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Supplementary Results 

 

In this study, by integrating various rhythmic indicators and clinical factors, and 

employing machine learning algorithms, we adeptly developed a model to predict the 

onset of Status Epilepticus (SE) in critically ill patients. Compared to the currently 

popular Status Epilepticus Severity Score (STESS) and the Epidemiology-based 

Mortality score in Status Epilepticus (EMSE), our model demonstrated higher 

predictive accuracy and operability. Particularly, through exhaustive analysis of 

circadian rhythm parameters like temperature rhythm and arterial oxygen saturation 

rhythm, our model ingeniously identified high-risk patients, providing a valuable time 

window for clinical intervention. 

Furthermore, in comparison to traditional predictive models based on clinical 

variables such as STESS, EMSE, and END-IT [1][3], our model, which integrates 

rhythmic indicators, provides new insights into the biological mechanisms underlying 

SE. We observed that our model surpassed these models across a range of performance 

metrics, especially in terms of AUC, sensitivity, and specificity. Our model exhibited 

an AUC of 0.882 on the validation set, significantly higher than STESS (0.79), EMSE 

(0.81), and END-IT (0.83). The sensitivity of our model was 0.900, exceeding STESS 

(0.76), EMSE (0.78), and END-IT (0.82), while the specificity was 0.794, slightly 

higher than STESS (0.72), EMSE (0.74), and END-IT (0.82). These findings 

underscore the high accuracy and expedience of our model in identifying high-risk 

patients and excluding low-risk cohorts. 

Prior to the analysis of circadian rhythm consistency, we conducted a detailed 

comparison of vital signs data between two groups of patients – those with Status 

Epilepticus (SE) and those without SE (non-SE). By observing the 24-hour variations 

in indicators such as body temperature, heart rate, respiratory rate, oxygen saturation 

(SaO2), systolic and diastolic blood pressure, we found notable differences in the 

amplitude and peak timing of certain indicators between the SE and non-SE groups. To 

further understand these differences in the context of circadian rhythms, we employed 

the cosine similarity method to quantitatively assess the diurnal rhythm of vital signs 

between the two groups. The cosine similarity between the two groups was close to 1, 

indicating that despite differences in individual indicators, their overall diurnal rhythm 

patterns were very similar, as detailed in Supplementary Material 2. This finding is 

significant for understanding the impact of Status Epilepticus on patients' daily 

biological circadian rhythms. 

A logistic regression model was developed to assess the relationship between diurnal 

rhythm parameters and the incidence of SE, as shown in Figure S6. After adjusting for 

confounders like age and sex, it was found that the temperature mesor and peak time 

were negatively correlated with the incidence of SE (P<0.05), while the SaO2 mesor 

and heart rate were positively correlated (P<0.05). These findings suggest that the 

stability and balance of these vital signs' diurnal rhythms are protective factors against 

SE. For instance, the Odds ratio for heart rate mesor was 1.015, with a p-value of 0.028. 

An Odds ratio slightly greater than 1 indicates a positive correlation between heart rate 

mesor and SE incidence, albeit a small effect. For every unit increase in heart rate mesor, 



the incidence of SE increased by approximately 1.5% (95% CI: 1.002 ~ 1.029). 

 

Figure S1. Flowchart Illustrating the Development Process for the Prediction of 

First Onset of Status Epilepticus in Critically Ill Patients 

 

 

This flow chart delineates the evaluative steps and findings of a study assessing a method to predict 

status epilepticus (SE) risk in epilepsy patients. It segments into three categories: methodology, 

results, and conclusion. Different colors signify distinct information types: blue for methodology, 

green for results, and red for conclusion. Varied shapes represent outcome types: rectangles for 

intermediate outcomes, diamonds for final outcomes, and ovals for comments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2. Comparative Analysis of Diurnal Rhythmicity in Vital Signs Between 

Status Epilepticus and Non-Status Epilepticus Patients 

 

 

The graph illustrates the Euclidean Distance and Root Mean Square Error (RMSE) between SE 

(Status Epilepticus) and non-SE patient groups across six vital sign parameters. The Euclidean 

Distance reflects the overall disparity in the diurnal patterns, while the RMSE provides a measure 

of the average magnitude of variation between the groups. These metrics are derived from the cosine 

transformation of the vital signs' diurnal rhythms, indicating potential differences in physiological 

stability and rhythmicity. The left panel shows the Euclidean Distance, and the right panel shows 

the RMSE for temperature, heart rate, respiration, blood oxygen saturation (SaO2), diastolic and 

systolic blood pressure. Higher values suggest greater dissimilarity in the rhythmic patterns between 

the two patient groups. 

 

 

Figure S3. ROC curve compares the ability of different methods to predict status 

epilepticus 

 

 

Displayed is a Receiver Operating Characteristic (ROC) curve for evaluating various methods in 

predicting status epilepticus. A) represents the results from the independent test set, while B) reflects 

those of the validation set. The horizontal axis denotes specificity (FPR), and the vertical axis 



signifies sensitivity (TPR). Different colors and styles depict distinct prediction methods for ease of 

differentiation. The Area Under the Curve (AUC) value is annotated in the legend, with a value 

closer to 1 indicating a more precise prediction method. 

 

 

Figure S4. Performance and internal verification analysis of the model 

 

 

The model's performance is demonstrated on the test set. C) depicts the calibration curve of the 

model across 1000 bootstrap resamples. D) presents the CIC diagram of the model under various 

thresholds. The horizontal axis denotes specificity (FPR), and the vertical axis signifies sensitivity 

(TPR). The curve, delineated in blue and pink, facilitates easy distinction. The Area Under the Curve 

(AUC) value is annotated in the legend, with proximity to 1 indicating enhanced prediction accuracy. 

The calibration curve illustrates the congruence between predicted probabilities and observed 

probabilities, ideally aligning closely with a 45-degree diagonal. The CIC diagram underscores the 

model's utility in decision support, where the region above the diagram signifies superior 

performance over random guessing, and the region below denotes inferior performance. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S5. Differences of biorhythm parameters in patients with SE at different 

onset times 

 

 

Circadian Variation in Physiological Parameters Among Status Epilepticus Patients. This figure 

displays an in-depth comparison of six biorhythm parameters (Temperature, Heart Rate, Respiration, 

SaO2, Diastolic Blood Pressure, Systolic Blood Pressure) in patients with Status Epilepticus (SE) 

across four key onset time periods (00:00-06:00, 06:00-12:00, 13:00-18:00, 18:00-24:00). For each 

parameter, the mean (mesor), amplitude, and peak time are presented. The P-values, derived for 

each parameter across different time periods, provide a measure of statistical significance for the 

observed variations, with a threshold of 0.05 indicating significant differences. The bar graphs in 

each subplot facilitate a comparative analysis of the circadian patterns in these clinical parameters 

among patients with SE. The visualization underscores discernible circadian rhythms and highlights 

statistically significant differences in certain parameters as indicated by the P-values. This 

comprehensive analysis is crucial in understanding the temporal dynamics of physiological changes 

in SE patients, offering valuable insights for tailored therapeutic approaches and optimizing clinical 

management based on the onset time of SE. 

 

 

 

 

 

 

 

 

 

 

 



Figure S6. Analysis of Influential Factors on Diurnal Rhythms of Vital Signs in 

Patients with and without Conversion to Status Epilepticus 

 

 
This figure illustrates the associations between various physiological rhythm indicators and status 

epilepticus using logistic regression analysis. Each forest plot represents the Odds Ratio (OR) and 

its 95% Confidence Interval (CI) for corresponding physiological rhythm parameters (body 

temperature, respiration, blood oxygen saturation (SaO2), systemic systolic, and systemic diastolic). 

A dashed line indicates the absence of effect or difference (i.e., OR=1). An OR greater than 1, with 

a CI not crossing 1, suggests a positive correlation with status epilepticus. Conversely, an OR less 

than 1, with a CI not crossing 1, implies a negative correlation. If the CI includes 1, it indicates that 

the variable has no statistically significant association with status epilepticus. Specifically, for each 

parameter, we observe that the OR CIs of most parameters include 1, suggesting no significant 

statistical association with the occurrence of status epilepticus. However, parameters like the mesor 

(24-hour average) of body temperature and SaO2 show statistical significance (P-value <0.05), 

indicating that rhythmic variations in these parameters may be associated with the occurrence of 

status epilepticus. 

 

 

Supplementary Table 1 Percentage of missing data in the variables of the included 

cases 

 

 Research data set 

Variables (n = 4413) 

Baseline characteristics  
Age 2.10% 

Sex   0.00% 

Laboratory  
RBC  0.28% 



WBC 0.83% 

Monos  9.90% 

MCH  0.26% 

Hgb  0.01% 

Hct  0.01% 

Lymphs   8.54% 

Platelets  0.15% 

PT  15.50% 

Glucose  1.12% 

Sodium 2.00% 

Potassium 1.01% 

Bicarbonate  2.08% 

Comorbidities  
Pulmonary infections   0.00% 

Hypertension   0.00% 

Hyperlipidemia   0.00% 

Hyperthyroidism   0.00% 

Hypothyroidism   0.00% 

Fracture of skull   0.00% 

Intracranial injury   0.00% 

Encephalitis   0.00% 

Meningitis   0.00% 

Diabetes mellitus   0.00% 

Stroke   0.00% 

Coronary artery disease   0.00% 

Head infections   0.00% 

Pulmonary embolism   0.00% 

Abscess   0.00% 

Anxiety   0.00% 

Atrial fibrillation   0.00% 

Bipolar disorder   0.00% 

Brain edema   0.00% 

Cirrhosis   0.00% 

CNS infection   0.00% 

Coma   0.00% 

Contusion   0.00% 

Depression   0.00% 

Fever   0.00% 

Fracture   0.00% 

Heart failure   0.00% 

Hypocalcemia   0.00% 

Hypoglycemia   0.00% 

Hyponatremia   0.00% 

Infections  0.00% 



Ischemia  0.00% 

Myocardial infarction  0.00% 

Trauma  0.00% 

Vasculitis  0.00% 

COPD  0.00% 

Scoring system  

GCS  3.16% 

Rhythm index  

Temperature 0.06% 

Heartrate 0.06% 

Respiration  0.05% 

SaO2 0.01% 

Systemic diastolic 0.05% 

Systemic systolic 0.05% 

In this data analysis, the approach taken involved a customized strategy for managing missing values, 

distinguishing between numerical and categorical variables. For numerical variables, multiple 

imputation was applied, a technique that harnessed the inherent data structure and correlations to 

impute missing values. To ensure robustness, five iterations of multiple imputation were carried out, 

resulting in five complete datasets. This meticulous process accounted for the uncertainty associated 

with imputation and bolstered the accuracy of the results. Conversely, for categorical variables, 

mode imputation was employed, with missing values being replaced by the mode of the respective 

category. This approach upheld data integrity while addressing categorical attributes. By 

systematically addressing missing data using these methods, the completeness and reliability of the 

dataset were ensured, a crucial step in minimizing potential bias and enhancing the quality of the 

analyses. 

 

 

Supplementary Table 2 Comparative Analysis of Variable Importance Across 

Machine Learning Models 

 

RFE LR RF Xg Boost ANN 

variables 
 

variables 
 

variables 
 

variables 
 

variables 
 

temperature mesor 29.31 temperature mesor 22.51 temperature mesor 25.32 temperature mesor 5.18 temperature mesor 25.27 

Stroke 22.88 GCS 19.93 SaO2 mesor 17.84 age 2.65 GCS 13.14 

Age 22.50 age 16.92 PT 16.15 stroke 2.39 coma 9.18 

hypoglycemia 20.87 hypoglycemia 15.83 heartrate mesor 16.14 GCS 1.84 stroke 8.15 

Potassium 19.93 potassium 15.25 bicarbonate 15.87 potassium 1.62 SaO2 mesor 7.11 

GCS 17.98 stroke 15.22 age 15.55 SaO2 mesor 1.23 hypoglycemia 6.93 

myocardial infarction 17.93 heartrate mesor 14.86 glucose 13.70 bicarbonate 1.15 age 6.26 

hyponatremia 17.80 hyponatremia 13.45 MCH 13.20 hypoglycemia 1.00 meningitis 5.36 

temperature peak time 16.92 depression 13.11 potassium 12.80 coma 0.90 depression 4.67 

SaO2 mesor 15.83 heartrate mesor 12.74 sodium 11.33 WBC 0.89 hyponatremia 4.13 

The table enumerates the top ten variables from each machine learning algorithm—RFE, LR, RF, 

Xg Boot, and ANN—based on their ranked importance for the prediction of status epilepticus. These 



variables, include clinical signs, patient demographics, and laboratory values. These variables were 

selected for their significant roles as indicated by preliminary machine learning analysis and were 

incorporated into the development of advanced models aimed at predicting the onset of status 

epilepticus. 

 

 

Supplementary Table 3 Zero-Amplitude Test Results for Key Physiological Indicators 

 

Parameter Mean 

Amplitude 

Standard 

Deviation 

t-Statistic p-Value 

Body Temperature Amplitude 11.57 6.15 124.95 0.00 

Heart Rate Amplitude 42.38 22.99 122.42 0.00 

Respiration Rate Amplitude 41.42 23.08 119.19 0.00 

SaO2 Amplitude 14.73 12.26 79.83 0.00 

Diastolic Blood Pressure Amplitude 95.64 70.38 90.26 0.00 

Systolic Blood Pressure Amplitude 110.36 61.34 119.49 0.00 

This table details the results of zero-amplitude tests conducted on the circadian amplitudes of six 

physiological indicators. Statistical measures provided include mean amplitude, standard deviation, 

t-statistic, and p-value. The zero-amplitude test assesses whether the amplitude significantly 

deviates from zero, using a one-sample t-test. A p-value close to zero confirms significant 

rhythmicity, indicating that the observed fluctuations in the data are not due to random variation but 

represent true biological rhythms. 

 

 

Supplementary Table 4 Hyperparameter Settings for Evaluated Classifier Models 

 

Classifier models Hyperparameters 

Logistic Regression C=0.4, multi class=multinomial, random state =8, solver=saga 

Random Forests 
Random state=8, max depth=60, max features=sqrt, min samples split=5, min 

samples leaf=4, n estimators =400 

Xg Boost 
Random state=8, max depth=10, max features=sqrt, min samples split=50, n 

estimators=800, learning rate=0.5, subsample=0.5 

Artificial Neural Network 
solver=lbfgs, learning rate=adaptive, activation=identity, alpha=0.0001, batch 

size=auto, hidden layer sizes=7, learning rate init=0.001, max iter=500 

Recursive Feature Elimination N/A 

This table summarizes the optimized hyperparameters for the classifier models utilized in the study. 

For each model, we tuned parameters to maximize the validation accuracy. The "N/A" for RFE 

indicates that Recursive Feature Elimination is used as a feature selection technique prior to the 

application of classifier models and does not have hyperparameters in the conventional sense. 
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