SUPPLEMENTARY MATERIAL

Three new resin glycosides compounds from Argyreia acuta and their α-glucosidase inhibitory activity

Li Wang, You-ShaoYan, Hong-Hua Cui ${ }^{\dagger}$, Yong-Qin Yin ${ }^{\ddagger}$, Jie-Tao Pan, Bang-Wei Yu

Department of Traditional Chinese Medicinal Chemistry, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China

[^0]
Three new resin glycosides compounds from Argyreia acuta and their α-glucosidase inhibitory activity

Abstract

Three new phenolic compounds, acutacoside C (1), acutacoside D (2), and acutacoside E (3) were isolated from the airial part of Argyreia acuta. The oligosaccharide chain was composed with two glucoses and three rhamnoses, and the aglycone was (11S)-hydroxyhexadecanoic acid (jalapinolic acid). The core of the three compounds was operculinic acid B, which was rare in resin glycosides. Their structures were established by a combination of spectroscopic and chemical methods. Compounds 1-3 have been evaluated for inhibitory activity against α-glucosidase, which all showed weak inhibitory activities.

Keywords: Argyreia acuta, resin glycosides, structural identification, α-glucosidase

Table S1. NMR Data for Compounds 1-3 in pyridine- d_{5}.

Position	1		2		3	
	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$
Glu-1	104.2	5.03 d (7.5)	104.4	5.12 d (8.0)	104.	4.93 d (6.5)
2	81.7	3.93 *	82.0	3.89 *	82.0	3.93 *
3	76.3	4.29*	76.6	4.19*	76.6	4.20*
4	71.6	4.24*	71.8	4.14*	71.8	4.14*
5	77.8	3.97 *	78.0	3.87 *	78.0	3.87 *
6	62.6	4.42 *	62.8	4.31 *	62.8	4.33 *
		4.59 *		4.47 *		4.49 *
Rha-1	98.3	5.71 br s	98.6	5.61 br s	98.5	5.62 br s
2	73.3	6.15 br s	73.5	6.06 br s	73.5	6.05 br s
3	69.1	$5.18 \mathrm{dd}(9.5,3.5)$	69.5	$5.07 \mathrm{dd}(9.0,3.5)$	69.3	$5.08 \mathrm{dd}(9.5,3.5)$
4	81.7	4.31 dd (9.5, 9.5)	81.0	$4.21 \mathrm{dd}(9.0,9.0)$	82.0	4.21 dd (9.5, 9.5)
5	68.8	4.49*	69.0	4.37*	69.1	4.39*
6	18.9	1.72 d (6.0)	19.2	1.62 d (6.0)	19.1	1.62 d (6.0)
Rha'-1	100.0	5.99 br s	99.7	6.34 br s	100.	5.87 br s
2	72.8	6.44 br s	72.7	6.32 br s	73.0	6.36 br s
3	79.7	$4.93 \mathrm{dd}(9.0,3.0)$	80.0	$4.84 \mathrm{dd}(9.5,3.5)$	79.9	$4.83 \mathrm{dd}(8.5,3.0)$
4	78.2	4.26 dd (9.0, 9.0)	78.3	4.17 dd (9.5, 9.5)	78.4	4.16 dd (8.5, 8.5)
5	68.3	4.62*	68.4	4.44 *	68.5	4.50*
6	18.8	1.76 d (5.5)	19.1	1.69 d (6.5)	19.0	1.67 d (5.5)
Rha"-1	103.2	6.41 br s	99.8	5.96 br s	103.	6.31 br s
2	69.7	5.38 br s	74.1	6.29 br s	69.9	5.29 br s
3	73.1	6.11 dd (3.0, 10.0)	68.2	$4.79 \mathrm{dd}(3.5,10.0)$	73.3	$6.02 \mathrm{dd}(3.0,10.0)$
4	71.5	6.19 t (10.0)	74.7	5.82 t (10.0)	71.7	6.11 t (10.0)
5	67.9	4.56 *	68.2	$4.49 \mathrm{dd}(10.0,6.5)$	68.2	4.44 *
6	17.7	1.55 d (6.0)	18.0	1.54 d (6.5)	17.9	1.45 d (6.5)
Glu'-1	105.3	5.24 d (7.2)	105.0	4.92 d (7.5)	105.	5.14 d (7.5)
2	75.0	4.08 *	75.0	3.89 *	75.2	3.94 *
3	78.7	4.19*	78.4	4.19*	79.0	4.07*
4	71.3	4.05*	71.4	4.14*	71.5	3.97*
5	77.9	3.92 *	78.3	3.82 *	78.1	3.82 *
6	62.7	4.54 *	63.0	4.40*	63.0	4.44 *
		4.21 *		4.10 *		4.11 *
Ag-1	173.0		173.4		173.	
2	34.0	$2.46 \mathrm{~m}, 2.39 \mathrm{~m}$	34.3	$2.47 \mathrm{~m}, 2.33 \mathrm{~m}$	34.3	$2.37 \mathrm{~m}, 2.30 \mathrm{~m}$
11	82.5	4.00 *	82.8	3.99 *	82.7	3.90 *
16	14.1	0.83 t (7.5)	14.3	0.86 t (7.0)	14.3	0.83 t (7.5)
Cna-1	166.2		167.0		166.	
2	118.3	$6.70 \mathrm{~d}(16.0)$	118.7	6.37 d (16.0)	118.	6.60 d (16.0)
3	145.3	7.97 d (16.0)	145.2	7.66 d (16.0)	145.	7.87 d (16.0)
1^{\prime}	134.6		134.6		134.	
2^{\prime} and 6^{\prime}	128.3	7.56 m	128.5	7.26 m	128.	7.46 m
3^{\prime} and 5^{\prime}	129.0	7.45 m	129.0	7.17 m	129.	7.35 m
4^{\prime}	130.5	7.45 m	130.5	7.17 m	130.	7.35 m
Mba-1	175.8		176.4		176.	
2	41.3	2.59 m	41.2	2.53 m	41.6	2.49 m

$2-\mathrm{CH}_{3}$	16.7	$1.25 \mathrm{~d}(7.0)$	17.0	$1.22 \mathrm{~d}(7.0)$	17.0	$1.15 \mathrm{~d}(7.0)$
4	11.6	$0.95 \mathrm{t}(7.0)$	11.7	$0.92 \mathrm{t}(7.0)$	11.8	$0.87 \mathrm{t}(7.0)$
Deca-1	173.4					
2	34.2	2.43 m				
12	14.1	$0.93 \mathrm{t}(5.5)$			173.	
Dodeca-1			173.9		34.4	2.35 m
2			34.4	2.37 m	14.3	$0.83 \mathrm{t}(7.5)$
12			14.3	$0.86 \mathrm{t}(7.0)$	14.3	

Chemical shifts (δ) are in ppm relative to TMS. The spin coupling (J) is given in parentheses (Hz). Chemical shifts marked with an asterisk $\left({ }^{*}\right)$ indicate overlapped signals. Spin-coupled patterns are designated as follows: $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet. Abbreviations: Glc = glucose; Rha = rhamnose; $\mathrm{Ag}=11$ - hydroxyhexadecanoyl; $\mathrm{Mba}=2 S$ methylbutanoyl; Cna $=$ trans-cinnamoyl; Deca $=n$-decanoyl; Dodeca $=n$-dodecanoyl.

Table S2 α-Glucosidase inhibition of compounds $\mathbf{1}-\mathbf{3}$ and acarbose

Compound	$\boldsymbol{\alpha}$-Glucosidase Inhibition Contstant
$\mathbf{1}$	188.6 ± 5.2
$\mathbf{2}$	157.8 ± 4.6
$\mathbf{3}$	174.4 ± 3.9
acarbose	388.0 ± 8.5

${ }^{\mathrm{a}} \mathrm{IC}_{50}$ is defined as the concentration that resulted in a $50 \% \alpha$-glucosidase inhibition and the results are means \pm standard deviation of three independent replicates; ${ }^{\text {b }}$ Positive control substance.

Figure S1. Key HMBCs from H to C for Acutacoside C (1)

The identification procedures of organic acids, sugars, and aglycone:

Compounds 1-3 (7 mg each) in 5\% KOH (3 mL) were refluxed at $90^{\circ} \mathrm{C}$ for 2 h , respectively. The reaction mixture was acidified to pH 4.0 with $2 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ and extracted with hexane $(3 \mathrm{~mL} \times 2)$ and $n-\mathrm{BuOH}(3 \mathrm{~mL} \times 2)$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then methylated following. The hexane extract, was combined with $0.1 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{CH}_{3} \mathrm{ONa}$ solution, then shaken for 5 min at room temperature, before adding $5 \mu \mathrm{LCH}_{3} \mathrm{COOH}$ and 1 g anhydrous CaCl_{2} powder, heating for 1 h , followed by centrifugation for $2-3 \mathrm{~min}$ at 2000-3000 rpm. min^{-1}. The supernatant was analyzed by GC-MS on a TRACE GC ULTRA DSQ II intrument under the following conditions: $30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$, TG-5MS (Thermo) column; $\mathrm{He}, 0.8 \mathrm{~mL} / \mathrm{min} ; 40{ }^{\circ} \mathrm{C}, 3 \mathrm{~min} ; 50-310{ }^{\circ} \mathrm{C}, \Delta 0^{\circ} \mathrm{C} / \mathrm{min}, 70 \mathrm{eV}$. 2-Methylbutyric acid methyl ester ($t_{\mathrm{R}} 4.39 \mathrm{~min}$) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 117$ (5), 101 (23), 88 (96), 57 (100), 41 (55), 29 (45), 27 (19), and trans-cinnamic acid methyl ester (t_{R} $13.29 \mathrm{~min}) \mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 162$ (40), 131 (100), 103 (66), 77 (32), from $\mathbf{1 - 3}$ was identified. n-decanoic acid methyl ester ($t_{\mathrm{R}} 12.37 \mathrm{~min}$): $m / z 172[\mathrm{M}]^{+}$(4), 155 (5), 143 (30), 129 (5), 87 (59), 74 (100), 55 (18) from 1 was identified. n-dodecanoyl acid methyl ester ($\mathrm{t}_{\mathrm{R}} 15.17 \mathrm{~min}$) $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 200(1), 172$ (1), 168 (10), 157 (15), 143(18), 129 (7), 87 (64), 74 (100), 55 (25), 43 (20), 41 (18) from 2-3 was identified. The 2-methylbutanoic acid as proved to be S configuration by comparing the specific rotation with that of authentic $2 S$-methylbutanoic acid (Yin, Y.Q., Wang, J.S., Luo, J.G., Kong, L.Y., 2009). Acidic hydrolysis of operculinic acid B liberated the aglycone, 11-hydroxyhexadecanoic acid, which was identifidey S-configuration (Yin, Y.Q., et al., 2008) and the monosaccharides mixture was derivatized and detected with GC-MS by comparison with those of authentic samples to improve as D-fucose, L-rhamnose and D-glucose (Luo, J.G., Ma, L., Kong, L.Y., 2008).

Figure S2. The HR-TOF-MS spectrum of compound $\mathbf{1}$

Figure S 3 . The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1}$

Figure S 4 . The ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1}$

Figure S5. The TOCSY spectrum of compound 1

Figure S6. The HSQC spectrum of compound $\mathbf{1}$

Figure S7. The HMBC spectrum of compound 1

Figure S8. The enlarged HMBC spectrum of compound $\mathbf{1}$

Figure S9. The HR-TOF-MS spectrum of compound $\mathbf{2}$

Figure S10. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 2

Figure S11. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{2}$

Figure S12. The TOCSY spectrum of compound 2

Figure S13. The HSQC spectrum of compound 2

Figure S14. The HMBC spectrum of compound 2

Figure S15. The enlarged HMBC spectrum of compound 2

Figure S16. The HR-TOF-MS spectrum of compound 3

Figure S17. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 3

Figure S18. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{3}$

Figure S19. The TOCSY spectrum of compound $\mathbf{3}$

Figure S20. The HSQC spectrum of compound $\mathbf{3}$

Figure S21. The HMBC spectrum of compound 3

f1 (ppm)

Figure S22. The enlarged HMBC spectrum of compound 3

Butanoic acid, 2-methyl-, methyl ester
Formula C6H12O2, MW 116, CAS\# 868-57-5, Entry\# 23242
Butyric acid, 2-methyl-, methyl ester

Decanoic acid, methyl ester
Formula C11H22O2, MW 186, CAS\# 110-42-9, Entry\# 38289 Capric acid methyl ester

NL: 1.67E7
20141009-1410b0036 5\#1479 RT: 30.12 AV: 1 SB 15.00 F: + c Full ms [33.00-600.00]

NL: 6.21E6
20141009-1410b00365\#1569 RT: 31.65 AV: 1 SB : 15.00 F: + c Full ms [33.00-600.00]

Fig S23. The GC-MS spectral of organic acid and sugar

[^0]: ${ }^{\dagger}$ Corresponding author. Email: honghuacui@163.com
 ${ }^{\text { }}$ Corresponding author. Email: yongqinyin@126.com

