \mathrm{C}$ in DMSO-d $d_{6}$. The carbons at 68.9 ppm and 167.7 ppm didn't resolve at this temperature.


## Alcohol 10

To a solution of acetanilide $9(2.74 \mathrm{~g}, 5.08 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeCN}(50 \mathrm{~mL}, 0.10 \mathrm{M})$ was added bismuth (III) bromide ( $456 \mathrm{mg}, 1.02 \mathrm{mmol}, 0.20$ equiv.) at room temperature. Subsequently, 0.50 mL of water were added, and the reaction mixture was left to stir for 3 hours (monitored by HPLC until complete). The reaction mixture was then quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and filtered through celite (celite was washed with 150 mL of EtOAc). The filtrate was transferred to a separatory funnel, the layers were separated, and the organic layer was further extracted with EtOAc ( $2 \times 100 \mathrm{~mL}$ ). The combined organic extracts were washed with brine ( 150 mL ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. Flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=1: 2\right)$ delivered alcohol $10(2.14 \mathrm{~g}, 4.28 \mathrm{mmol}, 84 \%)$ as a white foam.

| $\mathbf{R f}_{\text {f }}$ | $0.3\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=1: 2\right)$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$ NMR | $\begin{aligned} & \left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.37(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{dd}, \mathrm{~J}=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.12 \\ & (\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.97 \end{aligned}$ |
| ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR | $-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H})$. (126 MHz, DMSO-d6) $\delta 168.03,155.37,153.23,128.02,126.76,124.95$, $123.07,113.44,101.74,92.27,78.10,67.76,59.79,55.80,28.24,22.73,-0.41$. |
| HRMS | (ES+) m/z: [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}^{79} \mathrm{Br} 499.1264$; found 499.1269 |
| IR | (ATR, neat, $\mathrm{cm}^{-1}$ ): 3280 (br), 2966 ( s$), 2177$ ( s$), 1693(\mathrm{~m}), 1669(\mathrm{~m}), 1580(\mathrm{~s})$, $1510(\mathrm{~m}), 1472(\mathrm{~m}), 1446(\mathrm{~m}), 1250(\mathrm{~m}), 1168(\mathrm{~m}), 843(\mathrm{~m}), 762(\mathrm{~m})$ |
| $[\alpha]_{D}^{23}$ | $\left(c=0.27, \mathrm{CHCl}_{3}\right)+7.2^{\circ}$ |



## Acid SI 2

To a solution of alcohol $\mathbf{1 0}$ ( $2.14 \mathrm{~g}, 4.28 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeCN}(55 \mathrm{~mL})$ and phosphate buffer ( $30 \mathrm{~mL}, \mathrm{pH}=6.4,0.10 \mathrm{M}$ ) were added PIDA ( $276 \mathrm{mg}, 0.857 \mathrm{mmol}, 0.2$ equiv.) and TEMPO ( 268 $\mathrm{mg}, 1.71 \mathrm{mmol}, 0.4$ equiv.) at room temperature. The obtained mixture was cooled to $0{ }^{\circ} \mathrm{C}$, followed by the addition of $\mathrm{NaClO}_{2}(1.28 \mathrm{~g}, 14.1 \mathrm{mmol}, 3.3$ equiv.) in one portion. The resulting solution was warmed to room temperature and left to stir overnight. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ ( 120 mL ) was added, and the obtained mixture was transferred to a separatory funnel and extracted with EtOAc ( $4 \times 100 \mathrm{~mL}$ ). The organic extracts were combined, washed with brine ( 100 mL ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The obtained crude acid SI 2 was taken into the next step without further purification (assumed quantitative yield, $2.20 \mathrm{~g}, 4.28 \mathrm{mmol}$ ).


## Dipeptide 11

Crude acid SI $2(2.20 \mathrm{~g}, 4.28 \mathrm{mmol}, 1.0$ equiv.) and $O$-benzyl serine methyl ester ( $1.66 \mathrm{~g}, 5.14$ $\mathrm{mmol}, 1.2$ equiv.) were dissolved in DMF ( $43 \mathrm{~mL}, 0.1 \mathrm{M}$ ). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ before DIPEA ( $2.24 \mathrm{~mL}, 12.9 \mathrm{mmol}, 3$ equiv.) and HATU ( $1.96 \mathrm{~g}, 5.14 \mathrm{mmol}, 1.2$ equiv.) were added. The reaction was allowed to slowly warm to room temperature and stir at this temperature until complete ( 5 hours in total). The reaction was quenched with 1 M aqueous $\mathrm{HCl}(80 \mathrm{~mL})$ and diluted with EtOAc ( 100 mL ). The mixture was transferred to a separatory funnel, and the layers were separated. The aqueous layer was extracted with EtOAc ( $2 \times 100 \mathrm{~mL}$ ). The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$, water $(60 \mathrm{~mL})$ and brine $(60 \mathrm{~mL})$, dried over $\mathrm{MgSO}_{4}$ and concentrated. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=1: 1\right)$ to yield dipeptide $11(2.21 \mathrm{~g}, 3.14 \mathrm{mmol}, 73 \%$ over two steps) as a white foam.

## $\mathbf{R f}_{f}$ <br> $0.4\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=1: 1\right)$

${ }^{\mathbf{1}} \mathrm{H}$ NMR $\quad\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}$, $2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.06 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=9.9,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{dt}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.40(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{dd}, J=9.8,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59$ (dd, $J=9.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42$ (s, 3H), $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$, 0.09 (s, 9H).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( $\left.151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 170.1,168.0,167.7,155.3,152.6,137.8,128.2$, $127.7,127.5,127.5,127.3,125.4,122.8,113.5,100.4,92.8,78.8,72.1,70.3$, 69.1, 57.4, 52.4, 52.0, 28.2, 22.9, -0.5.
HRMS (ES+) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}^{79} \mathrm{Br} 704.2003$; found 704.2008
IR (ATR, neat, $\mathrm{cm}^{-1}$ ): 3299 (w), 2958 (w), 2180 (w), 1672 (s), 1497 (s), 1366 (m), 1162 (s)
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{23} \quad\left(c=4.0, \mathrm{CHCl}_{3}\right)+62.3^{\circ}$


## Dipeptide 4

Dipeptide 11 ( $1.81 \mathrm{~g}, 2.57 \mathrm{mmol}, 1.0$ equiv.) was dissolved in DCE ( $26 \mathrm{~mL}, 0.1 \mathrm{M}$ ). To the obtained solution was added $\mathrm{Me}_{3} \mathrm{SnOH}(1.39 \mathrm{~g}, 6.77 \mathrm{mmol}, 3.0$ equiv.). The reaction was heated to $80^{\circ} \mathrm{C}$ and left to stir overnight at this temperature. After cooling to room temperature, the solvent was removed in vacuo, and the residue was redissolved in 1:1 EtOAc/1 M aqueous $\mathrm{HCl}(20 \mathrm{~mL})$ and stirred vigourously for 5 minutes. The mixture was transferred to a separatory funnel, the layers were separated and the aqueous layer was extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ). The organic layers were combined, washed with brine ( 30 mL ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. Crude acid $\mathbf{4}$ was taken forward without further purification (quantitative yield was assumed, 1.77 $\mathrm{g}, 2.57 \mathrm{mmol}$ ).


## Ethyl ((benzyloxy)carbonyl)-L-serinate SI 3

A 1-neck 1 L round bottom flask containing a large magnetic stir bar was charged with ethyl $L$ serinate hydrochloride ( $38.4 \mathrm{~g}, 226 \mathrm{mmol}$, 1.0 equiv.) which was taken up in $\mathrm{DCM}\left(400 \mathrm{~mL}\right.$ ). $\mathrm{NEt}_{3}$ ( $110 \mathrm{~mL}, 792 \mathrm{mmol}, 3.5$ equiv.) was added and the resulting nearly homogeneous solution was cooled to $0^{\circ} \mathrm{C}$ before adding a DCM solution ( 250 mL ) N-(Benzyloxycarbonyloxy)succinimide ( $59.2 \mathrm{~g}, 238 \mathrm{mmol}, 1.05$ equiv.) fast dropwise. After the addition was complete, the reaction mixture was warmed to room temperature where it was stirred for an addition 1 hour. At this time, the reaction mixture was transferred to a 2 L separatory funnel where it was washed with 1 M aq. $\mathrm{KHSO}_{4}(2 \times 500 \mathrm{~mL})$, saturated aq. $\mathrm{NaHCO}_{3}(500 \mathrm{~mL})$, water $(500 \mathrm{~mL})$ and brine ( 250 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude residue was purified by $\mathrm{SiO}_{2}$ flash column chromatography using $100 \%$ hexanes $\rightarrow 100 \% \mathrm{EtOAc}$ as the mobile phase. The product SI 3 was obtained as a colorless oil ( $54.5 \mathrm{~g}, 204 \mathrm{mmol}, 90 \%$ yield).
$\mathbf{R f}_{\mathbf{f}} \quad 0.3\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=3: 2\right)$

```
\({ }^{1}\) H NMR \(\quad\left(500 \mathrm{MHz}\right.\), DMSO- \(d_{6}\), major rotamer) \(\delta 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=\)
    \(21.8 \mathrm{~Hz}, 5 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dq}, J=14.1,7.1,6.3\)
    \(\mathrm{Hz}, 3 \mathrm{H}), 3.65(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})\).
\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}\) NMR (126 MHz, DMSO- \(d_{6}\), major rotamer) \(\delta 170.7,156.0,137.0,128.40,127.8\),
    127.7, 65.5, 61.3, 60.5, 56.8, 14.1.
HRMS (ES+) m/z: [M+H \(\left.{ }^{+}\right]\)calcd. for \(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{5}\) 268.1179; found 268.1184.
IR
\([\alpha] D^{23}\)
    (TE-MCT, \(\mathrm{cm}^{-1}\) ) 2980, 2930, 1721, 1506, 1343, 1204, 1052.
    \(\left(c=1.0, \mathrm{CHCl}_{3}\right)+28.8^{\circ}\)
```



## Mesylate 12

A 200 mL round bottom flask containing a magnetic stir bar was charged with ethyl ((benzyloxy)carbonyl)- $L$-serinate (SI 3) ( $35.0 \mathrm{~g}, 131 \mathrm{mmol}, 1.0$ equiv.) which was taken up in DCM ( 400 mL before adding triethylamine ( $19.2 \mathrm{~mL}, 137 \mathrm{mmol}, 1.05$ equiv.). The solution was cooled $0{ }^{\circ} \mathrm{C}$ before methanesulfonyl chloride ( $10.6 \mathrm{~mL}, 137 \mathrm{mmol}, 1.05$ equiv.) was added fast dropwise. After 10 minutes at this temperature, the mixture was allowed to warm to room temperature where it was allowed to stir for an addition 5 minutes. At this time, the mixture was transferred to a separatory funnel where it was washed with 1:1 water:brine ( $2 \times 500 \mathrm{~mL}$ ), and brine ( 500 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by $\mathrm{SiO}_{2}$ flash column chromatography using $0 \% \rightarrow 50 \% \mathrm{EtOAc}$ in hexanes as the mobile phase. The product 12 was obtained as a colorless solid ( $38.9 \mathrm{~g}, 112 \mathrm{mmol}, 86 \%$ yield).

$$
\begin{aligned}
& \mathbf{R f}_{\mathbf{f}} \quad 0.3\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=3: 2\right) \\
& { }^{1} H \text { NMR } \quad\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.48-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s} \text {, } \\
& 2 \mathrm{H}), 4.72-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \\
& 4.25(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \text {. } \\
& { }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R} \quad\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 168.7,156.0,136.8,128.9,128.6,128.4,69.3,67.5, \\
& \text { 62.9, 54.0, 37.7, 14.3. } \\
& \text { HRMS (ES+) } m / z:\left[\mathrm{M}+\mathrm{H}^{+}\right] \text {calcd. for } \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{7} \mathrm{~S} 346.0955 \text {; found 346.0960. } \\
& \text { IR (TE-MCT, } \left.\mathrm{cm}^{-1}\right) \text { 1727, 1520, 1361, 1336, 1207, 1170, 1058, } 1007 . \\
& {[\alpha]_{D}^{23} \quad\left(c=1.0, \mathrm{CHCl}_{3}\right)+60.0^{\circ}}
\end{aligned}
$$



## Z-enamide 13

A 1000 mL round bottom flask was charged with $N$-(3-bromophenyl)acetamide ( $21.3 \mathrm{~g}, 99.0$ mmol, 1.1 equiv.), ethyl N -((benzyloxy)carbonyl)- O -(methylsulfonyl)- $L$-serinate 12 ( $31.2 \mathrm{~g}, 90$ mmol, 1.0 equiv.), $\operatorname{Pd}(\mathrm{OAc})_{2} \quad(1.01 \mathrm{~g}, \quad 4.52 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and bis(2-(di-tert-butylphosphaneyl)cyclopenta-2,4-dien-1-yl)iron (D'BPF, $4.29 \mathrm{~g}, 9.03 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ), which were taken up in degassed anhydrous DMF ( $550 \mathrm{~mL}, 60$ minute $\mathrm{N}_{2}$ sparge). To this solution, was
added distilled $\mathrm{Cy}_{2} \mathrm{NMe}(48.4 \mathrm{~mL}, 226 \mathrm{mmol}, 2.5$ equiv., from KOH ). The resulting solution was heated such that the internal temperature reached $90^{\circ} \mathrm{C}$ where it was stirred for 19 hours. At this time, LC indicated full conversion of mesylated substrate and the dehydro-alanine intermediate resulting from $\beta$-mesylate elimination. This analysis also indicated that the product was present as a 96:4 Z: $E$ ratio ( 210 nm UV detector). The reaction mixture was poured into a solution of distilled water ( 1000 mL ) and $10 \%$ citric acid ( 200 mL ), and was further diluted with EtOAc ( 700 mL ). After separation of the layers, the aqueous layer was extracted with EtOAc ( $2 \times 700 \mathrm{~mL}$ ), and the combined organic layers were washed with $10 \% \mathrm{LiCl}(5 \times 500 \mathrm{~mL})$ and brine ( $3 \times 500 \mathrm{~mL}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by $\mathrm{SiO}_{2}$ flash column chromatography using $0 \% \rightarrow 100 \%$ EtOAc in hexanes as the mobile phase. The resulting residue was triturated by taking it up in a minimal amount of EtOAc ( 200 mL ) and precipitating using hexanes ( 500 mL ) while rapidly stirring. The solid formed in this step was separated by decantation, at which time the wet residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})$. After stirring the heterogeneous mixture rapidly for 30 minutes, the solid product was separated from the orange liquor using vacuum filtration. The off-white solid $\mathbf{1 3}$ was dried to a constant weight under high vacuum ( $24.5 \mathrm{~g}, 64.1 \mathrm{mmol}, 71 \%$ yield, $99: 1 \mathrm{Z}: E$ ratio [210 nm UV detector]).

$$
\begin{array}{ll}
\mathbf{R}_{\mathbf{f}} \\
{ }^{\mathbf{H}} \mathbf{H} \mathbf{N M R} & 0.3\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=1: 4\right) \\
& \left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), \\
& 7.46-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{~s}(\mathrm{br}), 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), \\
& 1.20(\mathrm{~s}(\mathrm{br}), 3 \mathrm{H}) .
\end{array}
$$



## Z-Bromoenamide 14

A 1000 mL recovery flask containing a large magnetic stir bar was charged with ethyl (Z)-3-(3-acetamidophenyl)-2-(((benzyloxy)carbonyl)amino)acrylate 13 ( $23.8 \mathrm{~g}, 62.3 \mathrm{mmol}, 1.0$ equiv) which was taken up in 2-MeTHF: $\mathrm{CHCl}_{3}(312 \mathrm{~mL})$ to generate a suspension. The solution was cooled to $\sim 15{ }^{\circ} \mathrm{C}$ before adding freshly recrystallized 1-bromopyrrolidine-2,5-dione ( $13.9 \mathrm{~g}, 78.0$ mmol, 1.25 equiv) portion-wise. The resulting mixture was allowed to stir for 20 minutes at this temperature before 1,4-diazabicyclo[2.2.2]octane ( $7.69 \mathrm{~g}, 68.5 \mathrm{mmol}, 1.1$ equiv) was added portion-wise. The resulting mixture was allowed to stir at this temperature for an additional 15 mins before warming to room temperature where it was stirred for an additional 30 minutes at which time LC indicated full conversion and a $>20: 1 \mathrm{Z}: E$ ratio [210 nm UV detector]. At this time, the reaction mixture was filtered through Celite and concentrated in vacuo. The residue was purified via $\mathrm{SiO}_{2}$ flash column chromatography using $30 \% \rightarrow 100 \%$ EtOAc in hexanes as the mobile phase. The resulting material was triturated with hexanes: $\mathrm{Et}_{2} \mathrm{O}(1: 1,500 \mathrm{~mL})$, and the resulting solid was collected via vacuum filtration and dried in vacuo. The product $\mathbf{1 4}$ was obtained as a colorless solid ( $22.4 \mathrm{~g}, 48.6 \mathrm{mmol}, 78 \%$ yield, $>20: 1 \mathrm{Z}: E$ ratio [210 nm UV detector]).

| $\mathbf{R}_{\text {f }}$ | $0.5\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=3: 2\right)$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$ NMR | ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 6 \mathrm{H}), 7.25(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.17$ ( $\mathrm{s}, 2 \mathrm{H}$ ), 4.01 ( $\mathrm{s}(\mathrm{br}), 2 \mathrm{H}$ ), 2.14 ( $\mathrm{s}, 3 \mathrm{H}$ ), 0.91 ( $\mathrm{s}(\mathrm{br}), 3 \mathrm{H})$. |
| ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR | $\begin{aligned} & \left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,162.9,153.1,138.4,137.9,135.2,129.3,128.9 \text {, } \\ & 128.7,128.6,128.4,124.5,120.7,120.2,115.8,68.1,62.1,24.5,13.4 . \end{aligned}$ |
| HRMS | $(\mathrm{ES}+) \mathrm{m} / \mathrm{z}:\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{21} \mathrm{H}_{22}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{5} 461.0707$; found 461.0706. |
| IR | (TE-MCT, $\mathrm{cm}^{-1}$ ) 1736, 1695, 1532, 1475, 1321, 1212, 1060. |



## Tetrasubstituted enamide 16

A dry 500 mL round bottom flask containing a magnetic stir bar was charged with 9-BBN (267 $\mathrm{mL}, 134 \mathrm{mmol}, 1.0$ equiv., 0.5 M in THF). The solution was cooled to $0^{\circ} \mathrm{C}$ before a THF solution $(85 \mathrm{~mL})$ of the 2-allylisoindoline-1,3-dione ( $25.0 \mathrm{~g}, 134 \mathrm{mmol}, 1$ equiv.) was added fast dropwise. The mixture was allowed to warm to room temperature where it was allowed to stir for 18 hours. This yellow solution of alkyl borane $\mathbf{1 5}$ was directly utilized in the coupling step.
A 3-neck 1000 mL round bottom flask was fitted with an overhead stirrer and dried under a constant flow of $\mathrm{N}_{2}$ for 10 minutes. The flask was then charged with enamide $\mathbf{1 4}$ ( $16.5 \mathrm{~g}, 35.8$ $\mathrm{mmol}, 1.0$ equiv.) which was taken up in PhMe ( $200 \mathrm{~mL}, 60$ minute $\mathrm{N}_{2}$ sparge) before adding cataCXium ${ }^{\circledR}$-Pd-G4 ( $\left.0.665 \mathrm{~g}, 0.896 \mathrm{mmol}\right)$. Alkyl borane $15(169 \mathrm{~mL}, 62.7 \mathrm{mmol}, 1.79$ equiv., 0.38 M in THF) and a degassed aqueous solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(71.7 \mathrm{~mL}, 107 \mathrm{mmol}, 1.5$ equiv., 3.0 M in $\mathrm{H}_{2} \mathrm{O}$ ) were added in that order, and the resulting biphasic mixture was rapidly stirred (500 $\mathrm{rpm})$ for 1 hour and 40 minutes. After LCMS confirmed full consumption of the starting vinyl bromide, the reaction was cooled before diluting with water ( 500 mL ) and EtOAc ( 500 mL ) and quenching with $10 \%$ aqueous citric acid ( 200 mL ). After separation of the layers, the aqueous layer was extracted with EtOAc ( $2 \times 250 \mathrm{~mL}$ ), and the combined organic layers were washed with brine $(250 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a Celite-impregnated filter frit, and concentrated in vacuo. The residue was purified by $\mathrm{SiO}_{2}$ flash column chromatography using $30 \% \rightarrow 90 \% \mathrm{EtOAc}$ in DCM as the mobile phase. The fractions containing the product were collected and treated with 2 g of active charcoal. After stirring for 10 minutes, the solution was filtered through a Celiteimpregnated filter frit, and the filtrate was concentrated in vacuo to yield an off-white solid which was suspended in $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})$. After vigorously stirring for 5 minutes, the solid was separated from the yellow mother liquor by vacuum filtration. The cake was washed with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and dried under a constant $\mathrm{N}_{2}$ flow with the aid of house vacuum. The product 16 was obtained as a colorless solid ( $14.5 \mathrm{~g}, 25.4 \mathrm{mmol}, 71 \%$ yield).

$$
\mathbf{R}_{\mathbf{f}} \quad 0.4\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=3: 2\right)
$$

| ${ }^{1} \mathrm{H}$ NMR | ( 500 MHz, DMSO-d $\sigma_{6}$, major rotamer) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J$ |
| :---: | :---: |
|  | $=2.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{t}, J=7.8$ |
|  | Hz, 1H), 6.76 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (s, 2H), 3.75 (q, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.53$ |
|  | $\begin{aligned} & (\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 2 \mathrm{H}), \\ & 0.73(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) . \end{aligned}$ |
| ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR | ( 126 MHz , DMSO- $d_{6}$, major rotamer) $\delta$ 168.2, 167.9, 165.0, 154.5, 140.0, <br> 139.2, 138.3, 136.6, 134.5, 131.7, 128.4, 128.3, 128.0, 127.9, 125.5, 122.9, |
|  | 122.0, 117.9, 117.8, 65.9, 59.8, 37.4, 30.8, 26.1, 24.0, 13.2. |
| HRMS | (ES+) m/z: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{7} 570.2235$; found 570.2245. |
| IR | (TE-MCT, $\mathrm{cm}^{-1}$ ) 1734, 1712, 1530, 1479, 1399, 1312, 1226, 1199, 1031. |



## HTE optimization for the synthesis of 17



Microscale high-throughput experimentation was conducted in $8 \times 30 \mathrm{~mm}$ glass vial inserts in 96well SBS-format microplates inside pressure vessels. Yields are reported as SFC area\%, and \% ee was determined by chiral SFC. Chiral analysis was performed on a Waters UPC², OJ3 4.6x150 $\mathrm{mm}, 3 \mu \mathrm{~m}, 3 \mathrm{~mL} / \mathrm{min}, 5.0-17.5 \% \mathrm{MeOH} \mathrm{w} / 25 \mathrm{mM} \mathrm{iBuNH} / \mathrm{CO}_{2}$ in $5 \mathrm{~min}, 200 \mathrm{bar}, 40^{\circ} \mathrm{C}, 210$ nm . 16: $4.55 \mathrm{~min},(S, S)-17: 3.32 \mathrm{~min},(R, R)-17: 3.51 \mathrm{~min}$.

Evaluation of chiral ligands for the asymmetric hydrogenation of 16:
In a glovebox with $\mathrm{O}_{2}<5 \mathrm{ppm}$, to $8 \times 30 \mathrm{~mm}$ vials containing $0.42 \mu \mathrm{~mol}(26.25 \mathrm{~mol} \%)$ of 192 different chiral bidentate phosphine ligands, $100 \mu \mathrm{~L}$ of a 4 mM stock solution of (NBD) ${ }_{2} \mathrm{RhBF}_{4}$ in DCE ( $0.4 \mu \mathrm{~mol}, 25 \mathrm{~mol} \%$ ) was added, and the mixture was stirred using magnetic tumble stirring for 15 min at room temperature. The volatiles were removed on a vacuum centrifuge, and $100 \mu \mathrm{~L}$ of a 16 mM stock solution of $\mathbf{1 6}$ in $\mathrm{MeOH}(4 \mu \mathrm{~mol})$ was added. The plates were sealed in pressure vessels and removed from the glovebox. The plates were purged with $3 \times \mathrm{N}_{2} /$ vent cycles, $3 \times \mathrm{H}_{2}$ / vent cycles, pressurized to 500 psi with $\mathrm{H}_{2}$, and heated to $50^{\circ} \mathrm{C}$ with 500 rpm shaking overnight. Ligands giving > 90\% ee of product $\mathbf{1 7}$ are presented below:

| Ligand | $\mathbf{1 7}$ | $\mathbf{1 6}$ | \%ee $\mathbf{1 7}$ | B | A | \%ee B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SL-T027-2 | 97.2 | 0.2 | 97.5 | 2.5 | 0.1 |  |
| (S,S)-Ph-BPE | 78.4 | 0.2 | 9.8 | 21.5 | 0.0 | 92.4 |
| SL-J014-1 | 99.7 | 0.1 | 96.7 | 0.2 | 0.0 |  |
| SL-J011-1 | 75.0 | 0.0 | 96.5 | 25.0 | 0.0 | 94.5 |
| SL-J002-1 | 99.7 | 0.0 | 95.9 | 0.3 | 0.0 |  |
| SL-T025-2 | 47.7 | 1.3 | 95.3 | 50.2 | 0.7 | 85.4 |
| SL-J013-1 | 99.7 | 0.0 | 95.2 | 0.3 | 0.0 |  |
| SL-J203-2 | 97.2 | 0.1 | -93.5 | 2.4 | 0.3 |  |


| (+)-Cy-Segphos | 98.1 | 0.8 | 91.4 | 1.1 | 0.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SL-J012-1 | 99.5 | 0.0 | 91.4 | 0.5 | 0.0 |  |
| SL-T021-2 | 37.4 | 20.1 | 90.0 | 27.4 | 15.0 | 78.2 |



Josiphos

| Ligand | $\mathbb{R}^{1}$ | $\mathbb{R}^{2}$ |
| :--- | :--- | :--- |
| SL-J014-1 | $4-$ FPh $^{2}$ | tBu |
| SL-J011-1 | $4-\mathrm{CF}_{3} \mathrm{Ph}$ | tBu |
| SL-J002-1 | Ph | tBu |
| SL-J013-1 | $3,5-\mathrm{Me}_{2}-4-\mathrm{MeOPh}$ | tBu |
| SL-J203-2* | $3,5-\mathrm{tBu} \mathbf{L}_{2}-4-\mathrm{MeOPh}$ | tBu |
| SL-J012-1 | $4-\mathrm{MePh}$ | tBu |



HO-Taniaphos

(+)-Cy-Segphos
(S,S)-Ph-BPE

Under the experimental conditions, significant amounts of transesterification with the MeOH reaction solvent to yield alkene $\mathbf{A}$ and product $\mathbf{B}$ was also observed.



Evaluation of solvents for the asymmetric hydrogenation of $\mathbf{1 6}$ :
In a glovebox with $\mathrm{O}_{2}<5 \mathrm{ppm}$, solutions of $20 \mu \mathrm{~mol}$ of (NBD) $)_{2} \mathrm{RhBF}_{4}$ and $21 \mu \mathrm{~mol}$ of chiral bidentate phosphine ligands in 4 mL DCE were stirred for 15 min at room temperature. $40 \mu \mathrm{~L}$ of the catalyst stock solutions ( $0.2 \mu \mathrm{~mol}, 4 \mathrm{~mol} \%$ ) were added to $8 \times 30 \mathrm{~mm}$ vials, followed by 100 $\mu \mathrm{L}$ of a 50 mM stock solution of $\mathbf{1 6}$ in DCE ( $5 \mu \mathrm{~mol}$ ). The volatiles were removed on a vacuum centrifuge, and $100 \mu \mathrm{~L}$ of 16 different reaction solvents were added. The plates were sealed in pressure vessels and removed from the glovebox. The plates were purged with $3 \times \mathrm{N}_{2} /$ vent cycles, $3 \times \mathrm{H}_{2}$ / vent cycles, pressurized to 500 psi with $\mathrm{H}_{2}$, and heated to $50^{\circ} \mathrm{C}$ with 500 rpm shaking overnight.

| 17 | (S,S)-Ph-BPE | SL-J011-1 | SL-J002-1 | SL-J013-1 |
| :---: | :---: | :---: | :---: | :---: |
| MeOH | 99.3 | 99.5 | 99.6 | 99.6 |
| EtOH | 100.0 | 99.8 | 99.7 | 99.7 |
| iPrOH | 99.6 | 98.7 | 98.8 | 99.3 |
| TFE | 67.4 | 100.0 | 100.0 | 100.0 |
| DCE | 99.9 | 100.0 | 99.8 | 99.3 |
| $\mathrm{PhCF}_{3}$ | 17.9 | 94.5 | 88.6 | 99.1 |
| PhCl | 27.0 | 100.0 | 99.6 | 99.4 |
| PhMe | 0.4 | 99.6 | 99.6 | 100.0 |
| 2-Me-THF | 98.9 | 100.0 | 100.0 | 100.0 |
| CPME | 1.7 | 99.9 | 99.9 | 99.9 |
| DME | 99.9 | 100.0 | 100.0 | 100.0 |
| EtOAc | 82.5 | 100.0 | 100.0 | 100.0 |
| iProAc | 14.1 | 100.0 | 100.0 | 99.9 |
| MEK | 100.0 | 100.0 | 100.0 | 99.9 |
| MIBK | 99.7 | 99.5 | 99.2 | 98.8 |
| sulfolane | 1.0 | 18.7 | 15.0 | 11.0 |


| \%ee 17 <br> MeOH | $(S, S)$-Ph-BPE | SL-J011-1 | SL-J002-1 | SL-J013-1 |
| :---: | :---: | :---: | :---: | :---: |
|  | 97.8 | 91.3 | 95.6 | 95.1 |
| EtOH | 97.7 | 94.3 | 95.5 | 94.6 |
| iPrOH | 97.7 | 92.8 | 94.5 | 94.3 |
| TFE | 97.5 | 93.3 | 93.9 | 95.0 |
| DCE | 99.1 | 95.0 | 9.7 | 94.9 |
| PhCF $_{3}$ | 98.2 | 94.1 | 93.3 | 92.8 |
| PhCl | 98.2 | 95.0 | 95.4 | 94.3 |
| PhMe |  | 94.1 | 94.3 | 93.7 |
| 2-Me-THF | 97.0 | 93.7 | 95.6 | 95.2 |
| CPME |  | 93.0 | 93.8 | 94.2 |
| DME | 98.1 | 93.2 | 96.2 | 95.2 |
| EtOAc | 97.1 | 94.1 | 95.2 | 95.2 |
| iPrOAc | 93.1 | 93.5 | 94.3 | 94.7 |
| MEK | 98.1 | 93.9 | 92.4 | 93.6 |
| MIBK | 97.8 | 94.1 | 94.4 | 94.5 |
| sulfolane |  | 89.1 | 93.3 | 93.7 |
|  |  |  |  |  |


| 16 | $(S, S)$-Ph-BPE | SL-J011-1 | SL-J002-1 | SL-J013-1 |
| :---: | :---: | :---: | :---: | :---: |
| MeOH | 0.1 | 0.2 | 0.1 | 0.1 |
| EtOH | 0.0 | 0.2 | 0.3 | 0.3 |
| iPrOH | 0.4 | 1.3 | 1.2 | 0.7 |
| TFE | 32.6 | 0.0 | 0.0 | 0.0 |
| DCE | 0.1 | 0.0 | 0.2 | 0.7 |
| PhCF | 82.1 | 5.5 | 11.4 | 0.9 |
| PhCl | 73.0 | 0.0 | 0.4 | 0.6 |
| PhMe | 99.6 | 0.4 | 0.4 | 0.0 |
| 2-Me- |  |  |  |  |
| THF | 1.1 | 0.0 | 0.0 | 0.0 |
| CPME | 98.3 | 0.1 | 0.1 | 0.1 |
| DME | 0.1 | 0.0 | 0.0 | 0.0 |
| EtOAc | 17.5 | 0.0 | 0.0 | 0.0 |
| iPrOAc | 85.9 | 0.0 | 0.0 | 0.1 |
| MEK | 0.0 | 0.0 | 0.0 | 0.1 |
| MBK | 0.3 | 0.5 | 0.8 | 1.2 |
| sulfolane | 99.0 | 81.3 | 85.0 | 89.0 |
|  |  |  |  |  |

Optimization of catalyst loading for the asymmetric hydrogenation of 16:

In a glovebox with $\mathrm{O}_{2}<5 \mathrm{ppm}$, solutions of $20 \mu \mathrm{~mol}$ of $(\mathrm{NBD})_{2} \mathrm{RhBF}_{4}$ and $21 \mu \mathrm{~mol}$ of chiral bidentate phosphine ligands in 4 mL DCE were stirred for 15 min at room temperature. 12.5-100 $\mu \mathrm{L}$ of the catalyst stock solutions ( $0.05-0.4 \mu \mathrm{~mol}, 0.5-4 \mathrm{~mol} \%$ ) were added to $8 \times 30 \mathrm{~mm}$ vials. The volatiles were removed on a vacuum centrifuge, and $100 \mu \mathrm{~L}$ of 100 mM stock solutions of $\mathbf{1 6}$ in MeOH, DCE, DME, or MEK ( $10 \mu \mathrm{~mol}$ ) were added. The plates were sealed in pressure vessels and removed from the glovebox. The plates were purged with $3 \times \mathrm{N}_{2} /$ vent cycles, $3 \times \mathrm{H}_{2} /$ vent cycles, pressurized to 500 psi with $\mathrm{H}_{2}$, and heated to $50^{\circ} \mathrm{C}$ with 500 rpm shaking overnight.

| $\mathbf{1 7}$ | $4 \%$ | $2 \%$ | $1 \%$ | $0.5 \%$ | $4 \%$ | $2 \%$ | $1 \%$ | $0.5 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 99.1 | 99.4 | 93.3 | 47.3 | 99.6 | 99.5 | 99.1 | 63.2 |
| DCE | 97.6 | 97.5 | 57.1 | 17.1 | 97.5 | 93.6 | 93.1 | 84.3 |
| DME | 97.7 | 98.9 | 91.0 | 9.3 | 100.0 | 99.9 | 96.9 | 23.0 |
| MEK | 98.0 | 99.9 | 97.8 | 78.6 | 99.9 | 99.9 | 95.6 | 88.9 |
|  |  |  |  |  |  |  |  |  |

(S,S)-Ph-BPE SL-J002-1

| \%ee 17 | $4 \%$ | $2 \%$ | $1 \%$ | $0.5 \%$ | $4 \%$ | $2 \%$ | $1 \%$ | $0.5 \%$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MeOH | 97.5 | 97.6 | 97.7 | 97.1 | 95.2 | 94.9 | 94.3 | 93.5 |  |
| DCE | 98.9 | 98.9 | 99.3 | 94.8 | 95.6 | 95.8 | 95.6 | 95.4 |  |
| DME | 97.8 | 98.1 | 98.1 | 88.8 | 95.7 | 95.7 | 94.6 | 93.7 |  |
| MEK | 98.0 | 97.9 | 98.0 | 97.9 | 91.8 | 93.2 | 93.6 | 93.4 |  |
|  | $(S, S)$-Ph-BPE |  |  |  |  | SL-J002-1 |  |  |  |


| 16 | 4\% | 2\% | 1\% | 0.5\% | 4\% | 2\% | 1\% | 0.5\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MeOH | 0.1 | 0.0 | 6.2 | 52.2 | 0.1 | 0.2 | 0.6 | 36.4 |
| DCE | 2.4 | 2.5 | 42.9 | 82.9 | 2.5 | 6.4 | 6.9 | 15.7 |
| DME | 2.3 | 1.1 | 9.0 | 90.7 | 0.0 | 0.1 | 3.1 | 77.0 |
| MEK | 2.0 | 0.1 | 2.2 | 21.4 | 0.1 | 0.1 | 4.4 | 11.1 |

## Scale-Up of the Optimized Hydrogenation Conditions Obtained from HTE



## $\beta$-Aryl Lysine 17

In a glovebox with $\mathrm{O}_{2}<5 \mathrm{ppm}, 194 \mathrm{mg}(\mathrm{NBD})_{2} \mathrm{RhBF}_{4}(2.5 \mathrm{~mol} \%), 276 \mathrm{mg}(S, S)-\mathrm{Ph}-\mathrm{BPE}(2.63$ $\mathrm{mol} \%$ ), and 10 mL DCE were stirred at room temperature for 25 minutes. The catalyst solution was transferred to a charge bomb assembly with the aid of $2 \times 2.5 \mathrm{~mL}$ DCE rinses. 15 mL DCE was transferred to the rinse bomb, and the assembly was sealed and removed from the glovebox.


To a 1 L Autoclave Engineers Zipperclave, tetrasubstituted enamide $\mathbf{1 6}$ ( $11.8 \mathrm{~g}, 20.72 \mathrm{mmol}, 1.0$ equiv.) and 210 mL DCE were added under air. The autoclave was sealed, and the catalyst charge bomb assembly was connected via flexible tubing. The vessel and transfer line were inerted twice with vacuum and then refilled with nitrogen. Then reactor and transfer line were degassed by pressurizing with nitrogen, agitating briefly, and then evacuated with partial vacuum. This degassing was repeated a total of three times. The autoclave was placed under partial vacuum, then the catalyst solution was drawn into the autoclave by opening the valve on the catalyst charge bomb assembly. Then the charge bomb assembly valve was closed and was rinsed by opening the rinse valve. The rinse was then drawn into the autoclave. The autoclave was purged three times with hydrogen followed by venting to ambient pressure and then pressurized with hydrogen to 500 psig. The reaction was heated to $50^{\circ} \mathrm{C}$ with 1000 rpm stirring for 20 h . The vessel was cooled to room temperature, vented to atmospheric pressure, and the reaction mixture was removed with the aid of a $250 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ rinse. SFC analysis showed complete conversion and $99.3 \%$ ee. The combined reaction mixture and rinse was concentrated on a rotary evaporator. The residue was purified by $\mathrm{SiO}_{2}$ flash column chromatography using $80 \% \rightarrow 90 \%$ EtOAc in hexanes as the mobile phase. The product 17 was obtained as a colorless solid ( $11.4 \mathrm{~g}, 19.94 \mathrm{mmol}, 96 \%$ yield).

| $\mathbf{R}_{\text {f }}$ | $0.2\left(\mathrm{SiO}_{2}, 1: 2 \mathrm{Hex} / \mathrm{EtOAc}\right)$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$ NMR | ( $600 \mathrm{MHz}, \mathrm{DMSO}_{6} d_{6}$ ) $9.85(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.49(\mathrm{~m}$, $1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 3 \mathrm{H})$, $7.21-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.24$ $(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{q}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{p}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. |
| ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR | ( $\left.151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 171.5,168.2,167.9,155.8,140.7,139.4,136.8$, $134.3,131.6,128.5,128.3,127.7,127.5,123.2,123.0,118.3,117.4,65.4$, 60.6, 58.8, 46.4, 37.2, 28.9, 25.9, 24.0, 13.9. |
| HRMS | $(\mathrm{ES}+) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{7}, 572.2397$; found 572.2402 |
| IR | (ATR, neat, $\mathrm{cm}^{-1}$ ): 3340 (br), 1709 (s), 1547 (w), 1189 (w) |

$$
\begin{array}{ll}
{[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{23}} & \left(c=0.55, \mathrm{CHCl}_{3}\right) 51.65^{\circ} \\
\mathbf{S F C} & \left(\mathrm{Waters} \mathrm{UPC}^{2}, \mathrm{OJ} 34.6 \times 150 \mathrm{~mm}, 3 \mu \mathrm{~m}, 3 \mathrm{~mL} / \mathrm{min}, 5.0-17.5 \% \mathrm{MeOH} \mathrm{w} / 25\right. \\
& \left.\mathrm{mM} \mathrm{iBuNH} / \mathrm{CO}_{2} \text { in } 5 \mathrm{~min}, 200 \mathrm{bar}, 40^{\circ} \mathrm{C}, 210 \mathrm{~nm}\right): \mathbf{1 7 : 4 . 5 5 \mathrm { min } , ( S , S ) - \mathbf { 1 8 } :} \\
& 3.32 \mathrm{~min},(R, R)-\mathbf{1 8}: 3.51 \mathrm{~min} .99 .3 \% \text { ee. }
\end{array}
$$

cid=2 UV210 Manually Extracted UV[205-215]




Iodide 18
$\beta$-aryl lysine 17 ( $2.47 \mathrm{~g}, 4.32 \mathrm{mmol}, 1.0$ equiv.) was dissolved in DCE ( $43 \mathrm{~mL}, 0.1 \mathrm{M}$ ). To this was added pivalic acid ( $485 \mathrm{mg}, 4.75 \mathrm{mmol}, 1.1$ equiv.), silver hexafluoroantimonate ( 371 mg , $1.08 \mathrm{mmol}, 0.25$ equiv.), and $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(267 \mathrm{mg}, 432 \mu \mathrm{~mol}, 0.1$ equiv.). Lastly, NIS ( 1.02 g , $4.54 \mathrm{mmol}, 1.05$ equiv.) was added and the reaction was heated to $60{ }^{\circ} \mathrm{C}$ for 6 hours. Upon completion, the reaction was cooled to room temperature and filtered through celite. The filter pad was washed with DCM ( 20 mL ) and the solvent was removed on the rotary evaporator. The crude material was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc} 3: 1\right.$ to $\left.1: 1\right)$ to produce iodide 18 ( $2.82 \mathrm{~g}, 4.04 \mathrm{mmol}, 94 \%$ ) as a light-brown foam.
$\mathbf{R}_{\mathbf{f}} \quad 0.4\left(\mathrm{SiO}_{2}, 1: 2 \mathrm{Hex} / \mathrm{EtOAc}\right)$

```
\({ }^{1}\) H NMR \(\quad\left(600 \mathrm{MHz}\right.\), DMSO- \(\left.d_{6}\right) \delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}\),
        \(1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.26\) (m, 4H), 7.22 (d, \(J=7.4 \mathrm{~Hz}, 2 \mathrm{H})\),
        \(6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}\),
        \(J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{td}, J=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02\)
        \((\mathrm{s}, 3 \mathrm{H}), 1.66-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{dh}, J=17.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.1\)
        \(\mathrm{Hz}, 3 \mathrm{H})\).
\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}\) NMR (151 MHz, DMSO- \(d_{6}\) ) \(\delta\) 179.4, 171.3, 168.1, 167.9, 155.9, 141.0, 139.5,
        138.6, 136.8, 134.4, 131.6, 128.3, 127.8, 127.6, 127.2, 123.0, 94.4, 65.5, 60.6,
        \(58.6,45.7,39.9,39.8,39.7,39.5,39.4,39.2,39.1,37.2,28.5,25.8,13.9\).
HRMS
    (ES+) \(m / z:[\mathrm{M}+\mathrm{H}]^{+}\)calcd. for \(\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{I}, 698.1363\); found 698.1367
IR (ATR, neat, \(\left.\mathrm{cm}^{-1}\right) 3333\) (w), 2940 (w), 1771 (w), 1708 (s), 1518 (w), 1397 (w),
    1184 (w)
\([\alpha]_{D}^{23} \quad\left(c=0.71, \mathrm{CHCl}_{3}\right)+56.7^{\circ}\)
```

Satellite peaks can be observed in the 1 H and ${ }^{13} \mathrm{C} N M R$ due to rotamerism at room temperature. Only the peaks for the major rotamer are reported. HMBC is included to prove that the desired regioisomer is formed.


## Amine 5

Iodide $\mathbf{1 8}(1.78 \mathrm{~g}, 2.55 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathrm{DCM}(32 \mathrm{~mL}, 0.08 \mathrm{M})$ and cooled to $0{ }^{\circ} \mathrm{C}$. To this was added $1 \mathrm{M} \mathrm{BBr}_{3}$ in $\mathrm{DCM}(2.81 \mathrm{~mL}, 2.81 \mathrm{mmol}, 1.1$ equiv.) dropwise. The ice bath was removed and the reaction was left to stir until complete (about 1 hour). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by dropwise addition of methanol ( 3 mL ). The obtained solution was concentrated and the residue was triturated with hexanes and dried under vacuum to yield amine 5 as a light orange foam that was taken forward without further purification (quantitative yield was assumed, $1.44 \mathrm{~g}, 2.55 \mathrm{mmol}$ ).


## Tripeptide 19

Acid 4 ( $1.77 \mathrm{~g}, 2.56 \mathrm{mmol}, 1.0$ equiv.) and amine 5 ( $1.44 \mathrm{~g}, 2.56 \mathrm{mmol}, 1.0$ equiv.) were dissolved in DMF ( $26 \mathrm{~mL}, 0.1 \mathrm{M}$ ). To the obtained solution was added DIPEA ( $1.34 \mathrm{~mL}, 7.67 \mathrm{mmol}, 3$ equiv.). The solution was cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{HOAt}(417 \mathrm{mg}, 3.07 \mathrm{mmol}, 1.2$ equiv.) was added. Subsequently EDC ( $588 \mathrm{mg}, 3.07 \mathrm{mmol}, 1.2$ equiv.) was added. The mixture was allowed to warm to room temperature and stir overnight. The reaction was quenched with 1 M aqueous HCl ( 60 mL ) and diluted with EtOAc ( 80 mL ). The mixture was transferred to a separatory funnel and the
layers were separated. The aqueous layer was extracted with EtOAc ( 2 x 80 mL ). The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$, water ( 60 mL ) and brine ( 60 mL ), dried over $\mathrm{MgSO}_{4}$ and concentrated. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=1: 1\right.$ to $\left.1: 2\right)$ to yield tripeptide $19(2.35 \mathrm{~g}, 1.92 \mathrm{mmol}, 75 \%$ yield over 2 steps) as a white foam.

| $\mathbf{R f}^{\text {f }}$ | 0.3 ( $\left.\mathrm{SiO}_{2}, 1: 2 \mathrm{Hex} / \mathrm{EtOAc}\right)$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$ NMR | (600 MHz, DMSO-d $)_{6} \delta 9.34(\mathrm{~s}, 1 \mathrm{H}), 9.23(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dtt}, J=9.0,6.5,3.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ $-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{ddd}, J=17.8,12.3,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.38$ (s, 2H), 3.94 (qt, $J=10.9,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{dt}, J=14.1$, $6.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=9.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.60$ (dq, $J=19.3,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 0.07 ( $\mathrm{s}, 9 \mathrm{H}$ ). |
| ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR | (151 MHz, DMSO- $d_{6}$ ) $\delta 170.1,169.3,168.3,168.0,167.9,167.6,155.4$, $152.5,140.0,139.4,138.7,137.9,134.4,131.6,128.2,127.7,127.44,127.41$, 127.37, 127.30, 127.05, 125.6, 123.0, 122.8, 114.3, 100.4, 94.2, 92.8, 78.9, $72.2,69.8,60.7,57.9,56.1,52.4,45.7,37.0,28.2,27.8,25.7,23.3,22.9,13.8$, -0.5. |
| HRMS | (ES+) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{55} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{Si}^{79} \mathrm{BrI}$, 1235.2658; found 1235.2629 |
| IR | $\begin{aligned} & \text { (ATR, neat, } \left.\mathrm{cm}^{-1}\right) 3261 \text { (w), } 2176 \text { (w), } 1771 \text { (w), } 1710 \text { (s), } 1520 \text { (m), } 1367 \\ & (\mathrm{~m}), 1026(\mathrm{~m}) \end{aligned}$ |
| $[\alpha]_{D}^{23}$ | $\left(c=2.0, \mathrm{CHCl}_{3}\right)+26.7^{\circ}$ |



Macrocycles 20 and atrop-20
The following reaction was set up under argon atmosphere
To a flask containing tripeptide 19 ( $200 \mathrm{mg}, 162 \mu \mathrm{~mol}, 1.0$ equiv.) was added $\mathrm{Pd}\left(\mathrm{t}-\mathrm{Bu}_{3} \mathrm{P}\right)_{2}(91 \mathrm{mg}$, $178 \mu \mathrm{~mol}, 1.1$ equiv.). Dry and degassed $\mathrm{MeCN}(100 \mathrm{~mL})$ was cannulated into the flask. Subsequent addition of $\mathrm{Cy}_{2} \mathrm{NMe}(45 \mu \mathrm{~L}, 210 \mu \mathrm{~mol}, 1.3$ equiv.) was followed by cannulation of dry and degassed $\mathrm{PhMe}(50 \mathrm{~mL})$ into the flask. The resulting solution was sonicated for 1 minute to dissolve $\mathrm{Pd}\left(\mathrm{t}-\mathrm{Bu}_{3} \mathrm{P}\right)_{2}$ and $\mathrm{Cy}_{2} \mathrm{NMe}$ and obtain a homogeneous solution. The reaction mixture was heated to $40^{\circ} \mathrm{C}$ and left to stir for 5 hours at this temperature. Upon completion (determined by HPLC analysis, atropisomeric ratio 3.3:1), the crude reaction mixture was frozen using a liquid nitrogen bath and the solvent was removed on the lyopholizer (solvent removal on a rotary evaporator led to some product decomposition as the crude mixture was concentrated). The residue
was redissolved in DCM ( 20 mL ) and the resulting solution was washed with saturated aqueous sodium thiosulfate $(10 \mathrm{~mL})$ and 1 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$. The organic layer was transferred to a flask and stirred with an aqueous solution of $N$-Ac-Cys-OH ( $264 \mathrm{mg}, 1.62 \mathrm{mmol}, 10$ equiv. in 10 mL of water) for 1 hour. The mixture was transferred to a separation funnel and the organic layer was separated and washed with brine ( 10 mL ). Upon drying with $\mathrm{MgSO}_{4}$ and removal of the solvent in vacuo, the obtained residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PhMe} /$ acetone $/ \mathrm{MeOH}=7: 1: 0.1$, this fraction contains the undesired atropisomer, then 6:1:0.1, this fraction contains the desired atropisomer).

The fraction containing the desired atropisomer was further purified with preparative TLC ( $\mathrm{SiO}_{2}$, $\mathrm{PhMe} /$ acetone $/ \mathrm{MeOH}=3: 1: 0.1$ ) to afford a white solid (20) ( $70 \mathrm{mg}, 63 \mu \mathrm{~mol}, 39 \%$ yield).

The fraction containing the undesired atropisomer was further purified with preparative TLC $\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=1: 1\right)$ to afford a white solid (atrop-20) $(23 \mathrm{mg}, 21 \mu \mathrm{~mol}, 13 \%$ yield $)$.
The total yield is $52 \%$, d.r. $=3: 1$.

## Desired atropisomer:

| $\mathbf{R}_{f}$ <br> ${ }^{1} \mathrm{H}$ NMR | $0.4\left(\mathrm{SiO}_{2}, 3: 1: 0.1 \mathrm{PhMe} /\right.$ Acetone/ MeOH ) |
| :---: | :---: |
|  | ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.96$ (s, 1H), 7.80 (dd, $\left.J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.71$ (dd, $J$ |
|  | $=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H})$, |
|  | 7.15 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.09$ (m, 2H), 6.91 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ |
|  | $(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.45$ (d, $J=9.9 \mathrm{~Hz}$, |
|  | $1 \mathrm{H}), 5.27$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.43$ (m, 1H), $4.38(\mathrm{t}, J=$ |
|  | $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.18$ |
|  | $(\mathrm{m}, 2 \mathrm{H}), 3.72$ (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.00$ (td, $J=11.3$, |
|  | $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.27$ (s, 3H), 2.11-2.02 (m, 1H), 1.97 (ddt, $J=$ |
|  | $18.1,12.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{ddt}, J=12.8,9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{ddd}, J=$ |
|  | $\begin{aligned} & 13.2,10.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 9 \mathrm{H}) . \\ & \left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,169.8,168.4,168.2,167.3,156.5,153.7,142.8 \text {, } \end{aligned}$ |
| ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR | $139.5,137.6,135.9,134.2,132.0,130.2,129.7,129.1,128.4,127.8,127.7$, |
|  | $127.5,126.5,126.0,123.4,122.1,117.2,113.8,112.2,80.3,73.2,70.1,62.0$, |
|  | 61.0, 59.3, 52.9, 50.2, 37.6, 28.7, 27.0, 26.7, 26.2, 23.7, 14.2, 2.3. |
| HRMS | (ES+) $m / z: \quad[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{55} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{Si}^{79} \mathrm{Br}, 1107.3535$; found 1107.3540 |
| IR | (ATR, neat, $\mathrm{cm}^{-1}$ ) 3319 (br), 2978 (w), 2935 (w), 1771 (w), 1708 (s), 1663 (s), |
|  | 1499 (m), 1255 (m), 1172 (m), 851 (m) |
| $[\alpha]_{D}^{23}$ | $\left(c=1.40, \mathrm{CHCl}_{3}\right)-35.8^{\circ}$ |

Key NOE correlations in the desired atropisomer:


Undesired atropisomer:
$\mathbf{R}_{f}$
$0.3\left(\mathrm{SiO}_{2}, 5: 1: 0.1 \mathrm{PhMe} /\right.$ Acetone $\left./ \mathrm{MeOH}\right)$

| ${ }^{1} \mathrm{H}$ NMR | $\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{td}, J=5.4,$ |
| :---: | :---: |
|  | $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (dd, $J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70$ (ddt, $J=7.9,5.3,2.6 \mathrm{~Hz}, 1 \mathrm{H})$ |
|  | 7.67 (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26$ (m, 2H) |
|  | $7.25-7.20$ (m, 3H), $7.15-7.13$ (m, 2H), $7.09(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J$ |
|  | $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=10.2 \mathrm{~Hz}$, |
|  | $1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ |
|  | 4.16 (m, 2H), 3.72 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{t}, J=9.1 \mathrm{~Hz}$ |
|  | $1 \mathrm{H}), 3.36$ (dd, $J=9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{td}, J=10.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ ( |
|  | $3 \mathrm{H}), 2.46$ (s, 3 H ), $2.11-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.86$ (dt, $J=14.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ |
|  | $\begin{aligned} & (\mathrm{d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.4 \\ & (\mathrm{~s}, 9 \mathrm{H}) . \end{aligned}$ |
| ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR | (151 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 171.2,167.0,169.3,168.4,168.3,167.4,155.2,154.5$ |
|  | $137.9,137.5,136.9,134.2,132.1,132.1,130.5,128.5,128.4,127.8,127.6$ |
|  | $126.8,126.3,123.5,123.3,122.7,122.6,122.0,116.8,114.7,81.4,80.8,73.4$ |
|  | $69.5,62.0,57.1,53.8,50.9,37.5,29.7,28.5,28.4,27.1,26.4,23.7,14.2,3.0$ |
| HRMS | $(\mathrm{ES}+) \mathrm{m} / \mathrm{z}: \quad[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{55} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{Si}^{79} \mathrm{Br}, 1107.3535$; found 1107.3527 |
| IR | (ATR, neat, $\mathrm{cm}^{-1}$ ) 3345 (br), 2977 (w), 2932 (w), 1771 (w), 1707 (s), 1665 (s) |
|  | 1444 (m), 1396 (m), 1248 (m), 847 (m) |
| $[\alpha]_{D}^{23}$ | $\left(c=0.61, \mathrm{CHCl}_{3}\right)+16.0^{\circ}$ |

Key NOE correlations in the undesired atropisomer:



## Acid SI 4

Macrocycle 20 ( $70 \mathrm{mg}, 63 \mu \mathrm{~mol}, 1.0$ equiv.) was dissolved in DCE ( $0.63 \mathrm{~mL}, 0.1 \mathrm{M}$ ). To the obtained solution was added trimethyl tin hydroxide ( $57 \mathrm{mg}, 0.32 \mathrm{mmol}, 5.0$ equiv.) and the mixture was heated to $80{ }^{\circ} \mathrm{C}$. After stirring for 12 hours at this temperature, the reaction was completed (monitored by HPLC) and the solvent was removed in vacuo. The obtained residue was redissolved in EtOAc ( 0.40 mL ) and 1 M aqueous $\mathrm{HCl}(0.40 \mathrm{~mL})$ was added. After vigorous stirring for 5 minutes, the layers were separated, and the aqueous layer was extracted with EtOAc ( $2 \times 0.40 \mathrm{~mL}$ ). The combined organic layers were washed with brine, dried over $\mathrm{MgSO}_{4}$, and concentrated in vacuo to provide the crude carboxylic acid. Quantitative yield was assumed (68 $\mathrm{mg}, 63 \mu \mathrm{~mol})$.


## Pentapeptide 21

Acid SI 4 ( $68 \mathrm{mg}, 63 \mu \mathrm{~mol}, 1.0$ equiv.) and ammonium salt 3•TFA ( $41 \mathrm{mg}, 76 \mu \mathrm{~mol}, 1.2$ equiv.) were dissolved in DMF ( $0.63 \mathrm{~mL}, 0.10 \mathrm{M}$ ). To this was added DIPEA ( $26 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 2.4$ equiv.). The solution was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{HOAt}(10 \mathrm{mg}, 76 \mu \mathrm{~mol}, 1.2$ equiv.) and $\mathrm{EDC}(14 \mathrm{mg}$, $76 \mu \mathrm{~mol}, 1.2$ equiv.) were added successively. The mixture was allowed to slowly warm to room temperature and stir for 5 hours in total. Upon completion, the solution was transferred to a separation funnel and diluted with $\mathrm{EtOAc}(40 \mathrm{~mL}$ ). This was washed with 1 M aqueous HCl ( 5 mL ), saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, water $(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. Due to poor solubility, the crude product 21 was carried into the next step without additional purification (quantitative yield was assumed, $94 \mathrm{mg}, 63 \mu \mathrm{~mol}$ ).


## Hydrochloride Salt SI 5

Pentapeptide 21 ( $94 \mathrm{mg}, 63 \mu \mathrm{~mol}, 1.0$ equiv.) was suspended in $\mathrm{DCM}(3 \mathrm{~mL})$, which was followed by the addition of HCl in IPA ( $0.5 \mathrm{~mL}, 5.5-6 \mathrm{M}$ ) at $0{ }^{\circ} \mathrm{C}$. After stirring for 90 minutes at $0{ }^{\circ} \mathrm{C}$, the solvents were removed in vacuo. The residue was suspended in toluene ( 3 mL ) and concentrated again. The obtained hydrochloride salt SI 5 was used in the next step without additional purification (assumed quantitative yield, $85 \mathrm{mg}, 63 \mu \mathrm{~mol}$ ).


## Heptapeptide 22

Ammonium salt SI 5 ( $85 \mathrm{mg}, 63 \mu \mathrm{~mol}, 1.0$ equiv.) and acid $2(54 \mathrm{mg}, 75 \mu \mathrm{~mol}, 1.2$ equiv.) were dissolved in DMF ( $0.63 \mathrm{~mL}, 0.10 \mathrm{M}$ ). To the obtained solution was added DIPEA ( $33 \mu \mathrm{~L}, 0.19$ $\mathrm{mmol}, 3.0$ equiv.). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and HOAt ( $10 \mathrm{mg}, 75 \mu \mathrm{~mol}, 1.2$ equiv.) and EDC ( $14 \mathrm{mg}, 75 \mu \mathrm{~mol}, 1.2$ equiv.) were added successively. The mixture was allowed to slowly warm to room temperature and stir for 5 hours in total. Upon completion, the reaction was diluted with $\mathrm{EtOAc}(1.0 \mathrm{~mL})$ and quenched with 1 M aqueous $\mathrm{HCl}(1.0 \mathrm{~mL})$. The layers were separated,
and the aqueous phase was extracted with $\mathrm{EtOAc}(2 \times 1.0 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(1.0 \mathrm{~mL})$, water ( 1.0 mL ) and brine ( 1.0 mL ), dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The obtained residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PhMe} /\right.$ acetone $/ \mathrm{MeOH}=7 / 1 / 0.1$ to $3 / 1 / 0.1$ ) to provide heptapeptide 22 (53 $\mathrm{mg}, 26 \mu \mathrm{~mol}, 42 \%$ over 4 steps) as a white solid.

| $\mathbf{R f}^{\text {f }}$ | $0.3\left(\mathrm{SiO}_{2}, \mathrm{PhMe} /\right.$ acetone $\left./ \mathrm{MeOH}=3: 1: 0.1\right)$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$ NMR | ( 600 MHz, DMSO- $d_{6}$ ) $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H})$, $8.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 5 \mathrm{H}), 7.72$ $(\mathrm{s}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.08(\mathrm{~m}, 45 \mathrm{H}), 7.02(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.02(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.71-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{dq}, J=12.0,7.0,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.22(\mathrm{~m}, 5 \mathrm{H}), 3.54$ $-3.46(\mathrm{~m}, 5 \mathrm{H}), 3.08-2.98(\mathrm{~m}, 4 \mathrm{H}), 2.93-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.15$ $(\mathrm{s}, 3 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.57-$ $1.50(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.50(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$. |
| ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR | ( 151 MHz, DMSO- $d_{6}$ ) $\delta 171.0,170.7,169.9,169.7,169.5,169.2,168.9$, 168.7, 168.0, 167.8, 166.9, 166.8, 155.8, 154.2, 144.7, 138.1, 138.0, 137.5, $136.9,136.7$, 136.1, 135.6, 134.4, 134.2, 131.7, 131.6, 129.2, 129.0, 128.7, 128.6, 128.4, 128.31, 128.27, 128.2, 128.1, 128.07, 128.01, 127.93, 127.90, 127.8 , 127.63, 127.61, 127.53, 127.47, 127.37, 127.34, 127.30, 127.26, 127.18, 127.11, 126.6, 126.4, 126.3, 126.2, 124.8, 124.1, 123.5, 123.0, 122.9, $118.0,116.7,114.5,112.4,105.0,82.3,79.2,73.7,72.0,71.5,70.2,69.8,69.3$, 66.1, 65.5, 59.7, 53.6, 53.4, 53.0, 51.5, 50.0, 49.2, 40.1, 37.4, 36.8, 26.9, 25.6, 23.5, 23.4, 22.9, 7.3, 4.0. |
| HRMS | (ES+) m/z: $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calcd. for $\left(\mathrm{C}_{113} \mathrm{H}_{116}{ }^{79} \mathrm{BrN}_{11} \mathrm{O}_{18} \mathrm{Si}\right) / 2,1010.8726$; found 1010.8707. |
| IR | (ATR, neat, $\mathrm{cm}^{-1}$ ) 3299 (br), 3061 (w), 3031 (w), 2953 (w), 2177 (w), 1718 (s), 1679 (m), 1643 (s), 1516 (m), $698(\mathrm{~m})$. |
| $[\alpha]_{D}^{23}$ | (c=1.05, $\left.\mathrm{CHCl}_{3}\right)+10.5^{\circ}$ |



## Protected darobactin 23

## The following reaction was set up under argon atmosphere

To a flask containing heptapeptide $22\left(37 \mathrm{mg}, 18 \mu \mathrm{~mol}, 1.0\right.$ equiv.) was added $\mathrm{Pd}\left(t-\mathrm{Bu} \mathrm{u}_{3} \mathrm{P}\right)_{2}(10 \mathrm{mg}$, $20 \mu \mathrm{~mol}, 1.1$ equiv.). Dry and degassed $\mathrm{MeCN}(18 \mathrm{~mL}, 1.0 \mathrm{mM})$ was cannulated into the flask. $\mathrm{Cy}_{2} \mathrm{NMe}\left(12 \mu \mathrm{~L}, 55 \mu \mathrm{~mol}, 3.0\right.$ equiv.) was added and the resulting solution was heated to $80{ }^{\circ} \mathrm{C}$ and left to stir for 2 hours at this temperature. Upon completion (determined by TLC analysis), MeCN was removed in vacuo and the obtained residue was redissolved in DCM ( 10 mL ) and transferred to a separation funnel. The DCM solution was washed with 1 M aqueous $\mathrm{HCl}(3 \mathrm{~mL})$. The organic layer was transferred to a flask and stirred with an aqueous solution of N - $\mathrm{Ac}-\mathrm{Cys}-\mathrm{OH}$ ( $42 \mathrm{mg}, 0.26 \mathrm{mmol}, 10$ equiv. in 5 mL of water) for 1 hour. The mixture was transferred to a separation funnel and the organic layer was separated and washed with brine ( 5 mL ). Upon drying
with $\mathrm{MgSO}_{4}$ and removal of the solvent in vacuo, the obtained residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PhMe} /\right.$ acetone $/ \mathrm{MeOH}=6 / 1 / 0.1$, then $\left.5 / 1 / 0.1\right)$ to afford protected darobactin $23(18 \mathrm{mg}, 9.3 \mu \mathrm{~mol}, 51 \%)$ as a white foamy solid.

| $\mathbf{R}_{f}$ <br> ${ }^{1} \mathrm{H}$ NMR | $0.3\left(\mathrm{SiO}_{2}, \mathrm{PhMe} /\right.$ Acetone/MeOH $\left.=5: 1: 0.1\right)$ |
| :---: | :---: |
|  | (600 MHz, DMSO-d ${ }^{\text {c }}$ ) $\delta 8.57$ (d, $\left.J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.44-8.39$ (m, 2H), 8.22 |
|  | $(\mathrm{s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0 \mathrm{H}), 7.81-7.76$ (m, 4H), 7.66 (s, 1H), 7.48 (d, $J$ |
|  | $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 22 \mathrm{H})$, |
|  | $7.16-7.10$ (m, 8H), $7.09-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.06$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (d, $J$ |
|  | $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.13(\mathrm{~d}, J=8.6$ |
|  | $\mathrm{Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.04(\mathrm{~m}, 3 \mathrm{H}), 4.99(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, |
|  | $1 \mathrm{H}), 4.76$ (t, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{q}, J=7.3 \mathrm{~Hz}$, |
|  | $1 \mathrm{H}), 4.38(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.35-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{q}, J=$ |
|  | $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.48$ (m, 4H), $3.15-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.04-3.01(\mathrm{~m}, 2 \mathrm{H})$, |
|  | 2.95 (dd, $J=10.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (dd, $J=10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (s, 3H), |
|  | 2.73 (s, 3H), 2.03-1.98 (m, 1H), $1.91-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H})$, |
|  | 1.57 (dd, $J=20.2,11.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.17$ (m, 9H), $1.02(\mathrm{~m}, 6 \mathrm{H})$. |
| ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR | (151 MHz, DMSO) $\delta 173.0,171.0,170.03,169.95,169.3,168.6,168.5,168.4$, |
|  | 168.0, 167.8, 166.7, 165.8, 155.35, 145.6, 145.0, 144.8, 138.0, 137.9, 137.7, |
|  | $136.9,136.7,135.9,135.6,134.4,134.2,133.5$, 133.3, 131.7, 131.6, 129.2, |
|  | 129.1, 128.6, 128.4, 128.3, 128.1, 128.1, 128.03, 127.93, 127.9, 127.8, 127.53, |
|  | $127.46,127.37,127.34,127.2,127.13,127.09,127.03,126.95,126.6,126.2 \text {, }$ |
|  | $124.4,123.0,122.9,122.6,118.6,117.5,114.6,112.4,110.9,79.2,76.0,72 .$ |
|  | $71.4,70.4,69.8,69.6,66.1,65.6,61.1,59.6,59.0,53.6,52.9,51.1,49.3,48.8,$ |
|  | $40.1,38.6,38.3,37.5,36.8,28.6,28.3,27.0,26.0,23.9,8.0 .$ |
| HRMS | $(\mathrm{ES}+) \mathrm{m} / \mathrm{z}: \quad[\mathrm{M}+2 \mathrm{H}]^{2+}$ calcd. for $\left(\mathrm{C}_{113} \mathrm{H}_{115} \mathrm{~N}_{11} \mathrm{O}_{18} \mathrm{Si}\right) / 2,970.9095$; found 970.9082. |
| IR | (ATR, neat, $\mathrm{cm}^{-1}$ ) 3295 (br), 2931 (w), 2872 (w), 1714 (s), 1640 (s), 1496 (m), 1718 (s), 1224 (m), 698 (m). |
| $[\alpha]_{D}^{23}$ | $\left(c=0.35, \mathrm{CHCl}_{3}\right),-27.4^{\circ}$ |

Key NOE correlations in the bismacrocycle:



## Darobactin A (1)

To protected darobactin 23 ( $20 \mathrm{mg}, 10 \mu \mathrm{~mol}, 1.0$ equiv.) and thioanisole ( $61 \mu \mathrm{~L}, 0.52 \mathrm{mmol}, 50$ equiv.) were added TFA ( 1.0 mL ) and $\operatorname{TMSBr}(68 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$, 50 equiv.) dropwise in succession at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 hours at this temperature, the mixture was concentrated under a stream of nitrogen. The obtained residue was concentrated three more times from PhMe ( $3 \times 0.4 \mathrm{~mL}$ ), then triturated with hexanes ( $3 \times 0.4 \mathrm{~mL}$ ). The crude was redissolved in $\mathrm{MeOH}(1.0$ mL ) and treated with ethylenediamine ( $69 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 100$ equiv.) at room temperature. After stirring for 2 hours, the mixture was concentrated under a stream of nitrogen. The crude mixture ( 20 mg scale) was taken up in 1.5 mL of $1: 1 \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}+3$ drops of DMSO +5 drops TFA to homogenize the resulting mixture, then purified by semi-preparative reverse-phase HPLC (Gilson GX-281 liquid handler w/ 333,334 pumps and UV/VIS-155 detector Gilson equipped with a Waters SunFire $\mathrm{C}_{18}$ OBD Prep Column, $100 \AA, 5 \mu \mathrm{~m}, 30 \mathrm{~mm} \mathrm{X} 150 \mathrm{~mm}$ ). $\mathrm{H}_{2} \mathrm{O}$ (A; $+0.1 \%$ TFA) and $\operatorname{MeCN}(\mathrm{B} ;+0.1 \% \mathrm{TFA})$ were used as the mobile phase with a gradient of $0-30 \% \mathrm{~B}$ over 17 minutes, holding at $26 \%$ for 3.5 minutes, $20 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=14.45-15.13 \mathrm{~min}$ ) to afford $\mathbf{1} \cdot \mathbf{T F A}(5.5$ $\mathrm{mg}, 5.1 \mu \mathrm{~mol}, 51 \%$ ) as a fluffy white solid.
> ${ }^{1} H$ NMR $\quad\left(800 \mathrm{MHz}, \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} /\right.$ Formic Acid- $\left.d_{2} 94: 4: 2\right) \delta 10.63(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, (1•TFA) $10.44(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.88 (d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.81$ (m, 2H), $7.50(\mathrm{~s}, 2 \mathrm{H}), 7.47$ (s, 1H), 7.46 $-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.18$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (dd, $J=11.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~h}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.55 (dd, $J=14.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.27$ (m, 2H), 3.23 (td, $J=12.5,6.2 \mathrm{~Hz}$, 2 H ), $3.18-3.09$ (m, 2H), 3.01 (ddd, $J=23.8,12.2,5.4 \mathrm{~Hz}, 3 \mathrm{H}$ ), 2.22-2.03 (m, 4H), 1.88 (tdd, $J=16.5,11.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{qdd}, J=13.8,9.9,6.4$ $\mathrm{Hz}, 1 \mathrm{H})$. Note: due to water suppression in the ${ }^{1} H$ NMR, signals corresponding to $\mathrm{H}-16$ (4.68 ppm), $\mathrm{H}-36$ (4.46 ppm), and $\mathrm{H}-39$ (4.72 ppm) are hidden.
> ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\quad\left(200 \mathrm{MHz}, \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} /\right.$ Formic Acid- $\left.d_{2} 94: 4: 2\right) \delta 177.5,176.6,174.5,173.7$, (1•TFA) $\quad 171.2,171.1,170.8,170.7,147.9,139.9,139.3,135.7,132.2,131.8,131.7$, $131.5,130.0,127.8,127.7,127.6,127.3,122.9,120.9,116.4,114.4,113.3$, $111.6,110.9,79.5,66.1,64.7,64.0,63.0,58.4,57.6,57.2,56.9,53.6,51.0$, 42.4, 41.8, 39.5, 29.1, 28.42, 28.38.

> HRMS (ES+) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{47} \mathrm{H}_{56} \mathrm{~N}_{11} \mathrm{O}_{12}$, 966.4104; found 966.4105.
> $[\alpha]_{D}^{23}$ ( $c=0.055,0.1 \%$ aqueous formic acid $),+7.20^{\circ}$

Using the above protocol, synthetic darobactin A (1) was isolated as a TFA salt. The original isolation is as a formic acid salt. As a result, slight pH -dependent differences in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra can be seen at the C-terminus when compared to the isolated compound. ${ }^{2}$ As such, the above purification was repeated using the following conditions:

The crude mixture was taken up in 1.5 mL of $1: 1 \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}+5$ drops of DMSO to homogenize the resulting mixture, then purified by semi-preparative reverse-phase HPLC (Gilson GX-281 liquid handler w/ 333,334 pumps and UV/VIS-155 detector. Gilson equipped with a Waters SunFire C18 OBD Prep Column, $100 \AA$ A $5 \mu \mathrm{~m}, 30 \mathrm{~mm} \mathrm{X} 150 \mathrm{~mm}) . \mathrm{H}_{2} \mathrm{O}\left(\mathrm{A} ;+0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right)$ and
$\mathrm{MeCN}\left(\mathrm{B} ;+0.1 \% \mathrm{HCO}_{2} \mathrm{H}\right)$ were used as the mobile phase with a gradient of $0-30 \% \mathrm{~B}$ over 15 minutes, holding at $25 \%$ for 3.5 minutes, $20 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=12.25-13.50 \mathrm{~min}$ ). The relevant fractions were concentrated via lyophilization to afford a colorless solid.

$$
\begin{array}{ll}
{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~} & \left(800 \mathrm{MHz}, \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} / \text { Formic Acid- } d_{2} 94: 4: 2\right) \delta 10.62(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), \\
(\mathbf{1} \cdot \mathbf{H C O O H}) & 10.43(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 7.87(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), \\
& 7.45-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), \\
& 7.17(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 0 \mathrm{H}), 4.24(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 4.03(\mathrm{dd}, J=11.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 2 \mathrm{H}), \\
& 3.55(\mathrm{dd}, J=14.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{td}, J=9.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), \\
& 3.15-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.94(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.90-1.85(\mathrm{~m}, \\
& 1 \mathrm{H}), 1.75-1.72(\mathrm{~m}, 1 \mathrm{H}) . \\
& \\
& \\
& \\
& \\
{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R} \\
\mathbf{( 1 \cdot} \mathbf{H C O O H}) & 171.2,171.1,170.8,170.7,147.9,139.9,139.3,135.7,132.2,131.8,131.7, \\
& 131.5,129.9,127.8,127.7,127.5,127.3,122.9,120.0,116.4,114.4,113.3, \\
& 111.6,110.9,79.5,66.1,64.7,63.9,63.0,58.4,57.6,57.3,56.9,53.6,51.0, \\
& 42.4,41.8,39.5,29.1,28.42,28.38 .
\end{array}
$$

Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} /\right.$ Formic Acid- $\left.d_{2} 94: 4: 2\right)$ of samples obtained from the above two purification protocols indicated shifts in two main regions, namely NH38 (lit. 8.14 ppm$)^{2}$ and C45 (lit. 178.4 ppm$)^{2}$. Therein, the NH38 shifted up field from 8.32 ppm ( $\mathrm{F}_{3} \mathrm{CO}_{2} \mathrm{H}$ modifier) to $8.28 \mathrm{ppm}\left(\mathrm{HCO}_{2} \mathrm{H}\right.$ modifier), while $C 45$ shifted downfield from 177.5 ppm ( $\mathrm{F}_{3} \mathrm{CO}_{2} \mathrm{H}$ modifier) to $177.7 \mathrm{ppm}\left(\mathrm{HCO}_{2} \mathrm{H}\right.$ modifier). Both shifts trended in the direction of the literature values, however, the remaining discrepancies can be rationalized by the presence of a partial TFA salt. This species is assumed to originate during the final deprotection steps (TFA, TMSBr and PhSMe then ethylene diamine), and is not fully converted to the formate salt during semi-prep HPLC.
${ }^{1}{ }^{H} \mathrm{NMR}\left(800 \mathrm{MHz}, \mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} /\right.$ Formic Acid-d $\mathbf{d}_{2} 94: 4: 2$ )




| -71 | -72 | -73 | -74 | -75 | -76 | -77 | -78 | -79 | -80 | -81 | -82 | -83 | -84 | -85 | -86 | -87 | -88 | -89 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

NMR comparison between synthetic and natural darobactin $A$

${ }^{1} \mathrm{H}$ NMR Comparison of TFA Salt (1•TFA) (Taken in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} /$ Formic acid- $\mathrm{d}_{2}, 94: 4: 2$ )

| \# | Synthetic | Isolated ${ }^{2}$ | $\Delta^{1} H$ | 24 | 7.44 | 7.45 | -0.01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4.03 | 4.04 | -0.01 | 26-NH | 6.96 | 6.95 | 0.01 |
| 1-NH2 |  |  |  | 27 | 3.96 | 3.95 | 0.01 |
| $2^{\prime}$ | 3.55 | 3.55 | 0 | $28^{\prime}$ | 3.22 | 3.22 | 0 |
| $2^{\prime \prime}$ | 3.30 | 3.3 | 0 | $28^{\prime \prime}$ | 3.13 | 3.14 | -0.01 |
| 4 | 7.35 | 7.35 | 0 | 29-NH | 7.88 | 7.88 | 0 |
| 4-NH | 10.63 | 10.63 | 0 | 30 | 4.24 | 4.25 | -0.01 |
| 7 | 7.24 | 7.24 | 0 | 31 | 3.02 | 3.03 | -0.01 |
| 8 | 7.18 | 7.18 | 0 | 32 | 2.08 | 2.08 | 0 |
| 9 | 7.23 | 7.22 | 0.01 | $33^{\prime}$ | 1.88 | 1.88 | 0 |
| 11-NH | 6.92 | 6.92 | 0 | 33 " | 1.74 | 1.74 | 0 |
| 12 | 3.32 | 3.33 | -0.01 | 34 | 2.99 | 2.99 | 0 |
| $13^{\prime}$ | 2.17 | 2.19 | -0.02 | 34-NH2 | 7.5 | 7.51 | -0.01 |
| $13^{\prime \prime}$ | 2.12 | 2.13 | -0.01 | 35-NH | 8.62 | 8.62 | 0 |
| 14-NH2' | 7.31 | 7.31 | 0 | 36 | 4.46 | 4.46 | 0 |
| 14- | 6.65 | 6.64 | 0.01 | 37 | 3.8 | 3.8 | 0 |
| NH2" |  |  |  | 38-NH | 8.32 | 8.14 | 0.18 |
| $15-\mathrm{NH}$ | 7.83 | 7.83 | 0 | 39 | 4.72 | 4.64 | 0.08 |
| 16 | 4.68 | 4.69 | -0.01 | $40^{\prime}$ | 3.14 | 3.11 | 0.03 |
| 17 | 6.18 | 6.18 | 0 | $40^{\prime \prime}$ | 3.24 | 3.22 | 0.02 |
| 19 | 7.85 | 7.85 | 0 | 42, $42{ }^{\prime}$ | 7.32 | 7.32 | 0 |
| 20-NH | 10.44 | 10.44 | 0 | 43, $43^{\prime}$ | 7.42 | 7.42 | 0 |
| 21 | 7.48 | 7.48 | 0 | 44 | 7.37 | 7.37 | 0 |
| 23 | 6.96 | 6.96 | 0 |  |  |  |  |


$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR Comparison of TFA salt $(1 \cdot T \boldsymbol{T F A})$ (Taken in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} /$ Formic acid- $d_{2}, ~ 94: 4: 2$ )

| $\#$ | Synthetic | Isolated $^{2}$ | $\Delta^{13} C$ | 23 | 127.7 | 127.7 | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 57.6 | 57.6 | 0.0 | 24 | 120.0 | 120.0 | 0.0 |
| $2^{\prime}$ | 29.1 | 29.2 | -0.1 | 25 | 127.8 | 127.8 | 0.0 |
| 3 | 110.9 | 111 | -0.1 | 26 | 170.7 | 170.7 | 0.0 |
| 4 | 127.5 | 127.6 | -0.1 | 27 | 56.9 | 56.9 | 0.0 |
| 5 | 131.7 | 131.8 | -0.1 | $28^{\prime}$ | 64.7 | 64.8 | -0.1 |
| 6 | 148.0 | 147.9 | 0.1 | 29 | 170.8 | 170.9 | -0.1 |
| 7 | 111.6 | 111.6 | 0.0 | 30 | 63.0 | 63 | 0.0 |
| 8 | 122.9 | 123 | -0.1 | 31 | 51.0 | 51 | 0.0 |
| 9 | 116.4 | 116.5 | -0.1 | 32 | 28.4 | 28.5 | -0.1 |
| 10 | 131.8 | 131.8 | 0.0 | $33^{\prime}$ | 28.4 | 28.5 | -0.1 |
| 11 | 171.1 | 171.1 | 0.0 | 34 | 42.4 | 42.4 | 0.0 |
| 12 | 53.6 | 53.7 | -0.1 | 35 | 174.5 | 174.6 | -0.1 |
| $13^{\prime}$ | 41.8 | 41.9 | -0.1 | 36 | 58.6 | 58.5 | 0.0 |
| 14 | 176.6 | 176.6 | 0.0 | 37 | 64.0 | 64 | 0.0 |
| 15 | 171.2 | 171.3 | -0.1 | 38 | 173.8 | 173.5 | 0.3 |
| 16 | 66.1 | 66.1 | 0.0 | 39 | 57.2 | 57.9 | -0.7 |
| 17 | 79.5 | 79.5 | 0.0 | $40^{\prime}$ | 39.5 | 39.8 | -0.3 |
| 18 | 114.4 | 114.5 | -0.1 | 41 | 139.3 | 139.6 | -0.3 |
| 19 | 127.3 | 127.4 | -0.1 | $42,42^{\prime}$ | 132.2 | 132.3 | -0.1 |
| 20 | 139.9 | 139.9 | 0.0 | $43,43^{\prime}$ | 131.5 | 131.5 | 0.0 |
| 21 | 113.3 | 113.3 | 0.0 | 44 | 129.9 | 129.9 | 0.0 |
| 22 | 135.7 | 135.7 | 0.0 | 45 | 177.5 | 178.4 | -0.9 |


${ }^{1} H$ NMR Comparison of formic acid salt (1•HCOOH) (Taken in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} /$ Formic acid- $d_{2}$, 94:4:2)

| \# | Synthetic | Isolated ${ }^{2}$ | $\Delta^{l} H$ | 24 | 7.44 | 7.45 | -0.01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4.03 | 4.04 | -0.01 | 26-NH | 6.95 | 6.95 | 0 |
| 1-NH2 |  |  |  | 27 | 3.95 | 3.95 | 0 |
| $2^{\prime}$ | 3.55 | 3.55 | 0 | $28^{\prime}$ | 3.22 | 3.22 | 0 |
| $2^{\prime \prime}$ | 3.3 | 3.3 | 0 | $28^{\prime \prime}$ | 3.13 | 3.14 | -0.01 |
| 4 | 7.35 | 7.35 | 0 | 29-NH | 7.88 | 7.88 | 0 |
| 4-NH | 10.63 | 10.63 | 0 | 30 | 4.24 | 4.25 | -0.01 |
| 7 | 7.24 | 7.24 | 0 | 31 | 3.02 | 3.03 | -0.01 |
| 8 | 7.18 | 7.18 | 0 | 32 | 2.08 | 2.08 | 0 |
| 9 | 7.22 | 7.22 | 0 | $33^{\prime}$ | 1.88 | 1.88 | 0 |
| 11-NH | 6.91 | 6.92 | -0.01 | 33" | 1.74 | 1.74 | 0 |
| 12 | 3.32 | 3.33 | -0.01 | 34 | 2.99 | 2.99 | 0 |
| $13^{\prime}$ | 2.17 | 2.19 | -0.02 | 34-NH2 | 7.50 | 7.51 | -0.01 |
| 13" | 2.12 | 2.13 | -0.01 | $35-\mathrm{NH}$ | 8.61 | 8.62 | -0.01 |
| 14-NH2' | 7.31 | 7.31 | 0 | 36 | 4.45 | 4.46 | -0.01 |
| 14- | 6.64 | 6.64 | 0 | 37 | 3.79 | 3.8 | -0.01 |
| NH2" |  |  |  | 38-NH | 8.28 | 8.14 | 0.14 |
| 15-NH | 7.83 | 7.83 | 0 | 39 | 4.70 | 4.64 | 0.06 |
| 16 | 4.68 | 4.69 | -0.01 | $40^{\prime}$ | 3.12 | 3.11 | 0.01 |
| 17 | 6.18 | 6.18 | 0 | $40^{\prime \prime}$ | 3.23 | 3.22 | 0.01 |
| 19 | 7.85 | 7.85 | 0 | 42, $42^{\prime}$ | 7.32 | 7.32 | 0 |
| 20-NH | 10.43 | 10.44 | -0.01 | 43, $43^{\prime}$ | 7.42 | 7.42 | 0 |
| 21 | 7.47 | 7.48 | -0.01 | 44 | 7.37 | 7.37 | 0 |
| 23 | 6.95 | 6.96 | -0.01 |  |  |  |  |


$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR Comparison of formic acid salt $(\mathbf{1} \cdot \mathbf{H C O O H})$ (Taken in $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O} /$ Formic acid-d, 94:4:2)

| $\#$ | Synthetic | Isolated $^{2}$ | $\Delta^{13} C$ | 23 | 127.7 | 127.7 | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 57.6 | 57.6 | 0.0 |  | 24 | 120.0 | 120.0 |
| $2^{\prime}$ | 29.1 | 29.2 | -0.1 | 25 | 127.7 | 127.8 | -0.1 |
| 3 | 110.9 | 111 | -0.1 | 26 | 170.7 | 170.7 | 0.0 |
| 4 | 127.5 | 127.6 | -0.1 | 27 | 56.9 | 56.9 | 0.0 |
| 5 | 131.7 | 131.8 | -0.1 | $28^{\prime}$ | 64.7 | 64.8 | -0.1 |
| 6 | 147.9 | 147.9 | 0 | 29 | 170.8 | 170.9 | -0.1 |
| 7 | 111.6 | 111.6 | 0.0 | 30 | 63.0 | 63 | 0.0 |
| 8 | 122.9 | 123 | -0.1 | 31 | 51.0 | 51 | 0.0 |
| 9 | 116.4 | 116.5 | -0.1 | 32 | 28.4 | 28.5 | -0.1 |
| 10 | 131.8 | 131.8 | 0.0 | $33^{\prime}$ | 28.4 | 28.5 | -0.1 |
| 11 | 171.1 | 171.1 | 0.0 | 34 | 42.4 | 42.4 | 0.0 |
| 12 | 53.6 | 53.7 | -0.1 | 35 | 174.5 | 174.6 | -0.1 |
| $13^{\prime}$ | 41.8 | 41.9 | -0.1 | 36 | 58.4 | 58.5 | -0.1 |
| 14 | 176.6 | 176.6 | 0.0 | 37 | 63.9 | 64 | -0.1 |
| 15 | 171.2 | 171.3 | -0.1 | 38 | 173.7 | 173.5 | 0.2 |
| 16 | 66.1 | 66.1 | 0.0 | 39 | 57.3 | 57.9 | -0.6 |
| 17 | 79.5 | 79.5 | 0.0 | $40^{\prime}$ | 39.5 | 39.8 | -0.3 |
| 18 | 114.4 | 114.5 | -0.1 | 41 | 139.3 | 139.6 | -0.3 |
| 19 | 127.3 | 127.4 | -0.1 | $42,42^{\prime}$ | 132.2 | 132.3 | -0.1 |
| 20 | 139.9 | 139.9 | 0.0 | $43,43^{\prime}$ | 131.5 | 131.5 | 0.0 |
| 21 | 113.3 | 113.3 | 0.0 | 44 | 129.9 | 129.9 | 0.0 |
| 22 | 135.7 | 135.7 | 0.0 | 45 | 177.7 | 178.4 | -0.7 |

## Sequence for the Synthesis of Sidechain 3•TFA



## Protected sidechain SI 6

Boc- $L-\operatorname{Ser}(\mathrm{OBn})-\mathrm{OH}(2.00 \mathrm{~g}, 6.77 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{H}-\mathrm{Phe}-\mathrm{OBn} \cdot \mathrm{TsOH}(2.90 \mathrm{~g}, 6.77 \mathrm{mmol}$, 1.0 equiv.) were dissolved in DMF ( 34 mL ). The solution was cooled to $0{ }^{\circ} \mathrm{C}$, followed by sequential addition of DIPEA ( $1.77 \mathrm{~mL}, 10 \mathrm{mmol}, 1.5$ equiv.) and HATU ( $2.57 \mathrm{~g}, 6.77 \mathrm{mmol}, 1.0$ equiv.). The mixture was left to slowly warm up to room temperature and stir for 5 hours. The reaction was quenched by the addition of 1 M aqueous $\mathrm{HCl}(150 \mathrm{~mL})$. The obtained mixture was transferred to a separation funnel and extracted with $\operatorname{EtOAc}(3 \times 150 \mathrm{~mL})$. The organic layers were combined, washed with saturated aqueous $\mathrm{NaHCO}_{3}(150 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and brine $(150 \mathrm{~mL})$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=3: 1\right)$ to afford the dipeptide SI $6(3.25 \mathrm{~g}, 6.77 \mathrm{mmol}, 90 \%)$ as a clear oil that solidified upon standing.

| $\mathbf{R}_{\mathbf{f}}$ | $0.5\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}, 3: 1\right)$ |
| :---: | :---: |
| ${ }^{1} \mathrm{H}$ NMR | ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.38-7.30$ (m, 6H), $7.30-7.25$ (m, 4H), 7.18 (t, $J=7.4$ |
|  | $\mathrm{Hz}, 1 \mathrm{H}), 7.13$ (dd, $J=8.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$ (s, 1H), $6.99-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.36$ |
|  | $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ |
|  | ( $\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ |
|  | $\begin{aligned} & (\mathrm{s}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=9.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=13.9 \text {, } \\ & 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=13.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) . \end{aligned}$ |
| ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR | $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,170.1,155.5,137.4,135.7,135.2,129.4,128.7$, 128.6, 128.6, 128.0, 128.0, 127.1, 80.3, 73.5, 69.9, 67.3, 53.8, 53.6, 37.8, 28.4. |
| HRMS | $\left(\mathrm{ES}+\right.$ ) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}, 533.2652$; found 533.2646 |
| IR | $\begin{aligned} & \text { (ATR, neat, } \left.\mathrm{cm}^{-1}\right) 3320(\mathrm{w}), 2977(\mathrm{w}), 2176(\mathrm{w}), 1674(\mathrm{~s}), 1497(\mathrm{~s}), 1167(\mathrm{~s}), \\ & 1111(\mathrm{~m}) \end{aligned}$ |
| $[\alpha]_{D}^{23}$ | $\left(c=3.0, \mathrm{CHCl}_{3}\right)+15.0^{\circ}$ |



## Ammonium salt 3•TFA

Boc protected dipeptide SI 6 ( $3.25 \mathrm{~g}, 6.77 \mathrm{mmol}, 1.0$ equiv.) was dissolved in DCM ( $30 \mathrm{~mL}, 0.2$ $\mathrm{M})$ and cooled to $0{ }^{\circ} \mathrm{C}$. To this was added TFA ( $9.40 \mathrm{~mL}, 122 \mathrm{mmol}, 20$ equiv.). The reaction was allowed to warm to room temperature and stirred until complete (about 4 hours). The solvent was removed on a rotary evaporator and the residue was redissolved in toluene. The toluene was removed, and this process was repeated two more times to remove residual TFA. The ammonium salt 3•TFA was isolated as a white solid (assumed quantitative yield, $3.24 \mathrm{~g}, 6.10 \mathrm{mmol}$ ) that was used without further purification.

## Sequence for the Synthesis of Dipeptide 2



2 steps from Cbz-Ser-OH ${ }^{3}$

## Alkyne SI 7

The following procedure was adapted from a previous report ${ }^{3}$
Triethyl(ethynyl)silane ( $1.17 \mathrm{~g}, 8.33 \mathrm{mmol}, 1.4$ equiv.) was dissolved in acetone ( $28 \mathrm{~mL}, 0.3 \mathrm{M}$ ). Silver nitrate ( $141 \mathrm{mg}, 833 \mu \mathrm{~mol}, 0.14$ equiv.) and recrystallized NBS ( $1.59 \mathrm{~g}, 8.92 \mathrm{mmol}, 1.5$ equiv.) were added successively, each in a single portion. After 2 hours, the reaction mixture was quenched by its addition to ice water ( 20 mL ), extracted with pentane $(2 \times 20 \mathrm{~mL})$, washed with brine ( 20 mL ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The crude material was used directly in the coupling reaction.
To a flask containing the zinc dust ( $1.40 \mathrm{~g}, 21.4 \mathrm{mmol}, 3.6$ equiv.) was added DMF ( 6 mL ), followed by 1,2-dibromoethane ( $103 \mu \mathrm{~L}, 1.19 \mathrm{mmol}, 0.2$ equiv.). The suspension was heated at $80^{\circ} \mathrm{C}$ for 30 minutes. After cooling to room temperature, distilled TMSCl $(75.5 \mu \mathrm{~L}, 595 \mu \mathrm{~mol}, 0.1$ equiv.) was added and the suspension was stirred an additional 30 minutes at room temperature. To this suspension was added Cbz-iodoserine methyl ester ${ }^{4}$ ( $2.16 \mathrm{~g}, 5.95 \mathrm{mmol}, 1.0$ equiv.) in DMF ( 4 mL ) over 2 minutes, which resulted in an exotherm. After returning to room temperature, stirring was ceased and the alkyl zinc reagent was transferred dropwise via cannula to a cooled ($20{ }^{\circ} \mathrm{C}$ ) solution of $\mathrm{CuCN}(479 \mathrm{mg}, 5.35 \mathrm{mmol}, 0.9$ equiv.) and $\mathrm{LiCl}(454 \mathrm{mg}, 10.7 \mathrm{mmol}, 1.8$ equiv.) in DMF ( $10 \mathrm{~mL} ; 0.25 \mathrm{M}$ total concentration relative to alkyl iodide). After a period of 15 minutes, neat 1-bromo-2-triethylsilylacetylene was added dropwise to the reaction mixture at the same temperature. The reaction mixture was then allowed to slowly warm to room temperature over a 3 hour period and stirring was continued at that temperature overnight. At this time, the reaction was quenched by the addition of water $(100 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 25 \mathrm{~mL})$. The organic extracts were washed with brine ( 50 mL ), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The crude product was purified by flash column chromatography ( $\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}$ $=5: 1)$ to yield alkyne SI $7(1.32 \mathrm{~g}, 3.51 \mathrm{mmol}, 59 \%$ based on iodoserine). Characterization data matched that of a previous report. ${ }^{5}$


## Acid SI 8

Alkyne SI 7 ( $1.60 \mathrm{~g}, 4.26 \mathrm{mmol}$, 1.0 equiv.) was dissolved in THF ( 21 mL ) and water ( 10 mL ) and cooled to $0{ }^{\circ} \mathrm{C}$. A 1 M aqueous solution of $\mathrm{LiOH}(153 \mathrm{mg}, 6.39 \mathrm{mmol}, 6.39 \mathrm{~mL}, 1.5$ equiv.) was added and the reaction was allowed to warm to room temperature. After 1 hour, the reaction was complete (by TLC analysis), and the reaction was quenched by the slow addition of 1 M aqueous HCl until the pH was around 4. The reaction mixture was extracted with EtOAc ( $3 \times 70 \mathrm{~mL}$ ), the organic layers were combined, washed with brine ( 50 mL ), dried with $\mathrm{MgSO}_{4}$, and concentrated. The crude acid SI 8 was used without further purification (assumed quantitative yield, $1.54 \mathrm{~g}, 4.26$ mmol).


## Methyl Ester SI 9

Acid SI 8 ( $1.54 \mathrm{~g}, 4.26 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{H}-\mathrm{Asn}(\mathrm{Trt})-\mathrm{OMe}(1.82 \mathrm{~g}, 4.69 \mathrm{mmol}, 1.1$ equiv.) were dissolved in DMF $(45 \mathrm{~mL})(0.1 \mathrm{M})$ and cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added DIPEA ( $1.78 \mathrm{~mL}, 10.2 \mathrm{mmol}, 2.4$ equiv.), HOAt, ( $696 \mathrm{mg}, 5.11 \mathrm{mmol}, 1.2$ equiv.), and EDC ( 980 mg , $5.11 \mathrm{mmol}, 1.2$ equiv.) in that order. The mixture was allowed to warm to room temperature and left to stir overnight. The reaction was quenched by addition of aqueous $1 \mathrm{M} \mathrm{HCl}(60 \mathrm{~mL})$ and the mixture was transferred to a separatory funnel. The layers were separated and the aquesous layer was extracted with ethyl acetate ( 3 x 60 mL ). The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$, water ( 40 mL ), and brine ( 40 mL ), followed by drying over $\mathrm{MgSO}_{4}$, filtration and removal of the solvent in vacuo. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Hex} / \mathrm{EtOAc}=2: 1\right.$ to $\left.1: 1\right)$ to yield the methyl ester $(\mathbf{S I} 9)(2.72 \mathrm{~g}$, $3.72 \mathrm{mmol}, 87 \%$ yield over 2 steps) as a white solid.

$$
\begin{aligned}
& \mathbf{R}_{\mathbf{f}} \quad 0.2\left(\mathrm{SiO}_{2}, 2: 1 \mathrm{Hex} / \mathrm{EtOAc}\right) \\
& { }^{1} H \text { NMR } \quad\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{tt}, J=27.2,5.9 \mathrm{~Hz}, 14 \mathrm{H}), 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 7 \mathrm{H}) \text {, } \\
& 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{q}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{dt}, J= \\
& 8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{dd}, J=15.9,4.2 \\
& \mathrm{Hz}, 1 \mathrm{H}), 2.76(\mathrm{td}, J=16.8,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=17.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.94 \\
& \text { (t, } J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.54(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) \text {. } \\
& { }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \text { NMR } \quad\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.04,169.87,169.30,155.93,144.38,136.28,128.75 \text {, } \\
& 128.62,128.24,128.17,127.33,102.05,85.84,71.06,67.24,53.54,52.86 \text {, } \\
& \text { 49.24, 38.32, 24.26, 7.57, 4.43. } \\
& \text { HRMS (ES+) m/z: }[\mathrm{M}+\mathrm{H}]^{+} \text {calcd. for } \mathrm{C}_{55} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{Si}^{79} \mathrm{Br} \text {, 1107.3535; found } \\
& 1107.3540 \\
& \text { IR (ATR, neat, } \left.\mathrm{cm}^{-1}\right) 3317 \text { (w), } 2953 \text { (w), } 2176 \text { (w), } 1732 \text { (m), } 1665 \text { (s), } 1494 \text { (s), } \\
& 1216 \text { (m), } 1045 \text { (w) } \\
& {[\alpha]_{D}^{23} \quad\left(c=4.0, \mathrm{CHCl}_{3}\right)+62.3^{\circ}}
\end{aligned}
$$



## Dipeptide 2

Methyl ester SI 9 ( $2.72 \mathrm{~g}, 3.72 \mathrm{mmol}, 1.0$ equiv.) was dissolved in THF/water (3:1, 40 mL total, 0.1 M ) and cooled to $0{ }^{\circ} \mathrm{C}$. To this was added a 1 M aqueous solution of $\mathrm{LiOH}(222 \mathrm{mg}, 9.29$ $\mathrm{mmol}, 9.29 \mathrm{~mL}, 2.5$ equiv.) dropwise. The reaction was allowed to stir at $0{ }^{\circ} \mathrm{C}$ until complete (about 1 hour, monitored by TLC). The reaction was quenched by addition of 1 M aqueous HCl (until $\mathrm{pH} \sim 4$ ) and diluted with $\mathrm{EtOAc}(80 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc ( $2 \times 80 \mathrm{~mL}$ ). The combined organic layers were combined, washed with
brine, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The crude acid $\mathbf{2}$ was used without further purification.

## References

1. Zhang, X.; van der Donk, W. A. On the Substrate Specificity of Dehydration by Lacticin 481 Synthetase. J. Am. Chem. Soc. 2007, 129 (8), 2212-2213. https://doi.org/10.1021/ja067672v.
2. Imai, Y.; Meyer, K. J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; Honrao, C.; Ma, X.; Guo, J. J.; Makriyannis, A.; LinaresOtoya, L.; Böhringer, N.; Wuisan, Z. G.; Kaur, H.; Wu, R.; Mateus, A.; Typas, A.; Savitski, M. M.; Espinoza, J. L.; O’Rourke, A.; Nelson, K. E.; Hiller, S.; Noinaj, N.; Schäberle, T. F.; D’Onofrio, A.; Lewis, K. A New Antibiotic Selectively Kills Gram-Negative Pathogens. Nature 2019, 576 (7787), 459-464. https://doi.org/10.1038/s41586-019-17911.
3. Newhouse, T.; Lewis, C. A.; Baran, P. S. Enantiospecific Total Syntheses of Kapakahines B and F. J. Am. Chem. Soc. 2009, 131 (18), 6360-6361. https://doi.org/10.1021/ja901573x.
4. Hattori, Y.; Asano, T.; Kirihata, M.; Yamaguchi, Y.; Wakamiya, T. Development of the first and practical method for enantioselective synthesis of ${ }^{10} \mathrm{~B}$-enriched $p$-borono-Lphenylalanine. Tetrahedron Letters, 2008, 49, 4977-4980.
5. Okitsu, T.; Nakahigashi, H.; Sugihara, R.; Fukuda, I.; Tsuji, S.; In, Y.; Wada, A. Silyl Group-Directed 6-Exo-Dig Iodocyclization of Homopropargylic Carbamates and Amides. Chemistry - A European Journal 2018, 24 (70), 18638-18642. https://doi.org/10.1002/chem. 201804794.

Spectroscopic Data









































દાつ๐ว \&゙น



