SUPPLEMENTARY MATERIAL

Three new phenylacetamide glycosides from Dracocephalum tanguticum Maxim and their anti-hyperglycemic activity

En-Guang Ma, Hai-Yan Wu, Li-Jiao Hu, Min Wei, Lin-Yun Mou, Gan-Peng Li*

Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission \& Ministry of Education, Yunnan Minzu University, Kunming, Yunnan, 650500, P.R.China.

Correspondence

Prof. Gan-Peng Li, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan, 650500, P.R.China. E-mail addresses: ganpeng_li@sina.com, Tel.: +86 087165936602

Acknowledgement

This work was financially supported by Technology Center, China Tobacco Yunnan Industrial Co., Ltd [grant number JSZX20151008-52].

Abstract

Three new phenylacetamide glycosides (1-3) together with one known phenylacetamide glycoside (4) and two known flavonoid glycosides (5-6) were isolated from whole plants of Dracocephalum tanguticum. The structure of all compounds were elucidated based on spectroscopic data analysis and comparison with data reported in related literature. Compounds (1-3) were evaluated for their anti-hyperglycemic and anti-fungal (Candida albicans) activities, the results revealed that all of them showed moderate activity with 3T3-L1 adipocytes glucose consumption rate of $20.80 \pm 1.47 \%, 21.48 \pm 2.44 \%$, and $21.57 \pm 1.35 \%$, respectively at the final concentration of $25 \mu \mathrm{M}$. However, none of them showed obvious Candida albicans inhibitory activity.

Keywords: Dracocephalum tanguticum, phenylacetamide glycosides, anti-hyperglycemic activity

Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1 - 3}$ in Methanol- d_{4} (400 and $100 \mathrm{MHz}, J$ in Hz)

position	1		2		3	
	$\delta_{\text {C }}$ (mult.)	$\delta_{\mathrm{H}}($ mult, $, \mathrm{l}, \mathrm{Hz})$	δ_{C} (mult.)	δ_{H} (mult, $J, \mathrm{~Hz}$)	δ_{C} (mult.)	$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$
1	134.3 s		134.5 s		134.4 s	
2,6	130.8 d	7.16 (d) 8.3	130.8 d	7.19 (d) 8.7	130.8 d	7.05 (d) 8.6
3,5	117.5 d	6.85 (d) 8.4	117.7 d	7.03 (d) 8.7	117.6 d	6.97 (d) 8.7
4	155.9 s		156.2 s		156.2 s	
7	35.7 t	2.88, overlap	35.7 t	2.82 (t) 7.3	35.7 t	2.65 (t) 7.2
8	42.8 t	3.59 (t) 7.4	42.3 t	3.51 (t) 7.3	42.1 t	3.30 , overlap
1^{\prime}	135.8 s		136.3 s		132.8 s	
$2^{\prime}, 6^{\prime}$	128.2 d	7.77 (d) 7.5	128.8 d	7.53 (d) 8.5	130.4 d	7.01 (d) 8.6
$3^{\prime}, 5^{\prime}$	129.6 d	7.43 (d) 7.4	129.9 d	7.36 (d) 8.5	116.2 d	6.70 (d) 8.4
4^{\prime}	132.6 d	7.50 (d) 7.1	130.9 d	7.36 m	156.8 s	
$7{ }^{\prime}$	170.3 s		141.7 d	7.50 (d) 15.8	32.2 t	2.78 (t) 7.5
8^{\prime}			121.8 d	6.56 (d) 15.8	39.3 t	2.38 (t) 7.6
9^{\prime}			168.6 s		175.4 s	
$1^{\prime \prime}$	98.3 d	5.60 (d) 1.7	99.7 d	5.43 (d) 1.7	99.6 s	5.40 (d) 1.5
$2^{\prime \prime}$	82.8 d	4.00 , overlap	79.7 d	4.13 (dd) 9.8, 3.3	82.7 d	3.94 (dd) 9.1, 3.2
$3^{\prime \prime}$	80.3 d	4.41, overlap	71.8 d	4.31 (dd) 3.2, 1.9	71.4 d	4.29 (dd) 3.0, 1.9
$4^{\prime \prime}$	72.2 d	3.32, overlap	73.7 d	5.14 (t) 9.9	72.7 d	3.62, overlap
$5^{\prime \prime}$	70.1 d	3.64, overlap	68.5 d	3.85 , overlap	70.2 d	3.68, overlap
$6^{\prime \prime}$	18.1 q	1.19 (d) 4.8	17.9 q	1.10 (d) 6.3	18.1 q	1.23 (d) 6.0
$1^{\prime \prime \prime}$	105.7 d	4.52 (d) 7.6	106.2 d	4.47 (d) 7.8	105.8 d	4.60 (d) 7.6
$2^{\prime \prime \prime}$	75.33 d	3.21, overlap	74.8 d	3.22, overlap	75.4 d	3.32, overlap
$3^{\prime \prime \prime}$	77.9 d	3.27 , overlap	77.9 d	3.34 , overlap	77.6 d	3.40 , overlap
$4^{\prime \prime \prime}$	70.7 d	3.34 , overlap	71.1 d	3.35 , overlap	71.0 d	3.38 , overlap
$5^{\prime \prime \prime}$	77.5 d	2.89 , overlap	77.7 d	3.30 , overlap	77.7 d	3.33, overlap
$6^{\prime \prime \prime} \mathrm{a}$	61.8 t	3.49 , overlap	62.3 t	3.83 , overlap	62.2 t	3.85 (dd) 9.3, 2.4
$6^{\prime \prime \prime} \mathrm{b}$		3.38 , overlap		3.73 (dd) 11.9, 4.6		3.73 (dd) 10.6, 3.1
$1^{\prime \prime \prime \prime}$	106.4 d	4.64 (d) 7.7	21.2 q	2.09 (s)		
$2^{\prime \prime \prime \prime}$	75.3 d	3.36 , overlap	172.6 s			
$3^{\prime \prime \prime \prime}$	77.6 d	3.46 , overlap				
$4^{\prime \prime \prime \prime}$	72.3 d	3.63, overlap				
$5^{\prime \prime \prime \prime}$	75.6 d	3.76, overlap				
$6^{\prime \prime \prime \prime} \mathrm{a}$	66.1 t	4.70 (d) 11.2				
$6^{\prime \prime \prime}$ 'b		4.40 , overlap				
$1^{\prime \prime \prime \prime \prime}$	130.9 s					
$\begin{aligned} & 2^{\prime \prime \prime \prime \prime} \\ & 6^{\prime \prime \prime \prime \prime} \end{aligned}$	130.5 d	7.96 (d) 7.7				
$\begin{aligned} & 3^{\prime \prime \prime \prime \prime}, \\ & 5^{\prime \prime \prime \prime \prime \prime} \end{aligned}$	129.7 d	7.08 (t) 7.7				
$4^{\prime \prime \prime \prime}$	134.3 d	7.24 (t) 7.4				

Table S2. Compounds (1-3) glucose consumption rate

Sample	Final concentration $(\mu \mathbf{M})$	glucose consumption rate $(\%)$

5

6

Figure 1. The structures of compounds 1-6.

Supplemental file (Figure) Legend

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 1 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 400 MHz
Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 1 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 100 MHz
Figure S3. Lift: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}$ benzene ring enlarge
Right: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}$ glycoside enlarge
Figure S4. HSQC spectrum of compound 1 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz
Figure S5. HMBC spectrum of compound 1 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz
Figure S6. COSY spectrum of compound 1 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz
Figure S7. UV spectrum of compound 1 recorded in MeOH
Figure S8. IR spectrum of compound 1
Figure S9. HR-ESI-MS spectrum of compound 1
Figure S10. HPLC analysis of monosaccharide derivative of compound $\mathbf{1}$
Figure S11. Key HMBC correlations of compound 1.
Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 400 MHz
Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 100 MHz
Figure S14. HSQC spectrum of compound 2 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz
Figure S15. HMBC spectrum of compound $\mathbf{2}$ recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz
Figure S16. HR- ESI-MS spectrum of compound 2
Figure S17. Key HMBC correlations of compound 2.
Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 400 MHz
Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$ recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 100 MHz
Figure S20. HR-ESI-MS spectrum of compound $\mathbf{3}$

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$ recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 400 MHz .

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}$ recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 100 MHz .

Figure S3. Lift: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}$ benzene ring enlarge.
Right: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}$ glycoside enlarge.

Figure S4. HSQC spectrum of compound 1 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz .

Figure S5. HMBC spectrum of compound 1 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz .

Figure S6. COSY spectrum of compound 1 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz .

Figure S7. UV spectrum of compound 1 recorded in MeOH .

Figure S8. IR spectrum of compound 1.

User Spectra

Peak List

Peak List
$\boldsymbol{m} / \boldsymbol{z}$ Z Abund Formula Ion 102.128 48092.57 104.1069 1 55043.7 182.1537 1 58635.78 427.6313 2 44751.8 480.1996 1 130017.3 $(\mathrm{M}+\mathrm{Na})+$ 838.2893 1 399292.59 C 40 H 49 N O 17 $(\mathrm{M}+\mathrm{Na})+$ 839.2924 1 181276.81 C 40 H 49 N O17 $(\mathrm{M}+\mathrm{Na})+$ 840.2946 1 51811.96 C 40 H 49 N O17

Element	Min	Max
C	3	60
H	0	120
O	0	30
N	0	3

Formula	CalculatedMass	CalculatedMz	Mz	Diff. (mDa)	Diff. (ppm)	DBE
C40 H49 N O17	815.3001	838.2893	838.2893	0.00	0.00	17.0000

Figure S9. HR-ESI-MS spectrum of compound 1.

Figure S10. HPLC analysis of monosaccharide derivative of compound 1.

Figure S11. Key HMBC (\sim) correlations compound 1.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 400 MHz .

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2}$ recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 100 MHz .

Figure S14. HSQC spectrum of compound 2 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz .

Figure S15. HMBC spectrum of compound 2 recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz .

Figure S16. HR-ESI-MS spectrum of compound 2.

Figure S17. Key HMBC (\sim) correlations of compound 2.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 400 MHz .

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$ recorded in $\mathrm{CD}_{3} \mathrm{OD}$ at 100 MHz .

User Spectra

Figure S20. HR-ESI-MS spectrum of compound 3.

