Apendix

PROOF OF LEMMA 1.

From Equation (2), we can obtain that $\frac{\partial \pi^{S C-0}(p)}{\partial p}=\bar{a}-2 k p+\bar{M}, \frac{\partial^{2} \pi^{S C-0}(p)}{\partial p^{2}}=-2 k<0$. Thus, when $\frac{\partial \pi^{S C-0}(p)}{\partial p}=0$, Equation (2) will arrive the maximal value. Then, we can obtain the optimal decisions shown in Lemma 1(i). Next, we find $\frac{\partial \pi^{S C-0 *}}{\partial C}=\frac{C\left(b_{0}^{2} e_{0}^{2} k^{2}(1+r)^{2}-4 b_{0} k\right)}{2 k}+$ $\frac{4 a_{0} k+2 a b_{0} e_{0} k(1+r)-2 a_{0} b_{0} e_{0}^{2} k^{2}(1+r)^{2}+2 b_{0} e_{0} k\left(2 Q+k p_{0} r(1+r)\right)}{4 k}$ and $\frac{\partial^{2} \pi^{S C-0 *}}{\partial C^{2}}=\frac{b_{0}^{2} e_{0}^{2} k^{2}(1+r)^{2}-4 b_{0} k}{2 k}$. When $C=0$, $\frac{\partial \pi^{S C-0 *}}{\partial C}>0$. If $r>\left(2-e_{0} \sqrt{b_{0} k}\right) /\left(e_{0} \sqrt{b_{0} k}\right), \frac{\partial^{2} \pi^{S C-0 *}}{\partial C^{2}}>0 . \frac{\partial \pi^{S C-0 *}}{\partial C}$ is increasing in C and always larger than zero, thus, $\pi^{S C-0 *}$ is increasing in C; otherwise, if $r \leq\left(2-e_{0} \sqrt{b_{0} k}\right) /\left(e_{0} \sqrt{b_{0} k}\right)$, $\frac{\partial^{2} \pi^{S C-0 *}}{\partial C^{2}}<0 . \frac{\partial \pi^{S C-0 *}}{\partial C}$ is linear decreasing in C, thus, there must be a C_{0} that $\frac{\partial^{2} \pi^{S C-0 *}}{\partial C^{2}}=0$ and when $C>C_{0}, \frac{\partial \pi^{S C-0 *}}{\partial C}<0$. Thus, $\pi^{S C-0 *}$ is firstly increasing in C and then decreasing in C. Therefore, we can obtain the results in Lemma 1(ii).

PROOF OF LEMMA 2.

From Equation (4), we can obtain $\frac{\partial \pi_{p}^{D R-0}(p)}{\partial p}=\bar{a}-2 k p+k \omega, \frac{\partial^{2} \pi_{p}^{D R-0}(p)}{\partial p^{2}}=-2 k<0$. Thus, the platform's response function is $p^{D R-0 *}=(\bar{a}+k \omega) / 2 k$. After submitting the response function to Equation (3), we can obtain $\frac{\partial \pi_{m}^{D R-0}(\omega)}{\partial \omega}=\frac{1}{2}\left(\bar{a}-k r p_{0}-2 k \omega+k e_{0}\left(a_{0}-b_{0} C\right)\right), \frac{\partial^{2} \pi_{m}^{D R-0}(\omega)}{\partial \omega^{2}}=-k<0$. Similarly, there is an optimal wholesale price $\omega^{D R-0 *}=\frac{\bar{a}+\bar{M}}{2 k}$ to maximize the manufacturer's profit. Thus, we obtain the optimal retail price as $p^{D R-0 *}=\frac{3 \bar{a}+\bar{M}}{4 k}$, and the optimal profits of the manufacturer and the platform are $\pi_{m}^{D R-0 *}=\frac{(\bar{a}-\bar{M})^{2}}{8 k}+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)$ and $\pi_{p}^{D R-0 *}=\frac{(\bar{a}-\bar{M})^{2}}{16 k}$, respectively.

PROOF OF LEMMA 3.

From Equation (5), we can obtain $\frac{\partial \pi_{p}^{D M-0}(p)}{\partial p}=\bar{a}(1-\phi)+\bar{M}-2 p k(1-\phi), \frac{\partial^{2} \pi_{p}^{D M-0}(p)}{\partial p^{2}}=-2 k(1-$ $\phi)<0$. Thus, there is an optimal retail price to maximize the manufacturer's profit. We can obtain the optimal retail price as $\frac{\partial \pi_{p}^{D M-0}(p)}{\partial p}=0$. So, we have $p^{D M-0 *}=(\bar{a}(1-\phi)+\bar{M}) /(2 k(1-\phi))$ in the decentralized solution with marketplace mode, and the maximal profits of the manufacturer and the platform are $\pi_{m}^{D M-0 *}=\frac{(\bar{a}(1-\phi)-\bar{M})^{2}}{4 k(1-\phi)}+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)-F$ and $\pi_{p}^{D M-0 *}=\frac{\phi\left((\bar{a}(1-\phi))^{2}-\bar{M}^{2}\right)}{4 k(1-\phi)^{2}}+F$, respectively.

PROOF OF COROLLARY 1.

We make the difference between profits of the manufacturer with marketplace mode and reselling mode.
$\pi_{d i f f e r e n c e}^{0 *}=\pi_{m}^{D M-0 *}-\pi_{m}^{D R-0 *}=\frac{(\bar{a}(1-\phi)-\bar{M})^{2}}{4 k(1-\phi)}-F-\frac{(\bar{a}-\bar{M})^{2}}{8 k}=\frac{1}{2}\left(2 \bar{a}^{2}(1-\phi)+\frac{2 \bar{M}^{2}}{1-\phi}-(\bar{a}+\bar{M})^{2}\right)-F$
When $\phi=1-\frac{\bar{M}}{\bar{a}}$, we get the maximal level of $\pi_{\text {difference }}^{0 *}=4 \bar{a} \bar{M}-(\bar{a}+\bar{M})^{2}-F$. Obviously, $(\bar{a}+\bar{M})^{2}>4 \bar{a} \bar{M}, \pi_{\text {difference }}^{0 *}$ is decreasing in ϕ. Thus, we find when $\phi=\phi_{0}, \pi_{\text {difference }}^{0 *}=0$. Therefore, when $0<\phi<\phi_{0}, \pi_{\text {difference }}^{0 *}>0$; otherwise, $\pi_{\text {difference }}^{0 *}<0$, where, $\phi_{0}=1-$ $\frac{(\bar{a}+\bar{M})^{2}+2 F+\sqrt{\left((\bar{a}+\bar{M})^{2}-2 F\right)^{2}-16 \bar{a}^{2} \bar{M}^{2}}}{4 \bar{a}^{2}}$.

PROOF OF PROPOSITION 1.

(i) When $\bar{q}+r \bar{q}-q^{S C-0 *}-r q^{S C-0 *}>0$, we find $p<\widetilde{p}$, where $\widetilde{p}=(\bar{a}+2 \Delta a+\bar{M}) / 2 k$. In this case, $\pi^{S C}(p)=p_{0}(Q+r \bar{q})+p \bar{q}-\left(a_{0}-b_{0} C\right)\left(e_{0}(Q+r \bar{q}+\bar{q})-C\right)-\lambda_{1}\left(\bar{q}+r \bar{q}-q^{S C-0 *}-r q^{S C-0 *}\right)$. From Equation (7), we can obtain $\frac{\partial \pi_{p}^{S C}(p)}{\partial p}=\bar{a}+\Delta a-2 k p+\bar{M}+\lambda_{1} k(1+r), \frac{\partial^{2} \pi_{p}^{S C}(p)}{\partial p^{2}}=-2 k<0$. Thus, there is an optimal retail price that provides the maximal profits. We obtain the optimal retail price as $\frac{\partial \pi_{p}^{S C}(p)}{\partial p}=0$. So, we have $p^{S C *}=\frac{\bar{a}+\Delta a+\bar{M}}{2 k}+\frac{\lambda_{1}}{2}(1+r)$.

Comparing $p^{S C *}$ and \widetilde{p}, we find when $\Delta a>\lambda_{1} k(1+r), p^{S C *}<\widetilde{p}$, thus the optimal retail price is $p^{S C *}=\frac{\bar{a}+\Delta a+\bar{M}}{2 k}+\frac{\lambda_{1}}{2}(1+r), \pi^{S C *}=\frac{(\bar{a}-\bar{M})(\bar{a}+2 \Delta a-\bar{M})+\left(\Delta a-\lambda_{1} k(1+r)\right)^{2}}{4 k}+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)$; otherwise, $p^{S C *} \geq \widetilde{p}$. Thus, the optimal retail price is $p^{S C *}=\widetilde{p}=(\bar{a}+2 \Delta a+\bar{M}) / 2 k, \pi^{S C *}=$ $\frac{(\bar{a}-\bar{M})(\bar{a}+2 \Delta a-\bar{M})}{4 k}+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)$.
(ii) When $\bar{q}+r \bar{q}-q^{S C-0 *}-r q^{S C-0 *} \leq 0$, we find $p \geq \widetilde{p}$. In this case, $\pi^{S C}(p)=p_{0}(Q+r \bar{q})+$ $p \bar{q}-\left(a_{0}-b_{0} C\right)\left(e_{0}(Q+r \bar{q}+\bar{q})-C\right)-\lambda_{2}\left(q^{S C-0 *}+r q^{S C-0 *}-\bar{q}-r \bar{q}\right)$. From Equation (7), we can obtain $\frac{\partial \pi_{p}^{S C}(p)}{\partial p}=\bar{a}+\Delta a-2 k p+\bar{M}-\lambda_{2} k(1+r), \frac{\partial^{2} \pi_{p}^{S C}(p)}{\partial p^{2}}=-2 k<0$. Thus, there is an optimal retail price that provides the maximal profits. We obtain the optimal retail price as $\frac{\partial \pi_{p}^{S C}(p)}{\partial p}=0$. So, we have $p^{S C *}=\frac{\bar{a}+\Delta a+\bar{M}}{2 k}-\frac{\lambda_{1}}{2}(1+r)$.

Comparing $p^{S C *}$ and \widetilde{p}, we find when $\Delta a<-\lambda_{2} k(1+r), p^{S C *}>\widetilde{p}$, thus the optimal retail price is $p^{S C *}=\frac{\bar{a}+\Delta a+\bar{M}}{2 k}-\frac{\lambda_{2}}{2}(1+r), \pi^{S C *}=\frac{(\bar{a}-\bar{M})(\bar{a}+2 \Delta a-\bar{M})+\left(\Delta a+\lambda_{2} k(1+r)\right)^{2}}{4 k}+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)$; otherwise, $p^{S C *} \leq \widetilde{p}$, thus the optimal retail price is $p^{S C *}=\widetilde{p}=(\bar{a}+2 \Delta a+\bar{M}) / 2 k, \pi^{S C *}=$
$\frac{(\bar{a}-\bar{M})(\bar{a}+2 \Delta a-\bar{M})}{4 k}+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)$.
Therefore, based on the solutions in case(i) and (ii), we divide Δa into three cases in PROPOSITION 1.

PROOF OF PROPOSITION 2.

From Equation (8), we can obtain $\frac{\partial \pi_{p}^{D R}(p)}{\partial p}=\bar{a}+\Delta a-2 k p+k \omega, \frac{\partial^{2} \pi_{p}^{D R}(p)}{\partial p^{2}}=-2 k<0$. Thus, there is an optimal retail price that provides the maximal profits. We obtain the optimal price as $\frac{\partial \pi_{p}^{D R}(p)}{\partial p}=0$. So, we have $p^{D R *}=(\bar{a}+\Delta a+k \omega) / 2 k$. We then determine the wholesale prices ω.
(i) When $\bar{q}+r \bar{q}-q^{D R-0 *}-r q^{D R-0 *}>0$, we find $\omega<\widetilde{\omega}$, where $\widetilde{\omega}=(\bar{a}+2 \Delta a+\bar{M}) / 2 k$. In this case, $\pi_{m}^{D R}(\omega)=p_{0}(Q+r \bar{q})+\omega \bar{q}-\left(a_{0}-b_{0} C\right)\left(e_{0}(Q+r \bar{q}+\bar{q})-C\right)-\lambda_{1}\left(\bar{q}+r \bar{q}-q^{D R-0 *}-r q^{D R-0 *}\right)^{+}$and $\pi_{p}^{D R}(p)=(p-\omega) \bar{q}$. Then, we get $\frac{\partial \pi_{p}^{D R}(\omega)}{\partial \omega}=\left(\bar{a}+\Delta a-2 k \omega+\bar{M}+\lambda_{1} k(1+r)\right) / 2, \frac{\partial^{2} \pi_{p}^{D R}(\omega)}{\partial \omega^{2}}=-2 k<0$. Thus, there is an optimal wholesale price that provides the maximal profits. We obtain the optimal wholesale price as $\frac{\partial \pi_{p}^{D R}(\omega)}{\partial \omega}=0$. So, we have $\omega^{D R *}=\frac{\bar{a}+\Delta a+\bar{M}}{2 k}+\frac{\lambda_{1}}{2}(1+r)$. Thus, we obtain the optimal retail price as $p^{D R *}=\frac{3 \bar{a}+3 \Delta a+\bar{M}}{4 k}+\frac{\lambda_{1}}{4}(1+r)$.

Comparing $\omega^{D R *}$ and $\widetilde{\omega}$, we find when $\Delta a \geq \lambda_{1} k(1+r), \omega^{D R *}<\widetilde{\omega}$, thus the optimal wholesale price and retail price are $\omega^{D R *}=\frac{\bar{a}+\Delta a+\bar{M}}{2 k}+\frac{\lambda_{1}}{2}(1+r)$ and $p^{D R *}=\frac{3 \bar{a}+3 \Delta a+\bar{M}}{4 k}+\frac{\lambda_{1}}{4}(1+r)$, the maximal profits of the manufacturer and the platform are $\pi_{m}^{D R *}=\frac{(\bar{a}-\bar{M})(\bar{a}+2 \Delta a-\bar{M})+\left(\Delta a-\lambda_{1} k(1+r)\right)^{2}}{8 k}+p_{0} Q+\left(a_{0}-\right.$ $\left.b_{0} C\right)\left(C-Q e_{0}\right)$ and $\pi_{p}^{D R *}=\frac{\left(\bar{a}+\Delta a-\bar{M}-\lambda_{1} k(1+r)\right)^{2}}{16 k}$, respectively; otherwise, the optimal wholesale price and retail price are $\omega^{D R *}=\widetilde{\omega}=(\bar{a}+2 \Delta a+\bar{M}) / 2 k$ and $p^{D R *}=(3 \bar{a}+4 \Delta a+\bar{M}) / 4 k$, the maximal profits of the manufacturer and the platform are $\pi_{m}^{D R *}=\frac{(\bar{a}-\bar{M})(\bar{a}+2 \Delta a-\bar{M})}{8 k}+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)$ and $\pi_{p}^{D R *}=\frac{(\bar{a}-\bar{M})^{2}}{16 k}$, respectively.
(ii) When $\bar{q}+r \bar{q}-q^{D R-0 *}-r q^{D R-0 *} \leq 0$, we find $\omega \geq \widetilde{\omega}$. In this case, $\pi_{m}^{D R}(\omega)=p_{0}(Q+r \bar{q})+$ $\omega \bar{q}-\left(a_{0}-b_{0} C\right)\left(e_{0}(Q+r \bar{q}+\bar{q})-C\right)-\lambda_{2}\left(q^{D R-0 *}+r q^{D R-0 *}-\bar{q}-r \bar{q}\right)^{+}$and $\pi_{p}^{D R}(p)=(p-\omega) \bar{q}$. Then, we get $\frac{\partial \pi_{p}^{D R}(\omega)}{\partial \omega}=\left(\bar{a}+\Delta a-2 k \omega+\bar{M}-\lambda_{2} k(1+r)\right) / 2, \frac{\partial^{2} \pi_{p}^{D R}(\omega)}{\partial \omega^{2}}=-2 k<0$. Thus, there is an optimal wholesale price that provides the maximal profits. We can obtain the optimal wholesale price as $\frac{\partial \pi_{p}^{D R}(\omega)}{\partial \omega}=0$. So, we have $\omega^{D R *}=\frac{\bar{a}+\Delta a+\bar{M}}{2 k}-\frac{\lambda_{2}}{2}(1+r)$. Thus, we obtain the optimal retail price as $p^{D R *}=\frac{3 \bar{a}+3 \Delta a+\bar{M}}{4 k}-\frac{\lambda_{2}}{4}(1+r)$.

Comparing $\omega^{D R *}$ and $\widetilde{\omega}$, we find when $\Delta a<-\lambda_{2} k(1+r), \omega^{D R *} \geq \widetilde{\omega}$, thus the optimal wholesale price and retail price are $\omega^{D R *}=\frac{\bar{a}+\Delta a+\bar{M}}{2 k}-\frac{\lambda_{2}}{2}(1+r)$ and $p^{D R *}=\frac{3 \bar{a}+3 \Delta a+\bar{M}}{4 k}-\frac{\lambda_{2}}{4}(1+r)$, the maximal
profits of the manufacturer and the platform are $\pi_{m}^{D R *}=\frac{(\bar{a}-\bar{M})(\bar{a}+2 \Delta a-\bar{M})+\left(\Delta a+\lambda_{2} k(1+r)\right)^{2}}{8 k}+p_{0} Q+\left(a_{0}-\right.$ $\left.b_{0} C\right)\left(C-Q e_{0}\right)$ and $\pi_{p}^{D R *}=\frac{\left(\bar{a}+\Delta a-\bar{M}+\lambda_{2} k(1+r)\right)^{2}}{16 k}$, respectively; otherwise, the optimal wholesale price and retail price are $\omega^{D R *}=\widetilde{\omega}=(\bar{a}+2 \Delta a+\bar{M}) / 2 k$ and $p^{D R *}=(3 \bar{a}+4 \Delta a+\bar{M}) / 4 k$, the maximal profits of the manufacturer and the platform are $\pi_{m}^{D R *}=\frac{(\bar{a}-\bar{M})(\bar{a}+2 \Delta a-\bar{M})}{8 k}+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)$ and $\pi_{p}^{D R *}=\frac{(\bar{a}-\bar{M})^{2}}{16 k}$, respectively.

Therefore, based on the solutions in case(i) and (ii), we divide Δa into three cases in PROPOSITION 2.

PROOF OF COROLLARY 2.

The difference of the profits in the centralized and decentralised situations with reselling mode is as follows:

$$
\begin{align*}
& \pi_{S C-D R}=\pi^{S C *}-\left(\pi_{m}^{D R *}+\pi_{p}^{D R *}\right)= \\
& \left\{\begin{array}{lr}
\frac{(\bar{a}+\Delta a)^{2}-2 \bar{M}(\bar{a}+\Delta a)-2 \lambda_{2} k(1+r)(\bar{a}-\Delta a)+\left(\bar{M}+\lambda_{2} k(1+r)\right)^{2}}{16 k} & -\bar{a} \leq \Delta a \leq-\lambda_{2} k(1+r) \\
\frac{(\bar{a}-\bar{M})(\bar{a}-\bar{M}+4 \Delta a)}{16 k} & -\lambda_{2} k(1+r)<\Delta a \leq \lambda_{1} k(1+r) \\
\frac{(\bar{a}+\Delta a)^{2}-2 \bar{M}(\bar{a}+\Delta a)+2 \lambda_{1} k(1+r)(\bar{a}-\Delta a)+\left(\bar{M}-\lambda_{1} k(1+r)\right)^{2}}{16 k} & \Delta a>\lambda_{1} k(1+r)
\end{array}\right. \tag{1}
\end{align*}
$$

Under the two conditions that (i) $\bar{a}+\Delta a>0$, that ensured the maximal market size of online channel with demand disruptions is larger than zero; (ii) $\bar{a}-\bar{M}>0$, that ensured the optimal demand $d^{*}=q^{*}=\bar{a}-k p^{D R-0 *}>0$. We find that in case $1\left(-\bar{a} \leq \Delta a \leq-\lambda_{2} k(1+r)\right)$, when $\Delta a<\min \left\{\frac{\bar{M}-\bar{a}}{4},-k \lambda_{2}(1+r)\right\}$ and $\frac{\bar{a}-\Delta a-2 \sqrt{\Delta a(\bar{M}-\bar{a})}}{k(1+r)}<\lambda_{2}<\frac{-\Delta a}{k(1+r)}, \pi_{S C-D R}<0$; in case 2 $\left(-\lambda_{2} k(1+r)<\Delta a \leq \lambda_{1} k(1+r)\right)$, when $\min \left\{\frac{\bar{M}-\bar{a}}{4},-k \lambda_{2}(1+r)\right\} \leq \Delta a<\frac{\bar{M}-\bar{a}}{4}, \pi_{S C-D R}<0$; in case $3, \pi_{S C-D R}<0$ is never existed. To conclude, when $\Delta a<\frac{\bar{M}-\bar{a}}{4}$ and $\lambda_{2}>\frac{\bar{a}-\Delta a-2 \sqrt{\Delta a(\bar{M}-\bar{a})}}{k(1+r)}$, the profit with reselling mode in the decentralized situation is larger than that in the centralized situation.

PROOF OF PROPOSITION 3.

(i) When $\bar{q}+r \bar{q}-q^{D M-0 *}-r q^{D M-0 *}>0$, we find $p<\widetilde{p}_{d m}$, where $\widetilde{p}_{d m}=\frac{(\bar{a}+2 \Delta a)(1-\phi)+\bar{M}}{2 k(1-\phi)}$. In this case, $\pi_{m}^{D M}(p)=p_{0}(Q+r \bar{q})+(1-\phi) p \bar{q}-\left(a_{0}-b_{0} C\right)\left(e_{0}(Q+r \bar{q}+\bar{q})-C\right)-F-\lambda_{1}(\bar{q}+$ $\left.r \bar{q}-q^{D M-0 *}-r q^{D M-0 *}\right)^{+}, \pi_{p}^{D M}(\phi)=\phi p \bar{q}+F$. From Equation (8), we can obtain $\frac{\partial \pi_{m}^{D M}(p)}{\partial p}=$
$(\bar{a}+\Delta a)(1-\phi)-2 k p(1-\phi)+\bar{M}+\lambda_{1} k(1+r), \frac{\partial^{2} \pi_{m}^{D M}(p)}{\partial p^{2}}=-2 k(1-\phi)<0$. Thus, there is an optimal retail price that provides the maximal profits. We can obtain the optimal retail price as $\frac{\partial \pi_{m}^{D M}(p)}{\partial p}=0$. So, we have $p^{D M *}=\frac{(\bar{a}+\Delta a)(1-\phi)+\bar{M}+\lambda_{1} k(1+r)}{2 k(1-\phi)}$.

Comparing $p^{D M *}$ and $\widetilde{p}_{d m}$, we find when $\Delta a>\frac{\lambda_{1} k(1+r)}{1-\phi}, p^{D M *}<\widetilde{p}_{d m}$, the optimal retail price is $p^{D M *}=\frac{(\bar{a}+\Delta a)(1-\phi)+\bar{M}+\lambda_{1} k(1+r)}{2 k(1-\phi)}$, and the maximal profits of the manufacturer and the platform are $\pi_{m}^{D M *}=\frac{((\bar{a}+\Delta a)(1-\phi)-\bar{M})^{2}-\lambda_{1} k(1+r)\left(2 \Delta a(1-\phi)-\lambda_{1} k(1+r)\right)}{4 k(1-\phi)}+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)-F$ and $\pi_{p}^{D M *}=\frac{\phi\left((\bar{a}+\Delta a)^{2}(1-\phi)^{2}-\left(\bar{M}+\lambda_{1} k(1+r)\right)^{2}\right)}{4 k(1-\phi)^{2}}+F$; otherwise, the optimal retail price is $p^{D M *}=$ $\widetilde{p}_{d m}=\frac{(\bar{a}+2 \Delta a)(1-\phi)+\bar{M}}{2 k(1-\phi)}$, the maximal profits of the manufacturer and the platform are $\pi_{m}^{D M *}=$ $\frac{1}{4 k(1-\phi)^{2}}((1-\phi) \bar{a}-\bar{M})((1-\phi)(\bar{a}+2 \Delta a)-\bar{M})+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)-F$ and $\pi_{p}^{D M *}=$ $\frac{((1-\phi) \bar{a}-\bar{M})((1-\phi) \bar{a}+\bar{M}+2 \Delta a(1-\phi))}{4 k(1-\phi)^{2}}+F$, respectively.
(ii) When $\bar{q}+r \bar{q}-q^{D M-0 *}-r q^{D M-0 *} \leq 0$, we find $p \geq \widetilde{p}_{d m}$. In this case, $\pi_{m}^{D M}(p)=p_{0}(Q+r \bar{q})+$ $(1-\phi) p \bar{q}-\left(a_{0}-b_{0} C\right)\left(e_{0}(Q+r \bar{q}+\bar{q})-C\right)-F-\lambda_{2}\left(q^{D M-0 *}+r q^{D M-0 *}-\bar{q}-r \bar{q}\right)^{+}, \pi_{p}^{D M}(\phi)=\phi p \bar{q}+F$. From Equation (8), we can obtain $\frac{\partial \pi_{m}^{D M}(p)}{\partial p}=(\bar{a}+\Delta a)(1-\phi)-2 k p(1-\phi)+\bar{M}-\lambda_{2} k(1+r)$, $\frac{\partial^{2} \pi_{m}^{D M}(p)}{\partial p^{2}}=-2 k(1-\phi)<0$. Thus, there is an optimal retail price that provides the maximal profits. We can obtain the optimal retial price as $\frac{\partial \pi_{m}^{D M}(p)}{\partial p}=0$. So, we have $p^{D M *}=\frac{(\bar{a}+\Delta a)(1-\phi)+\bar{M}-\lambda_{2} k(1+r)}{2 k(1-\phi)}$.

Comparing $p^{D M *}$ and $\widetilde{p}_{d m}$, we find when $\Delta a<-\frac{\lambda_{2} k(1+r)}{1-\phi}, p^{D M *}>\widetilde{p}$, thus the optimal retail price is $p^{D M *}=\frac{(\bar{a}+\Delta a)(1-\phi)+\bar{M}-\lambda_{2} k(1+r)}{2 k(1-\phi)}$, and the maximal profits of the manufacturer and the platform are $\pi_{m}^{D M *}=\frac{((\bar{a}+\Delta a)(1-\phi)-\bar{M})^{2}+\lambda_{2} k(1+r)\left(2 \Delta a(1-\phi)+\lambda_{2} k(1+r)\right)}{4 k(1-\phi)}+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)-F$ and $\pi_{p}^{D M *}=\frac{\phi\left((\bar{a}+\Delta a)^{2}(1-\phi)^{2}-\left(\bar{M}-\lambda_{2} k(1+r)\right)^{2}\right)}{4 k(1-\phi)^{2}}+F$; otherwise, the optimal retail price is $p^{D M *}=$ $\widetilde{p}_{d m}=\frac{(\bar{a}+2 \Delta a)(1-\phi)+\bar{M}}{2 k(1-\phi)}$, the maximal profits of the manufacturer and the platform are $\pi_{m}^{D M *}=$ $\frac{1}{4 k(1-\phi)^{2}}((1-\phi) \bar{a}-\bar{M})((1-\phi)(\bar{a}+2 \Delta a)-\bar{M})+p_{0} Q+\left(a_{0}-b_{0} C\right)\left(C-Q e_{0}\right)-F$ and $\pi_{p}^{D M *}=$ $\frac{((1-\phi) \bar{a}-\bar{M})((1-\phi) \bar{a}+\bar{M}+2 \Delta a(1-\phi))}{4 k(1-\phi)^{2}}+F$, respectively.

Therefore, based on the solutions in case(i) and (ii), we divide Δa into three cases which is shown in PROPOSITION 3.

PROOF OF PROPOSITION 4.

The difference of the manufacturer's profits with reselling mode and marketplace mode is as follows:

$$
\begin{align*}
& \pi_{D R-D M}=\pi_{m}^{D R *}-\pi_{m}^{D M *} \\
& \left\{\begin{array}{lr}
\frac{(1-2 \phi)(\bar{a}+\Delta a)^{2}-2 \bar{M}(\bar{a}+\Delta a)+2 \Delta a \lambda_{2} k(1+r)}{8 k}+\frac{\left(\bar{M}^{2}+\left(\lambda_{2} k(1+r)\right)^{2}\right)(1+\phi)}{8 k(1-\phi)}+F & -\bar{a} \leq \Delta a \leq-\frac{\lambda_{2} k(1+r)}{1-\phi} \\
\frac{\bar{a}(1-2 \phi)(\bar{a}+2 \Delta a)-2 \bar{M}(\bar{a}+\Delta a)-\left(\Delta a+\lambda_{2} k(1+r)\right)^{2}}{8 k}+\frac{\bar{M}^{2}(1+\phi)}{8 k(1-\phi)}+F & -\frac{\lambda_{2} k(1+r)}{1-\phi}<\Delta a \leq-\lambda_{2} k(1+r) \\
\frac{\bar{a}(1-2 \phi)(\bar{a}+2 \Delta a)-2 \bar{M}(\bar{a}+\Delta a)}{8 k}+\frac{\bar{M}^{2}(1+\phi)}{8 k(1-\phi)}+F & -\lambda_{2} k(1+r)<\Delta a \leq \lambda_{1} k(1+r) \\
\frac{\bar{a}(1-2 \phi)(\bar{a}+2 \Delta a)-2 \bar{M}(\bar{a}+\Delta a)-\left(\Delta a-\lambda_{1} k(1+r)\right)^{2}}{8 k}+\frac{\bar{M}^{2}(1+\phi)}{8 k(1-\phi)}+F & \lambda_{1} k(1+r)<\Delta a \leq \frac{\lambda_{1} k(1+r)}{1-\phi} \\
\frac{(1-2 \phi)(\bar{a}+\Delta a)^{2}-2 \bar{M}(\bar{a}+\Delta a)-2 \Delta a \lambda_{1} k(1+r)}{8 k}+\frac{\left(\bar{M}^{2}+\left(\lambda_{1} k(1+r)\right)^{2}\right)(1+\phi)}{8 k(1-\phi)}+F & \Delta a>\frac{\lambda_{1} k(1+r)}{1-\phi}
\end{array}\right. \tag{2}
\end{align*}
$$

We discuss the difference in five cases,
Case i: $-\bar{a} \leq \Delta a \leq-\frac{\lambda_{2} k(1+r)}{1-\phi}$. When $\Delta a=-\bar{a}, \pi_{D R-D M}(-\bar{a})=\frac{\left(\bar{M}^{2}+\left(\lambda_{2} k(1+r)\right)^{2}\right)(1+\phi)}{8 k(1-\phi)}-$ $\frac{\bar{a} \lambda_{2} k(1+r)}{4 k}+F$. Thus, we find that if $\frac{-\lambda_{2} k(1+r)}{1-\phi} \leq \bar{a} \leq \max \left\{\frac{-\lambda_{2} k(1+r)}{1-\phi}, \widetilde{a}\right\}, \pi_{D R-D M}(-\bar{a})>0$; otherwise, $\pi_{D R-D M}(-\bar{a}) \leq 0$, where $\widetilde{a}=\frac{\left(\left(\lambda_{2} k(1+r)\right)^{2}+\bar{M}^{2}\right)(1+\phi)}{2 \lambda_{2} k(1+r)(1-\phi)}$.

From Equation (13), we can get $\frac{\partial \pi_{D R-D M}}{\partial \Delta a}=\frac{1}{4 k}\left((1-2 \phi)(\bar{a}+\Delta a)-\bar{M}+\lambda_{2} k(1+r)\right), \frac{\partial^{2} \pi_{D R-D M}}{\partial \Delta a^{2}}=$ $\frac{1}{4 k}(1-2 \phi)>0$. Thus, this is a convex programming problem. When $\Delta a<\Delta a_{m i n 1}, \pi_{D R-D M}$ is decreasing in Δa, where $\Delta a_{\text {min } 1}=-\bar{a}+\frac{\bar{M}-\lambda_{2} k(1+r)}{1-2 \phi}$. When $\Delta a=\Delta a_{\text {min } 1}, \frac{\partial \pi_{D R-D M}}{\partial \Delta a}=0$, which means $\pi_{D R-D M}$ has the minimal solution, and $\pi_{D R-D M}=\frac{\bar{M} \lambda_{2} k(1+r)(1-\phi)-\phi^{2}\left(\bar{M}^{2}+\left(\lambda_{2} k(1+r)\right)^{2}\right)}{4 k(1-\phi)(1-2 \phi)}-\frac{\bar{a} \lambda_{2} k(1+r)}{4 k}+F$. When $F<\frac{\bar{a} \lambda_{2} k(1+r)}{4 k}-\frac{\bar{M} \lambda_{2} k(1+r)(1-\phi)-\phi^{2}\left(\bar{M}^{2}+\left(\lambda_{2} k(1+r)\right)^{2}\right)}{4 k(1-\phi)(1-2 \phi)}$, we find $\pi_{D R-D M}<0$; otherwise, when $F \geq \frac{\bar{a} \lambda_{2} k(1+r)}{4 k}-\frac{\bar{M} \lambda_{2} k(1+r)(1-\phi)-\phi^{2}\left(\bar{M}^{2}+\left(\lambda_{2} k(1+r)\right)^{2}\right)}{4 k(1-\phi)(1-2 \phi)}$, we find $\pi_{D R-D M} \geq 0$. Therefore, when $\Delta a_{m i n 1}<$ $\Delta a \leq-\frac{\lambda_{2} k(1+r)}{1-\phi}, \pi_{D R-D M}$ is increasing in Δa.

Therefore, when $\frac{-\lambda_{2} k(1+r)}{1-\phi} \leq \bar{a} \leq \max \left\{\frac{-\lambda_{2} k(1+r)}{1-\phi}, \widetilde{a}\right\}$, there is a unique $\Delta a_{1}^{*}<\Delta a_{m i n 1}$ that, if $\Delta a<\Delta a_{1}^{*}, \pi_{D R-D M}>0$, that reselling mode is better than marketplace mode for the manufacturer; otherwise, when $\bar{a}>\max \left\{\frac{-\lambda_{2} k(1+r)}{1-\phi}, \widetilde{a}\right\}$, if $-\bar{a} \leq \Delta a<\Delta a_{m i n 1}, \pi_{D R-D M}<0$, that marketplace mode is better than reselling mode for the manufacturer.

Case ii: $-\frac{\lambda_{2} k(1+r)}{1-\phi}<\Delta a \leq-\lambda_{2} k(1+r)$. Similarly, $\frac{\partial \pi_{D R-D M}}{\partial \Delta a}=\frac{1}{4 k}\left((1-2 \phi) \bar{a}-\Delta a-\bar{M}-\lambda_{2} k(1+\right.$ $r)$), $\frac{\partial^{2} \pi_{D R-D M}}{\partial \Delta a^{2}}=-\frac{1}{4 k}<0$. Thus, this is a concave programming problem. When $\Delta a<\Delta a_{\text {max }}$, $\pi_{D R-D M}$ is increasing in Δa, where $\Delta a_{\max 1}=\bar{a}(1-2 \phi)-\lambda_{2} k(1+r)-\bar{M}>-\lambda_{2} k(1+r)$. Thus, in this case, $\pi_{D R-D M}$ is always increasing in Δa.

Case iii: $-\lambda_{2} k(1+r)<\Delta a \leq \lambda_{1} k(1+r) . \quad$ Similarly, $\frac{\partial \pi_{D R-D M}}{\partial \Delta a}=\frac{1}{4 k}((1-2 \phi) \bar{a}-\bar{M})$,
$\frac{\partial^{2} \pi_{D R-D M}}{\partial \Delta a^{2}}=0$. Thus, the objective is a linear function and the constraint is larger than zero based on our assumptions. Therefore, in this case, $\pi_{D R-D M}$ is always increasing in Δa.

Case iv: $\lambda_{1} k(1+r)<\Delta a \leq \frac{\lambda_{1} k(1+r)}{1-\phi}$. Similarly, $\frac{\partial \pi_{D R-D M}}{\partial \Delta a}=\frac{1}{4 k}\left((1-2 \phi) \bar{a}-\Delta a-\bar{M}+\lambda_{1} k(1+r)\right)$, $\frac{\partial^{2} \pi_{D R-D M}}{\partial \Delta a^{2}}=-\frac{1}{4 k}<0$. Thus, this is a concave programming problem. When $\Delta a<\Delta a_{\max 2}$, $\pi_{D R-D M}$ is increasing in Δa, where $\Delta a_{\max 2}=\bar{a}(1-2 \phi)+\lambda_{1} k(1+r)-\bar{M}>\lambda_{1} k(1+r)$. Therefore, in this case, $\pi_{D R-D M}$ is always increasing in Δa.

Case v: $\Delta a>\frac{\lambda_{1} k(1+r)}{1-\phi}$. Similarly, $\frac{\partial \pi_{D R-D M}}{\partial \Delta a}=\frac{1}{4 k}\left((1-2 \phi)(\bar{a}+\Delta a)-\bar{M}-\lambda_{1} k(1+r)\right)$, $\frac{\partial^{2} \pi_{D R-D M}}{\partial \Delta a^{2}}=\frac{1}{4 k}(1-2 \phi)>0$. Thus, this is a convex programming problem. When $\Delta a>\Delta a_{\text {min } 2}$, $\pi_{D R-D M}$ is increasing in Δa, where $\Delta a_{m i n 2}=-\bar{a}-\frac{\lambda_{2} k(1+r)+\bar{M}}{1-2 \phi}<\frac{\lambda_{1} k(1+r)}{1-\phi}$. Thus, in this case, $\pi_{D R-D M}$ is always increasing in Δa, and $\lim _{\Delta a \rightarrow+\infty} \pi_{D R-D M}=+\infty$.

To conclude when $\Delta a<\Delta a_{\text {min } 1}, \pi_{D R-D M}$ is always decreasing in Δa. Otherwise, when $\Delta a>$ $\Delta a_{\min 1}, \pi_{D R-D M}$ is always increasing in Δa. Thus, for the conditions that (i) $\pi_{D R-D M}\left(\Delta a_{\min 1}\right)<$ 0 ; (ii) $\lim _{\Delta a \rightarrow+\infty} \pi_{D R-D M}>0$; (iii) when $\frac{-\lambda_{2} k(1+r)}{1-\phi} \leq \bar{a} \leq \max \left\{\frac{-\lambda_{2} k(1+r)}{1-\phi}, \widetilde{a}\right\}, \pi_{D R-D M}(-\bar{a})>0$; otherwise, $\pi_{D R-D M}(-\bar{a}) \leq 0$. We can draw the conclusion in PROPOSITION 4.

PROOF OF PROPOSITION 5.

Without demand disruptions, $p^{S C-0 *}=\frac{\bar{a}+\bar{M}}{2 k}$.
(i) With reselling mode, $\frac{\partial \pi_{p}^{D R-0}(p)}{\partial p}=\bar{a}-2 k p+k \omega$. thus, $p^{D R-0}=\frac{\bar{a}+k \omega}{2 k}$. After letting $p^{S C-0 *}=$ $p^{D R-0}$, we find $\omega=\frac{\bar{M}}{k}$. Thus, we find that when $r<r_{0}$, the manufacturer and the platform can be coordinated; otherwise, the manufacturer and the platform can not be coordinated, where $r_{0}=\frac{e_{0}\left(a_{0}-b_{0} C\right)}{p_{0}-e_{0}\left(a_{0}-b_{0} C\right)}$.
(ii) With marketplace mode, $\frac{\partial \pi_{p}^{D M-0}(p)}{\partial p}=\bar{a}(1-\phi)+\bar{M}-2 p k(1-\phi)$. Because of $p^{S C-0 *} \neq p^{D M-0}$, the manufacturer and the platform can not be coordinated.

PROOF OF PROPOSITION 6.

With demand disruptions,

$$
p^{S C *}=\left\{\begin{array}{lr}
\frac{\bar{a}+\Delta a+\bar{M}}{2 k}-\frac{\lambda_{2}(1+r)}{2} & -\bar{a} \leq \Delta a \leq-\lambda_{2} k(1+r) \tag{3}\\
\frac{\bar{a}+2 \Delta a+\bar{M}}{2 k} & -\lambda_{2} k(1+r)<\Delta a \leq \lambda_{1} k(1+r) \\
\frac{\bar{a}+\Delta a+\bar{M}}{2 k}+\frac{\lambda_{1}(1+r)}{2} & \Delta a>\lambda_{1} k(1+r)
\end{array}\right.
$$

With reselling mode, $\frac{\partial \pi_{p}^{D R}(p)}{\partial p}=\bar{a}+\Delta a+k \omega-2 k p$. Thus, $p^{D R}=\frac{\bar{a}+\Delta a+k \omega}{2 k}$. We discuss the coordination in three cases,

Case i: $-\bar{a} \leq \Delta a \leq-\lambda_{2} k(1+r)$. After letting $p^{S C *}=p^{D R}$, we find that when $r<r_{1}$, the manufacturer and the platform can be coordinated; otherwise, the manufacturer and the platform can not be coordinated, where $r_{1}=\frac{e_{0}\left(a_{0}-b_{0} C\right)-\lambda_{2}}{p_{0}-e_{0}\left(a_{0}-b_{0} C\right)+\lambda_{2}}$.

Case ii: $-\lambda_{2} k(1+r)<\Delta a \leq \lambda_{1} k(1+r)$. After letting $p^{S C *}=p^{D R}$, we find that when $r<r_{2}$, the manufacturer and the platform can be coordinated; otherwise, the manufacturer and the platform can not be coordinated, where $r_{2}=\frac{e_{0} k\left(a_{0}-b_{0} C\right)+\Delta a}{k\left(p_{0}-e_{0}\left(a_{0}-b_{0} C\right)\right)}$.

Case iii: $\Delta a>\lambda_{1} k(1+r)$. After letting $p^{S C *}=p^{D R}$, we find that when $r<r_{3}$, the manufacturer and the platform can be coordinated; otherwise, the manufacturer and the platform can not be coordinated, where $r_{3}=\frac{e_{0}\left(a_{0}-b_{0} C\right)+\lambda_{1}}{p_{0}-e_{0}\left(a_{0}-b_{0} C\right)-\lambda_{1}}$.

To conclude, when $r<r_{1}$, the manufacturer and the platform can be coordinated; when $r_{1} \leq r<r_{2}$, if $\Delta a>-\lambda_{2} k(1+r)$, the manufacturer and the platform can be coordinated; otherwise, the manufacturer and the platform can not be coordinated; when $r_{2} \leq r<r_{3}$, if $\Delta a>\lambda_{1} k(1+r)$, the manufacturer and the platform can be coordinated; otherwise, the manufacturer and the platform can not be coordinated. Therefore, based on the solutions of these three cases, we can get PROPOSITION 6.

PROOF OF PROPOSITION 7.

With marketplace mode with demand disruptions, we discuss the coordination in five cases,
Case i: $-\bar{a} \leq \Delta a \leq-\frac{\lambda_{2} k(1+r)}{1-\phi}$. There is not ϕ that satisfying $p^{D M *}=p^{S C *}$. Thus, the manufacturer and the platform can not be coordinated.

Case ii: $-\frac{\lambda_{2} k(1+r)}{1-\phi}<\Delta a \leq-\lambda_{2} k(1+r)$. There is not exist ϕ that satisfying $p^{D M *}=p^{S C *}$.

Thus, the manufacturer and the platform can not be coordinated.
Case iii: $-\lambda_{2} k(1+r)<\Delta a \leq 0$. After letting $p^{D M *}=p^{S C *}$, we find when $\phi=\frac{\Delta a}{\Delta a+\bar{M}}$, the manufacturer and the platform can be coordinated. Thus, when $r<r_{2}$, the manufacturer and the platform can not be coordinated; otherwise, the manufacturer and the platform can be coordinated, where $r_{2}=\frac{e_{0} k\left(a_{0}-b_{0} C\right)+\Delta a}{k\left(p_{0}-e_{0}\left(a_{0}-b_{0} C\right)\right)}$.

Case iv: $0<\Delta a \leq \lambda_{1} k(1+r)$. After letting $p^{D M *}=p^{S C *}$, we find when $\phi=\frac{\Delta a}{\Delta a+\bar{M}}$, the manufacturer and the platform can be coordinated. Thus, when $r<r_{2}$, the manufacturer and the platform can be coordinated; otherwise, the manufacturer and the platform can not be coordinated.

Case v: $\lambda_{1} k(1+r)<\Delta a \leq \frac{\lambda_{1} k(1+r)}{1-\phi}$. After letting $p^{D M *}=p^{S C *}$, we find when $\phi=\frac{\lambda_{1} k(1+r)}{\lambda_{1} k(1+r)+\bar{M}}$, the manufacturer and the platform can be coordinated. Thus, when $r<r_{3}$, the manufacturer and the platform can be coordinated; otherwise, the manufacturer and the the manufacturer and the platform can not be coordinated, where $r_{3}=\frac{e_{0}\left(a_{0}-b_{0} C\right)+\lambda_{1}}{p_{0}-e_{0}\left(a_{0}-b_{0} C\right)-\lambda_{1}}$.

Case vi: $\Delta a>\frac{\lambda_{1} k(1+r)}{1-\phi}$. There is not ϕ that satisfying $p^{D M *}=p^{S C *}$. Thus, the manufacturer and the platform can not be coordinated.

Therefore, based on the solutions of these six cases, we can get PROPOSITION 7.

