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ABSTRACT1 

The impact of structurally-related additives and impurities on active pharmaceutical 

ingredients is an essential yet poorly understood area. This work describes the characterisation of 

temperature-dependent solid-liquid properties of 4-nitrophenol and 4’chloroacetanilide in four 

different alcohols and their effect as impurities on the crystallisation of paracetamol. The solubility of 

4-nitrophenol appeared to be significantly higher than paracetamol whereas the solubility of 

4’chloroacetanilide was lower than paracetamol. The solubility difference between the impurities 

could be rationalised based on their molecular structure and hydrogen bonding interactions. The 

solubility data was modelled using empirical and thermodynamic models. Recrystallisation of 

paracetamol from solution containing the highly soluble 4-nitrophenol impurity resulted in small 

uniformly sized high purity paracetamol crystals whereas the presence of the poorly soluble 

                                                           
1 Abbreviations: CA, 4’-chloroacetanilide; DSC, differential scanning calorimetry; GC, gas chromatography; 

HPLC, high performance liquid chromatography; LC, liquid chromatography; MSE, mean squared error; MW, 

molecular weight; NP, 4-nitrophenol; PA, paracetamol; PTFE, polytetrafluoroethylene; RMSE, root mean 

square error; SEM, scanning electron microscopy; UV, ultraviolet; XRPD, x-ray powder diffraction. 

mailto:renesteendam@gmail.com


2 
 

4’chloroacetanilide impurity induced the formation of large needle shaped crystals of paracetamol. 

These differences in crystallisation are a consequence of the solubility difference and the different 

functional groups of paracetamol and its impurities. Overall this study serves as fundamental 

information for the development of crystallisation approaches for the purification of paracetamol from 

its main impurities.  

 

KEYWORDS 

Crystallisation, solubility, impurity, additive, morphology, thermodynamic modelling 

 

1. INTRODUCTION 

Reactive disubstituted aromatic compounds are frequently used in the manufacture of 

pharmaceuticals to enable the synthetic steps that lead to the desired product. However, the reactive 

nature of such intermediates also leads to the formation of organic impurities that are structurally 

similar to the target compound. This is for example reflected in the synthesis of paracetamol which 

mainly yields paracetamol together with trace amounts of unwanted 1,4-disubstituted aromatic 

impurities. Two of the main impurities in the manufacture of paracetamol (PA) are 4-nitrophenol (NP) 

and 4’-chloroacetanilide (CA) (Figure 1).[1]  

 

 

Fig. 1. The chemical structures of paracetamol and two of its main impurities. 

 

PA is known to be able to crystallise as three monotropic polymorphs. At room temperature, 

monoclinic Form I[2] is the most stable form, followed by metastable orthorhombic Form II[3] and 

the highly unstable Form III.[4] 4-Aminophenol is the starting material in the final step of the 

synthesis of PA and is obtained through reduction of NP. NP can crystallise as two polymorphic 
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forms of which the β-form (β-NP) could undergo an irreversible transformation into the light unstable 

α-form (α-NP) at temperatures between (331 and 366 K).[5, 6] CA is structurally the same as PA 

except that CA has a chlorine atom instead of an alcohol group at the 4-position. Only one crystalline 

form has been reported for CA.[7] 

The level of impurities in pharmaceutical products should strictly be kept below a specified 

amount in order to guarantee the desired biological effect of the pharmaceutical and to avoid 

undesired side effects such as a change in polymorphism or chirality of the product.[8-10] An 

efficient purification technique to remove impurities is solvent crystallisation as the crystalline lattice 

of the target compound is typically able to selectively incorporate target molecules in preference over 

impurities.[11] Important process parameters in solvent crystallisation, including the metastable zone 

width and nucleation rates, rely on the solubility of the compound. Thermodynamic calculations based 

on solubility data of impurities and the effect of impurities on the solubility of the target compound is 

therefore essential for the design and use of solvent crystallisation. The presence of ionic impurities 

generally leads to an increase in the solubility of inorganic salts.[12, 13] However, the effect of 

organic impurities on the solubility of pharmaceuticals is more complex and less understood. PA is 

one of the most widely used model systems in crystallisation research yet the effect of its main 

impurities on the solid-liquid properties of PA remain unreported. Solid-liquid measurements for PA 

impurities might prove challenging as these compounds are reported to form different polymorphs and 

are prone to undergo oxidation and decomposition. The solubility of NP in water [14, 15] and ethanol 

[16] is reported but it is unclear which polymorph was used in those studies. Except for the solubility 

of NP in water and ethanol, no solid-liquid data is currently reported for NP or CA to the best of our 

knowledge. Moreover, it is unclear if the polymorphism of the impurities is affected by solution 

crystallisation and whether impurities influence the solid-liquid properties of PA.  

This work describes the solubility of two of the main impurities of PA and their effect on the 

crystallization of PA. First a polymorphic screening was carried out to determine the polymorphic 

nature of the solids used in this study. In addition, solution phase analysis was conducted to determine 

the stability of the impurities in solution. Secondly, equilibrium solubility measurements are reported 

for α-NP and CA in four different alcohols (ethanol, 2-propanol, 1-pentanol and 1-butanol) over the 
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temperature range (278.15 to 318.15) K. In previous solubility measurements of pure PA the same 

solvents were used and were therefore chosen in the present study for comparison.[17] The solubility 

data was analysed using empirical and thermodynamic models. Finally the effect of the impurities on 

the crystal morphology and purity of PA from solution crystallisation experiments are described. 

The results reported herein represent fundamental information for the design of solvent 

crystallisation strategies that can be used for the purification of PA from its main impurities. 

 

2. THERMODYNAMIC MODELLING 

The solubility of the impurities NP and CA and the solubility of PA in the presence of NP and 

CA in the selected solvents as a function of temperature are correlated with the empirical modified 

Apelblat equation, which is defined as 

 

ln(𝑥2) = 𝑎A +
𝑏A

𝑇
+ 𝑐A ln(𝑇)         (1) 

 

where x2 is the solute molar fraction at temperature T in Kelvin and aA, bA and cA are the three 

adjustable parameters which can be obtained through regression.[18]  

The Margules, Van Laar, Wilson and NRTL models are used to describe the solubility of the pure 

compounds NP and CA. These activity coefficient models account for deviations from ideal solution 

behaviour and use a solid-liquid equilibrium equation 
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where γ2 is the activity coefficient, ΔHfus the fusion enthalpy of the solute, Tt the triple-point 

temperature, ΔCP the difference of the heat capacity of a solute between the liquid- and solid state and 

R is the universal gas constant (8.314 J·K-1·mol-1).[18] Due to the small value of ΔCP with respect to 

the first term on the right side of equation, ΔCP can be neglected.[18] The triple-point temperature Tt 
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is nearly equal to the melting temperature Tm of the compound and therefore equation 2 can be 

simplified to 

 

ln(𝑥2) =
𝛥𝐻fus

𝑅
(
1

𝑇𝑚
−

1

𝑇
) − ln(𝛾2)        (3) 

 

The experimental activity coefficients γ2 can be calculated by inserting the experimental solubility 

values x2 measured at temperature T, the enthalpy of fusion ΔHfus and the melting temperature Tm into 

equation 3. The ideal solubility can be calculated by setting γ2 =1. 

The experimental activity coefficients γ2 were correlated to the Margules, van Laar, Wilson and 

NRTL models. The Margules model considers the temperature dependence explicitly and is expressed 

as 

 

ln( 𝛾2) =
𝐴

𝑅𝑇
(1 − 𝑥2)

2          (4) 

 

where A is an adjustable parameter.  

In the van Laar equation, the temperature dependence is implicit and the van Laar equation can be 

written as 

 

ln( 𝛾2) =
𝐵𝑣𝑙

(1+
𝐵𝑣𝑙𝑥2
𝐴𝑣𝑙𝑥1

)
2          (5) 

 

where Avl and Bvl are the adjustable van Laar parameters and xi is the mole fraction of component i.  

The Wilson model can be expressed as 

 

ln(𝛾2) = −𝑥2 (
Λ12

𝑥1+Λ12𝑥2
−

Λ21

𝑥2+Λ21𝑥1
) − ln(𝑥2 + Λ21𝑥1)      (6) 

 

in which  
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Λ𝑖𝑗 =
𝑣𝑗

𝑣𝑖
exp (−

𝜆𝑖𝑗

𝑅𝑇
) with𝑖 ≠ 𝑗and𝑖, 𝑗 = 1,2       (7) 

 

and where vi is the molar volume of the solute and vj that of the solvent. Λij are the cross-interaction 

energy parameters (J·mol-1) between the components i and j. 

The NRTL model considers that the local concentration around a molecule is different from the 

concentration in the bulk. The NRTL equation is expressed as 

 

ln(𝛾2) = 𝑥1
2 [(𝜏12

𝐺12

𝑥2+𝑥1𝐺12
)
2
+

𝜏21𝐺21

(𝑥1+𝑥2𝐺21)
2]       (8) 

 

in which  

 

𝐺𝑖𝑗 = exp(−𝛼𝜏𝑖𝑗) with𝑖 ≠ 𝑗and𝑖, 𝑗 = 1,2       (9) 

 

and  

 

𝜏𝑖𝑗 =
𝑔𝑖𝑗

𝑅𝑇
with𝑖 ≠ 𝑗and𝑖, 𝑗 = 1,2        (10) 

 

where gij (J·mol-1) are the model parameters which relate to the cross-interaction energy and where α 

is the parameters that account for the non-randomness of the solution.  

The parameters of each activity coefficient model were estimated by using the nonlinear least-squares 

algorithm nlinfit in Matlab to solve 

 

∑ [ln(𝛾2,𝑖)ǀmod(𝑇, 𝜃) − ln(𝛾2,𝑖)ǀexp(𝑇)]
2𝑁

𝑖=1𝜃ϵℛ
min       (11) 
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where θ represents the parameters to be estimated for each model, each compound and each solvent 

used, N refers to the number of data points and where y2,iǀmod and y2,iǀexp refer to the model and 

experimental activity coefficients respectively. The activity coefficients γ2 described in the results are 

the experimental activity coefficients. 

Conversion from solute molar fraction x2 to mass-fraction solubility C was carried out through   

 

𝐶 =
1000𝑥2𝑀𝑤𝑆𝑜𝑙𝑢𝑡𝑒

((1−𝑥2)𝑀𝑤𝑆𝑜𝑙𝑣𝑒𝑛𝑡+𝑥2𝑀𝑤𝑆𝑜𝑙𝑢𝑡𝑒)
        (12) 

 

3. EXPERIMENTAL SECTION 

 

3.1 Chemicals 

The chemicals used in this study, together with their suppliers, mass fraction purity and 

method for purity determination are summarised in Table 1. All the chemicals were used as received 

without further purification. The methods employed by the supplier for the determination of the purity 

of PA include infrared absorption, ultraviolet absorption, thin-layer chromatography, melting point, 

titration and residue on ignition tests. Using our HPLC measurements, it was established that no 

detectable amounts of 4-aminophenol, NP or CA were present in the supplied PA. 

 

Table 1. The sources and mass fraction purity of the materials used in this study. 

Chemical Name CAS Registry 

Number 

Source Mole 

Fraction 

Purity 

Analysis 

Method 

paracetamol (PA) 103-90-2 Sigma-Aldrich 0.98-1.02 several, 

see main 

text 

4’-chloroacetanilide (CA) 539-03-7 Sigma-Aldrich 0.97 GCa 

4-nitrophenol (NP) 100-02-7 Alfa Aesar 0.99 GC 
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deionised water 7732-18-5 distilled - none 

ethanol 64-17-5 Honeywell ≥0.99 GC 

methanol 67-56-1 Sigma-Aldrich ≥0.99 GC 

2-propanol 67-63-0 Sigma-Aldrich ≥0.99 GC 

1-pentanol 71-41-0 Sigma-Aldrich ≥0.99 GC 

1-butanol 71-36-3 Sigma-Aldrich ≥0.99 GC 

Na2HPO4 dibasic solution 7558-79-4 Sigma-Aldrich ≥0.99 Titration 

phosphoric acid 7664-38-2 Sigma-Aldrich ≥0.85 Titration 

 aGas Chromatography 

 

3.2 Thermal Analysis 

The melting temperature Tm and the enthalpy of fusion ΔHf of CA were determined using a 

PerkinElmer Pyris-Diamond differential scanning calorimetry (DSC) instrument. The instrument was 

pre-calibrated by using the onset temperature for indium. A precisely weighted DSC sample of CA 

was inserted into the DSC and heated from (298.15 K to 468.15 K) at a rate of 10 K /min under a 

nitrogen flow. Standard uncertainties of the experiments were evaluated to be 0.5 K for temperature 

and 400 J·mol–1 for the enthalpy of melting. The onset temperature of melting, which was obtained by 

taking the inflection point of the DSC curve, was used as the melting temperature Tm as per the 

recommendation from Gesellschaft für Thermische Analyse (GEFTA) and the International 

Confederation for Thermal Analysis and Calorimetry (ICTAC). 

 

3.3 Solid State Characterisation 

XRPD measurements were conducted to establish the polymorphic nature of the chemicals. 

Crystal samples were lightly ground into a fine powder and measured on a PANalytical EMPYREAN 

diffractometer using Bragg−Brentano geometry and an incident beam of Cu K-Alpha radiation (λ = 

1.5406 Å). Scans were performed at room temperature on a spinning silicon sample holder with a step 

size of 0.013° 2θ and a step time of 68 s. 
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To establish which polymorph of each compound was present in our solubility experiments, 

XRPD analysis was carried out of the solid phase samples taken from the equilibrium solubility 

measurements. After equilibration for 24 h at a fixed temperature, about 5 mL of the suspension was 

subjected to vacuum filtration. The residual crystals were completely dried at the same temperature 

and were measured using XRPD. The experimental XRPD patterns were compared with reference 

XRPD patterns which were obtained using Mercury software by converting single crystal data taken 

from the Cambridge Structural Database (CSD). 

 

3.4 HPLC Analysis 

The HPLC method for determining the purity of PA reported in literature has been adapted to 

our work.[19] An Agilent 1260 Infinity Quaternary LC was used in combination with a ZORBAX 

eclipse XDB-C18 column (4.6x150 mm, 3.5µ). A 0.01 M sodium phosphate buffer was prepared 

through the dilution of a 0.5 M phosphate buffer using deionised water (18.2 Ω) after which the buffer 

was brought to pH=3 using phosphoric acid. The 0.01M sodium phosphate buffer was used in 

combination with methanol as the mobile phase. The flowrate was set to 1.000 mL/min, the column 

temperature to 20 °C and the injection volume used was 5 µL. 2 mL Amber borosilicate glass vials 

were used for the HPLC samples. A stock solution was prepared for each compound which was 

subsequently diluted into a concentration range CR. Triplicate measurements were carried out for each 

sample and the resulting low relative standard deviation of <1% indicated that the HPLC method was 

sufficiently accurate. The peak heights measured over the entire concentration range fell well below 

the ultraviolet (UV) detection limit of the HPLC and the absorption peaks of the different compounds 

did not overlap. The peak area, which was averaged over three measurements of the same sample, was 

plotted against 10 different concentrations and resulted in a linear calibration curve (R2 > 0.999) for 

each compound, as shown in the Supporting Information (Figure S2).  

The solute was dissolved in methanol and the resulting solution was diluted until the 

concentration was within the concentration range CR of the calibration series. The ratio of PA to 

impurities and from that, the actual concentration of PA in the solute, was calculated from the 

acquired peak areas in conjunction with the calibration curves. The concentration range CR of the 
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calibration series, composition of the mobile phase X, the wavelength λ of detection and the retention 

times tR for each compound are summarised in the supporting information (Table S1). 

 

3.5 Solubility Determination 

The solubility of CA and NP in different solvents (ethanol, 2-propanol, 1-butanol and 1-

pentanol) at 8 different temperatures (278.15 to 318.15 K, with steps of 5 K) was determined using 

equilibrium gravimetric solubility measurements. For a single solubility data point, one of the tested 

solvents was added to a glass vial containing an excess of solids of either CA or NP. The gravimetric 

method has been used and validated by us in previous works and the same protocol was used in the 

current work.[17, 20]  

As per the NIST guidelines, the standard uncertainties u(C) and u(x2) were determined by 

estimating the standard deviation of the three samples of each solubility data point. For each data 

point, the relative standard uncertainties ur(C) and ur(x2) were calculated by dividing the standard 

uncertainties over the average solubility. The herein reported relative standard uncertainties for a 

specific compound were obtained by taking an average of the relative standard uncertainties of all 

data points for that specific compound. 

 

4 RESULTS & DISCUSSION 

In this work, a polymorphic screening is first described that shows which polymorph of each 

compound is used in this study. Next the solubility data of NP and CA as a function of temperature in 

different solvents is described which in the following section is modelled. In the final section the 

influence of NP and CA as impurities on crystallisation of PA is described. 

 

4.1 Polymorphic Screening 

XRPD studies were conducted to establish the polymorphic nature of PA, NP and CA used in 

this study. The XRPD patterns were compared with the known polymorphic forms in literature 

(Supporting Information S4-S6) and the results are summarised in Table 2.  
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Table 2. The Polymorphic Form of Each Compound Determined from Samples Obtained from the 

Supplier and Experiments. 

 Compound  Obtained From Polymorphic Form 

PA Literature[2] I 

PA (Starting Material) Sigma Aldrich I 

PA + 0.10 mole fraction of CA Experiments I 

PA + 0.10 mole fraction of NP Experiments I 

CA Literature[7] CAa 

CA (Starting Material) Sigma Aldrich CA 

CA Experiments CA 

NP Literature[5] β-NP 

NP Literature[21] α-NP 

NP (Starting Material) Alfa Aesar α-NP 

NP Experiments α-NP 

aNo polymorphic forms of CA are reported in literature or were found in this study. 

 

PA was obtained as Form I from the supplier and remained stable in our solubility 

experiments. The crystalline form of CA obtained from the supplier was the same as the one reported 

in literature.[7] Although two forms are reported for NP, only α-NP was present in the starting 

material. It is reported in literature that a polymorphic transformation from α-NP to β-NP is not 

possible.[6] Indeed, in our experiments no such polymorphic transformation was observed across the 

full temperature range and solvents studied. During the experiments we did however observe a small 

colour change of α-NP crystals from yellow to red which reportedly results in insignificant changes in 

crystal structure and molecular dynamics.[6] Figure S6 in the supporting information shows similar 

XRPD patterns of α-NP crystals before and after being exposed to visible light for 48 h.  

 

4.2 Solid-Liquid Equilibria of CA and α-NP 
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The mass-fraction solubility C of CA and α-NP as a function of temperature T in all four 

tested solvents is tabulated in the Supporting Information (Table S2 and S3 respectively) and plotted 

in Figure 2. The solubility of each compound was found to increase with increasing temperature in all 

four tested alcohols. Solution studies of both compounds involving HPLC measurements across the 

full temperature range and solvent range showed no signs of degradation of the compounds. 

 

 

Fig. 2. The mass-fraction solubility (C) versus temperature (T) in ▲, ethanol; ♦, 2-propanol; ■, 1-

butanol; ●, 1-pentanol for: (a) CA; (b) α-NP. The data is fitted using the NRTL model.  

 

The experimentally determined mass-fraction solubility of NP in ethanol was compared with literature 

values (Figure 3). The data show that the mass-fraction solubility is similar within the temperature 

range (20-45) °C. The variations in mass-fraction solubility outside the temperature range (20-45) °C 

might be explained by the difference in methodology for solubility determination. In the literature 

report, solubility was measured by monitoring the disappearance of crystals whereas our approach 

involved isothermal equilibrium measurements. In addition, the literature report does not mention 

which polymorph of NP was used and the variations in mass-fraction solubility might be the result of 

measurements on different polymorphs. 
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Fig. 3. The mass-fraction solubility (C) versus temperature (T) for NP in ethanol: ○ this work 

obtained through isothermal equilibrium gravimetric analysis; ■ Carrick obtained through a variation 

of the synthetic method [16]. 

 

The mass-fraction solubility of both CA and α-NP across the full temperature range follows 

the order ethanol > 2-propanol > 1-butanol > 1-pentanol. The solubility decreases monotonically with 

increasing number n of carbon atoms in the alkyl chain of the solvent (Figure 4). Solvents with longer 

alkyl chain lengths exhibit lower polarity and have more difficulty forming hydrogen bonds with the 

solute, overall leading to a lower solubility. The mass-fraction solubility of α-NP increases almost 

linearly whereas the mass-fraction solubility of CA increases exponentially with increasing number n 

of carbon atoms in the alkyl chain of the solvent. This solubility relationship for CA was also found 

for PA[22] which is very similar to CA in terms of molecular structure. The relative high solubility of 

α-NP could be attributed to its nitro group which, like the alcohol group, forms hydrogen bonds with 

the solvent molecules. Moreover, the electron withdrawing nature of the nitro group is expected to 

enhance the hydrogen-donating capability of the alcohol group which could further enhance hydrogen 

bonding and with that the solubility of NP in alcohols. 
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Fig. 4. The mass-fraction solubility (C) of ●, CA and ■, α-NP versus the number n of carbon atoms in 

the alkyl chain of the solvent at temperature T=55 °C. 

 

4.3 Thermodynamic Modelling of CA and α-NP  

For the description of the solubility of CA and α-NP using the thermodynamic models, 

experimental activity coefficients γ2 were needed which were calculated using the melting 

temperature Tm and the enthalpy of fusion ΔHfus. The melting temperature Tm and the enthalpy of 

fusion ΔHfus of α-NP is 381 K and 12 kJ mol-1 respectively.[6] Through DSC measurements we found 

that the melting temperature Tm of CA, determined as the onset of melting, is 448.80 K. This value 

corresponds to some of the reported literature values [23, 24], although most of the published melting 

temperatures Tm of CA fall within the temperature range of  (451.15-452.15) K[25-29]. The reported 

melting temperature range might have been determined from peak temperatures, as in our analysis the 

peak temperature would result in 451.88 K. For the estimation of experimental activity coefficients γ2 

we used the onset of melting of 448.80 K.  

The enthalpy of fusion ΔHfus of CA reported in literature corresponds to 40.75 kJ·mol-1 which 

was measured through the depression of the freezing point of the amine by benzene, dibromobenzene, 

or benzil in a Beckmann apparatus.[30] In our experiments, we used DSC to obtain an enthalpy of 

fusion ΔHfus of CA of 27.14 kJ·mol-1, which is similar to the enthalpy of fusion of 27.6  kJ·mol-1 of the 

structurally-related PA.[31] The difference between our experimental value and the literature value 

may be due to the difference in measurement technique. 
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Plots of the natural logarithm of the experimental activity coefficients γ2 for CA and α-NP as 

a function of temperature T are shown in Figure 5a. From eq 2 it follows that the experimental activity 

coefficient γ2 is inversely proportional to the solute mole fraction x2. This is reflected in the obtained 

solute mole fraction x2 (Table S2 and S3), which shows an inverse relationship to the activity 

coefficients γ2. The slightly larger deviation of CA from ideal solubility (ln(γ2) = 0) could be 

explained by its more complex chemical structure as compared to NP. The activity coefficients γ2 

exhibit a trend in relation to solvent type. The order of activity coefficients γ2 as a function of solvent 

can be explained by the chain length of the solvent, with short-chain alcohols resulting in stronger 

hydrogen bonding which result in larger deviations from ideal solubility. The activity coefficients γ2 

for pure PA range from (0.2 to 0.8) [17] and are therefore similar to the activity coefficients γ2 of CA. 

This could be explained by the similarities in terms of molecular structure. 

 

 

Fig. 5. a) Logarithm of the experimental activity coefficients (γ2) versus temperature (T) for CA (filled 

symbols) and α-NP (open symbols) in ▲, ethanol; ♦, 2-propanol, ■, 1-butanol and ●, 1-pentanol. b) 

The quality of fit expressed as the mean square error (MSE) for CA (filled) and α-NP (shaded) for 

each model. From left to right, the bars represent ethanol (orange), 2-propanol (red), 1-butanol (green) 

and 1-pentanol (blue). 

 

The calculated activity coefficients were used to model the experimental solubility data using 

four activity coefficient models. The estimated binary coefficients of each thermodynamic model and 
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the Apelblat parameters are reported in the Supporting Information (Table S4-S6). The quality of fit 

of these models to the experimental data is expressed as the mean square error (MSE) which is 

tabulated in the Supporting Information (Table S4 and S7) and plotted in Figure 5b. For each 

compound, the quality of fit of the model to the experimental data increases in the order Margules < 

van-Laar < Wilson < NRTL < Apelblat. This order can be explained by the number of adjustable 

parameters used in each of the models where more adjustable parameters lead to a better fit. The 

number of adjustable parameters is the same for the van-Laar model and the Wilson model, yet the 

temperature dependency is implicit in the van-Laar model which results in a poorer fit as compared to 

the Wilson model in which the temperature dependence is explicit. Except for ethanol, the quality of 

fit for CA increases with increasing solubility. For α-NP the quality of fit of the Margules, van-Laar 

and Wilson model increases with decreasing solubility. For the other models, no apparent trend was 

observed. 

 

4.4 Comparison of CA and α-NP to Paracetamol 

Figure 6 shows the difference in mass-fraction solubility ΔC (C impurity – C paracetamol) 

between α-NP and PA (positive values) and CA and PA (negative values) as a function of temperature 

T in each of the alcohols. An increase in the difference in mass-fraction solubility between impurity 

and PA (i.e. a larger deviation from 0 in Figure 6) is expected to lead to an increase in the efficiency 

of separation of the impurity from PA through crystallisation.  

The mass-fraction solubility of CA is lower than that of PA and the difference increases in the 

order 1-pentanol < 1-butanol < 2-propanol < ethanol. Furthermore, the mass-fraction solubility 

difference increases with increasing temperature in all solvents tested. The most efficient separation 

conditions to remove CA from PA are expected to involve high temperatures and short chain alcohols 

(i.e. ethanol). The relative low mass-fraction solubility of CA could be ascribed to its lack of having 

an alcohol group which in PA notably enhances the solubility due to its hydrogen bond donating 

capability. 

The mass-fraction solubility C of α-NP is significantly larger than the mass-fraction solubility 

of PA in all tested solvents. Such large differences in solubility suggest that separation of α-NP from 
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PA should be efficient. The difference in mass-fraction solubility between NP and PA increases in the 

order 1-pentanol < 1-butanol < ethanol < 2-propanol. Therefore, the most suitable solvent to remove 

α-NP from PA would be 2-propanol. 

 

 

Fig. 6. a) The mass-fraction solubility difference ΔC between the mass-fraction solubility of α-NP and 

PA (positive values) and CA and PA (negative values) as a function of temperature (T). Mass-fraction 

solubility data of PA was used from literature.[17] From left to right, the bars represent the mass-

fraction solubility difference in ethanol (orange), 2-propanol (red), 1-butanol (green) and 1-pentanol 

(blue).  

 

The similarity between CA and PA in terms of molecular structure (Figure 1) is reflected in 

the similar solubility of each compound. On the other hand, the molecular structure of α-NP differs 

significantly from PA and hence its solubility is markedly different.  

 

4.5 Crystallisation of Paracetamol in the Presence of Impurities 

The effect of the impurities on the crystal shape of PA was analysed using scanning electron 

microscopy (SEM). In the absence of impurities, cooling crystallisation of PA at temperature T=15 °C 

from 2-propanol resulted in an apparent wide size distribution of tabular crystals (Figure 7a). Cooling 

crystallisation of PA from 2-propanol in the presence of 0.10 mole fraction of α-NP resulted in an 

apparent narrow size distribution of small tabular crystals (Figure 7b). The crystal shape of PA did not 
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change as a result of the α-NP impurity which suggests that the impurity did not selectively inhibit the 

crystal growth of a specific crystal face. On the other hand, the molecular similarity between CA and 

PA resulted in face specific crystal growth inhibition giving rise to needle-shaped crystals of PA 

(Figure 7c). These changes in crystal habit were also observed in combination with 0.001 mole 

fractions of impurities. Despite these dramatic changes in crystal shape, the presence of the impurities 

did not change the polymorphic form of PA Form I across all the solvents and temperature tested in 

this work (Figure S4). Therefore, although the impurities inhibit the crystal growth rate, the 

intermolecular interactions between molecules in PA Form I are sufficiently strong to retain its 

polymorphic form. 

 

 

Fig. 7. SEM Images of PA obtained through cooling crystallisation from 2-propanol at temperature 

(T) of 15 °C: (a) without impurities; (b) with 0.10 mole fraction of α-NP; (c) with 0.10 mole fraction 

of CA. 

 

In the presence of 0.10 mole fraction of α-NP, cooling crystallisation experiments of PA 

typically resulted in product crystals containing >0.99 mole fraction of PA. The significant difference 

in functional groups between α-NP and PA prevents incorporation of α-NP molecules into the 

growing PA crystal lattice. In addition, α-NP is much more soluble in alcohols than PA (Figure 6) and 

recrystallization of PA from α-NP therefore proceeds in a highly selective manner, giving highly pure 

PA products crystals. Therefore, purification of PA from α-NP proceeds efficiently as is reflected in 

our recent study where mother liquor fractions were recycled in crystallisation experiments.[32] 

 On the other hand, crystallisation experiments of PA in the presence of 0.10 mole fraction of 

CA resulted in product crystals with lower purities in the order of 0.98 mole fraction of PA. Due to 
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the structural similarity between CA and PA, CA is expected to easily incorporate into the crystal 

lattice of PA. In addition, CA has a similar solubility as compared to PA in alcohols and 

recrystallization of PA from CA was therefore found to be challenging.  

 

5. CONCLUSIONS 

The solubility of 4-nitrophenol (NP) and 4’-chloroacetanilide (CA) increases with increasing 

temperature and solvent order ethanol > 2-propanol > 1-butanol > 1-pentanol. The quality of fit of the 

tested thermodynamic models to the experimental data increases in the order Margules < van-Laar < 

Wilson < NRTL < Apelblat. The solubility of α-NP is significantly higher than the solubility of 

paracetamol (PA) whereas the solubility of CA is slightly lower than that of PA. Recrystallisation of 

PA in the presence of α-NP resulted in small and uniform pure PA crystals whereas recrystallisation 

of PA in the presence of CA resulted in large needle-shaped PA crystals contaminated with CA. These 

results can be rationalised by the molecular similarities and solubility differences between the 

impurities and the target compound. Overall this study provides fundamental information on the solid-

liquid properties of structurally-related impurities of PA that are essential for the design of solution 

crystallisation strategies for the purification of PA from its main impurities. 
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NOMENCLATURE 

Abbreviations 

CA 4’-chloroacetanilide 

DSC differential scanning calorimetry 

GC gas chromatography  

HPLC high performance liquid chromatography 

LC liquid chromatography 

MSE mean squared error 

MW molecular weight 

NP 4-nitrophenol 

PA paracetamol 

PTFE polytetrafluoroethylene 

SEM scanning electron microscopy 

UV ultraviolet 

XRPD x-ray powder diffraction 
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Variables and Constants with Units and Symbols  

aA First Apelblat parameter 

a2 Solute activity 

A Margules binary interaction parameter 

Avl First Van-Laar interaction parameter 

bA Second Apelblat parameter 

Bvl Second Van-Laar interaction parameter 

cA Third Apelblat parameter 

C Mass-fraction solubility [gsol/Kgsolution] 

CR Concentration range of the HPLC calibration series 

ΔCp Exchange of heat capacity at constant pressure evaluated at melting point [J/mol/K] 

gij NRTL binary interaction parameter 

Gij Corrected temperature-dependent NRTL binary interaction parameter 

ΔHfus Exchange of enthalpy of fusion evaluated at melting point [KJ/mol] 

I Impurity content [mole fraction] 

k Boltzmann constant [J/K] 

Mwsolute Molecular weight solute [g/mol] 

Mwsolvent Molecular weight solvent [g/mol] 

n Number of carbon atoms of solvent 

P Pressure [Pa] 

R Ideal gas constant [J/mol/K] 

T Temperature [°C] 

Tt Triple-point temperature [K] 

Tm Melting temperature [K] 

tR Retention time HPLC peaks [min] 

vi  Molar volume of the solute [cm3/mol] 

vj Molar volume of the solvent [cm3/mol] 

x2 Solute molar fraction 
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X Composition of HPLC mobile phase [v/v%]  

 

Greek Letters 

α NRTL non-randomness parameter 

α-NP The alpha polymorphic form of 4-nitrophenol 

β-NP The beta polymorphic form of 4-nitrophenol 

γ2 Activity coefficient referred to the solute 

λ Wavelength used in HPLC analysis [nm] 

λij Wilson binary interaction parameter 

λx Wavelength used in XRPD measurements [Å] 

Λij Temperature-dependent Wilson binary interaction parameter 

τij Temperature-dependent NRTL binary interaction parameter 

θ Set of binary interaction parameters for each activity equation model 
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DSC Data 

 
Fig. S1. DSC Thermogram of CA. The onset temperature of melting, obtained by taking the inflection point, 

was used as the melting temperature Tm. 

HPLC Data 
Table S1. HPLC Conditions for the Compounds Studied in this Work, Including Methanol / 

Phosphate Buffer Composition X of Mobile Phase, Wavelength λ of Detection, Retention Time tR, and 

Concentration Range CR. 

chemical name CR [mg/L] X [v/v%] λ [nm] tR [min] 

paracetamol (PA) 0-469 80/20 254 1.481 

paracetamol (PA) 0-469 50/50 254 1.720 

4’-chloroacetanilide (CA) 0-490 80/20 254 2.098 

4-nitrophenol (NP) 0-130 50/50 310 4.576 
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Fig. S2. HPLC calibration lines in which the concentration C is plotted versus the peak area A for a) PA, b) NP, 

c) CA. The equation for the linear calibration line and the quality R2 of its fit is shown in each graph. 
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XRPD Data 

 

Fig. S3. XRPD Patterns of PA. a) After solubility measurements in the presence of 0.10 mole fraction of CA, b) 

after solubility measurements in the presence of 0.10 mole fraction of NP, c) raw material from Sigma Aldrich 

and d) Form I (CSD structure refcode HXACAN01). 

 

 

Fig. S4. XRPD Patterns of CA. a) Representative sample after solubility measurements, b) raw material from 

Sigma Aldrich and c) CSD structure refcode CLACTN. 
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Fig. S5. XRPD Patterns of NP. a) Representative sample after solubility measurements, b) raw material from 

Alfa Aesar, c) α-NP (CSD structure refcode NITPOL01) and d) β-NP (CSD structure refcode NITPOL). 

 

 
Fig. S6. XRPD Patterns of α-NP crystals before (bottom) and after (top) being exposed for 48 hours to visible 

light. The insets show photographs of the crystals. 
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Solubility Data Impurities 
Table S2. Experimental Mass-Fraction Solubility C, Mole Fraction Solubility xexp and Calculated Mole 

Fraction Solubility Data of CA in Four Different Alcohols at Saturation Temperature T and Pressure p = 

0.1 MPa.a 

T [K] C [g/kg] xexp xapel xMarg xVL xW xNRTL 

ethanol 

278.15 31.286 0.0087 0.0085 0.0064 0.0065 0.0073 0.0085 

283.15 35.090 0.0098 0.0099 0.0079 0.0080 0.0087 0.0098 

288.15 40.611 0.0114 0.0114 0.0098 0.0098 0.0105 0.0114 

293.15 45.181 0.0127 0.0131 0.0120 0.0119 0.0124 0.0131 

298.15 53.320 0.0151 0.0151 0.0147 0.0144 0.0147 0.0150 

303.15 60.802 0.0173 0.0173 0.0178 0.0172 0.0173 0.0173 

308.15 69.872 0.0200 0.0198 0.0214 0.0205 0.0202 0.0198 

313.15 78.630 0.0227 0.0226 0.0256 0.0243 0.0235 0.0226 

318.15 88.453 0.0257 0.0258 0.0305 0.0286 0.0273 0.0258 

323.15 100.02 0.0293 0.0293 0.0362 0.0335 0.0315 0.0294 

328.15 112.70 0.0333 0.0333 0.0427 0.0391 0.0362 0.0334 

2-propanol 

278.15 25.394 0.0091 0.0093 0.0066 0.0069 0.0073 0.0092 

283.15 28.862 0.0104 0.0104 0.0082 0.0084 0.0088 0.0104 

288.15 33.542 0.0121 0.0118 0.0101 0.0103 0.0106 0.0119 

293.15 36.948 0.0134 0.0134 0.0124 0.0125 0.0126 0.0134 

298.15 41.179 0.0150 0.0153 0.0151 0.0151 0.0150 0.0152 

303.15 47.568 0.0174 0.0174 0.0183 0.0181 0.0177 0.0174 

308.15 53.885 0.0198 0.0199 0.0220 0.0215 0.0208 0.0198 

313.15 62.465 0.0231 0.0228 0.0263 0.0255 0.0243 0.0228 

318.15 70.797 0.0263 0.0261 0.0314 0.0300 0.0283 0.0261 

323.15 79.325 0.0296 0.0301 0.0371 0.0352 0.0327 0.0299 

328.15 92.231 0.0348 0.0346 0.0438 0.0410 0.0378 0.0347 

1-butanol 

278.15 24.777 0.0110 0.0108 0.0079 0.0081 0.0086 0.0109 

283.15 27.409 0.0122 0.0123 0.0098 0.0100 0.0104 0.0124 

288.15 32.125 0.0143 0.0140 0.0121 0.0122 0.0125 0.0141 

293.15 35.739 0.0159 0.0160 0.0147 0.0148 0.0149 0.0160 

298.15 39.858 0.0178 0.0182 0.0179 0.0178 0.0177 0.0181 

303.15 46.137 0.0207 0.0208 0.0216 0.0213 0.0209 0.0207 

308.15 52.414 0.0236 0.0237 0.0259 0.0254 0.0246 0.0236 

313.15 60.165 0.0272 0.0270 0.0309 0.0301 0.0287 0.0270 

318.15 68.769 0.0313 0.0308 0.0367 0.0354 0.0334 0.0309 

323.15 76.476 0.0349 0.0351 0.0433 0.0415 0.0386 0.0352 

328.15 86.995 0.0400 0.0400 0.0510 0.0484 0.0445 0.0403 

1-pentanol 

278.15 23.267 0.0122 0.0121 0.0091 0.0092 0.0098 0.0123 

283.15 26.636 0.0140 0.0139 0.0112 0.0113 0.0118 0.0140 

288.15 30.405 0.0160 0.0159 0.0138 0.0138 0.0142 0.0159 

293.15 34.112 0.0180 0.0182 0.0168 0.0167 0.0170 0.0181 

298.15 38.711 0.0205 0.0207 0.0204 0.0202 0.0202 0.0206 

303.15 43.265 0.0230 0.0237 0.0245 0.0242 0.0238 0.0234 

308.15 50.696 0.0270 0.0270 0.0293 0.0288 0.0279 0.0269 

313.15 58.409 0.0312 0.0309 0.0349 0.0341 0.0326 0.0308 

318.15 66.130 0.0355 0.0352 0.0413 0.0402 0.0380 0.0352 

323.15 74.642 0.0402 0.0401 0.0487 0.0471 0.0439 0.0402 

328.15 83.528 0.0452 0.0456 0.0571 0.0549 0.0506 0.0459 
a Standard uncertainty for temperature is u(T) = 0.2 K. Type A relative standard uncertainties for pressure and 

mass-fraction solubility and mole fraction solubility are ur(p)=0.05, ur(C)=0.0185 and ur(x2) =0.0156, 

respectively. 
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Table S3. Experimental Mass-Fraction Solubility C and Mole Fraction Solubility xexp and Calculated 

Mole Fraction Solubility Data of α-NP in Four Different Alcohols at Temperature T and Pressure p=0.1 

MPa.a 

T [K] C [g/kg] xexp xapel xMarg xVL xW xNRTL 

ethanol 

278.15 575.56 0.3099 0.3053 0.2765 0.3313 0.3048 0.3118 

283.15 593.59 0.3260 0.3235 0.3009 0.3257 0.3227 0.3252 

288.15 604.94 0.3365 0.3422 0.3270 0.3409 0.3421 0.3410 

293.15 627.32 0.3579 0.3614 0.3533 0.3519 0.3604 0.3570 

298.15 645.81 0.3765 0.3810 0.3810 0.3721 0.3797 0.3751 

303.15 670.25 0.4023 0.4010 0.4092 0.3941 0.3987 0.3947 

308.15 686.05 0.4198 0.4214 0.4395 0.4217 0.4197 0.4167 

313.15 709.44 0.4471 0.4423 0.4700 0.4499 0.4401 0.4405 

318.15 729.28 0.4715 0.4635 0.5020 0.4808 0.4619 0.4665 

323.15 740.59 0.4860 0.4851 0.5363 0.5144 0.4861 0.4942 

328.15 750.96 0.4996 0.5070 0.5719 0.5496 0.5114 0.5235 

2-propanol 

278.15 532.26 0.3296 0.3255 0.2948 0.3355 0.3161 0.3359 

283.15 552.14 0.3475 0.3448 0.3191 0.3393 0.3350 0.3469 

288.15 561.22 0.3559 0.3640 0.3461 0.3604 0.3565 0.3619 

293.15 582.47 0.3760 0.3831 0.3723 0.3728 0.3763 0.3760 

298.15 609.68 0.4029 0.4021 0.3985 0.3870 0.3954 0.3912 

303.15 628.75 0.4225 0.4207 0.4271 0.4098 0.4167 0.4098 

308.15 650.18 0.4454 0.4391 0.4562 0.4343 0.4380 0.4302 

313.15 660.48 0.4567 0.4572 0.4886 0.4646 0.4624 0.4533 

318.15 679.05 0.4776 0.4749 0.5204 0.4939 0.4858 0.4778 

323.15 688.55 0.4885 0.4921 0.5552 0.5273 0.5119 0.5043 

328.15 705.52 0.5086 0.5090 0.5895 0.5603 0.5372 0.5327 

1-butanol 

278.15 422.18 0.2802 0.2838 0.2471 0.2839 0.2670 0.2902 

283.15 452.04 0.3053 0.2986 0.2707 0.2829 0.2849 0.3001 

288.15 465.77 0.3172 0.3142 0.2957 0.3045 0.3050 0.3132 

293.15 473.92 0.3243 0.3306 0.3220 0.3297 0.3264 0.3277 

298.15 497.71 0.3455 0.3479 0.3497 0.3543 0.3471 0.3436 

303.15 518.12 0.3642 0.3661 0.3787 0.3819 0.3688 0.3616 

308.15 551.25 0.3956 0.3853 0.4090 0.4108 0.3901 0.3826 

313.15 562.38 0.4064 0.4054 0.4408 0.4422 0.4144 0.4039 

318.15 581.11 0.4250 0.4265 0.4738 0.4749 0.4388 0.4279 

323.15 602.15 0.4464 0.4487 0.5082 0.5089 0.4640 0.4544 

328.15 627.70 0.4732 0.4720 0.5439 0.5443 0.4897 0.4844 

1-pentanol 

278.15 376.94 0.2771 0.2772 0.2374 0.2343 0.2530 0.2827 

283.15 390.26 0.2886 0.2913 0.2606 0.2568 0.2725 0.2929 

288.15 415.67 0.3107 0.3061 0.2855 0.2806 0.2919 0.3044 

293.15 424.28 0.3183 0.3217 0.3113 0.3056 0.3135 0.3178 

298.15 446.59 0.3383 0.3381 0.3389 0.3319 0.3347 0.3331 

303.15 471.94 0.3616 0.3553 0.3680 0.3595 0.3566 0.3507 

308.15 483.44 0.3723 0.3734 0.3981 0.3883 0.3805 0.3691 

313.15 503.71 0.3914 0.3924 0.4298 0.4185 0.4045 0.3902 

318.15 517.84 0.4050 0.4123 0.4628 0.4499 0.4299 0.4124 

323.15 550.35 0.4368 0.4332 0.4977 0.4826 0.4549 0.4405 

328.15 569.24 0.4557 0.4551 0.5336 0.5166 0.4820 0.4682 
a Standard uncertainty for temperature is u(T) = 0.2 K. Type A relative standard uncertainties for 

pressure, mass-fraction solubility and mole solubility are ur(p)=0.05, ur(C)=0.0051 and ur(x2)=0.0033, 

respectively. 
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Modelling Data 
 

Table S4. Apelblat Parameters and Mean Square Error (MSE) for Each Solubility System. 

solute solvent aA bA cA MSE 

CA ethanol -5.6796 × 101 2.5280 × 102 9.0833 2.0213 × 10-5 

CA 2-propanol -1.5919 × 102 4.9285 × 103 2.4305 × 101 1.8292 × 10-6 

CA 1-butanol -1.0570 × 102 2.5457 × 103 1.6351 × 101 4.9189 × 10-6 

CA 1-pentanol -9.0249 × 101 1.8314 × 103 1.4081 × 101 2.8515 × 10-5 

α-NP ethanol -1.4472 -7.6476×102 5.3483×10-1 4.9799×10-5 

α-NP 2-propanol 3.0708×101 -2.1149×103 -4.3046 1.2214×10-4 

α-NP 1-butanol -3.8500×101 8.9547×102 6.0448 4.2390×10-4 

α-NP 1-pentanol -3.7694×101 8.7787×102 5.9087 1.4614×10-5 

 

Table S5. Estimated Binary Coefficients for CA in Four Different Alcohols Using Margules, van Laar, 

Wilson and NRTL Models. 

 Margules van Laar Wilson NRTL 

solvent A AVL BVL λ12 λ21 g12 g21 α 
ethanol 1.4002×103 6.5680×107 5.6820×10-1 1.4380×106 -2.9548×103 4.9852×105 -4.8863×105 8.8042×10-5 
2-propanol 1.3257×103 5.0124×107 5.1912×10-1 4.4706×106 -2.3350×103 3.2455×104 -2.0450×104 4.9412×10-2 
1-butanol 8.9549×102 9.7574×106 3.5331×10-1 8.0444×105 -2.3132×103 3.4470×104 -2.3530×104 3.6562×10-2 
1-pentanol 5.6534×102 1.2045×106 2.2596×10-1 6.7408×105 -2.2213×103 3.3217×104 -2.3112×104 3.6149×10-2 

 

Table S6. Estimated Binary Coefficients for α-NP in Four Different Alcohols Using Margules, van Laar, 

Wilson and NRTL Models. 

 Margules van Laar Wilson NRTL 

solvent A AVL BVL λ12 λ21 g12 g21 α 

ethanol -5.6016×102 1.7100×10-2 -5.4401×10-2 7.3124×105 -4.2806×103 1.4264×106 -1.4173×106 1.1789×10-5 
2-propanol -9.2241×102 8.1376×10-2 -3.3896×10-1 4.2548×105 -3.7926×103 3.3489×106 -3.3385×106 2.4828×10-6 
1-butanol -1.1749×101 -2.4050×10-3 2.5809×10-3 4.0882×105 -2.8182×103 3.3495×106 -3.3379×106 2.5442×10-6 
1-pentanol 1.4881×102 -1.0966×10-2 1.0170×10-2 3.0981×105 -2.2612×103 1.9278×106 -1.9140×106 9.1052×10-6 

 

Table S7. Mean Squared Errors (MSE) of the Fitted Thermodynamic Models for Each Solvent and 

Solute. 

solute solvent Margules van Laar Wilson NRTL MSEmax/MSEmin 

CA ethanol 3.7806×10-2 2.5415×10-2 6.3107×10-3 1.0449×10-4 3.6182×102 

CA 2-propanol 4.8002×10-2 4.3607×10-2 1.6110×10-2 2.1622×10-4 2.2200×102 

CA 1-butanol 4.0655×10-2 3.4473×10-2 1.2943×10-2 1.7189×10-4 2.3652×102 

CA 1-pentanol 3.5145×10-2 3.3224×10-2 1.2726×10-2 1.7624×10-4 1.9942×102 

α-NP ethanol 7.1766×10-3 1.3303×10-3 2.9108×10-4 4.1233×10-4 2.4655×101 

α-NP 2-propanol 8.2794×10-3 2.5874×10-3 1.3751×10-3 9.7714×10-4 8.4731 

α-NP 1-butanol 1.1196×10-2 9.5545×10-3 1.6522×10-3 5.9021×10-4 1.8969×101 

α-NP 1-pentanol 1.3732×10-2 1.2356×10-2 2.7941×10-3 5.2836×10-4 2.5990×101 
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