Supporting Information

The $c z c D$ (NiCo) riboswitch responds to iron(II)

Jiansong Xu and Joseph A. Cotruvo, Jr.*

Department of Chemistry, The Pennsylvania State University, University Park, PA 16802

* Corresponding author. E-mail: juc96@psu.edu (J.A.C.).

This file contains the Experimental Section, Supplementary Tables S1-S6, Supplementary Figures S1-S19, and Supplementary References.

EXPERIMENTAL SECTION

General considerations
Expression and purification of T7 RNA polymerase
RNA transcription, purification, and folding
RNA sensor template library generation and screening
RNA sensor characterization in vitro
Citrate-buffered metal titrations
Plasmid construction for sensor expression in E. coli
Analysis of cellular iron by czcD-2 using flow cytometry
czcD-2 competition against the Lmo riboswitch
Cloning of putative metal exporters into B. subtilis expression vectors
Complementation assay in B. subtilis
Verification of expression and membrane insertion of putative metal transporters

SUPPLEMENTARY TABLES

Table S1. Sequences of the DNA templates used for the riboswitches and riboswitch-based sensors
Table S2. Response of czcD-1, czcD-2, and czcD-3 to divalent first-row transition metal ions in unbuffered titrations
Table S3. Calculated $K_{\mathrm{d}, \mathrm{M}}$ values used for determination of apparent K_{d} of $c z c D$ sensors
Table S4. Plasmids used in this study
Table S5. Primers used for cloning and sequencing
Table S6. Primers used for sensor library construction

SUPPLEMENTARY FIGURES

Figure S1. Screening of the library of $E b a c z c D$ riboswitch-based sensors

Figure S2. Unbuffered fluorescence titrations of czcD-1, czcD-2, and czcD-3 with $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}$, $\mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$, and $\mathrm{Zn}^{\text {II }}$
Figure S3. Detail of the metal-binding sites from the x-ray crystal structure of the $\mathrm{Co}^{\mathrm{II}}$-bound $E b a$ riboswitch, showing a possible origin of cooperative response
Figure S4. Assays of czcD-2 response under conditions used by Furukawa et al.
Figure S5. czcD-2 cleavage assay
Figure S6. czcD-2 does not respond to iron under aerobic conditions
Figure S7. Citrate-buffered fluorescence titrations of czcD-1 and czcD3 with $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}$, $\mathrm{Ni}^{\text {II }}$, and $\mathrm{Zn}^{\text {II }}$
Figure S8. Magnesium dependence of the fluorescence response of czcD-2 to citrate-buffered Co ${ }^{\text {II }}$
Figure S9. Analysis of flow cytometry data to determine iron responsiveness of czcD-2 in E. coli cells
Figure S10. Assessment of response of czcD-2 to divalent first-row transition metals in cells
Figure S11. Sequence alignment of P_{184}-type ATPases
Figure S12. Genomic neighborhoods of the Eba and Lmo riboswitches
Figure S13. Control experiments showing expression of PfeT, LMO3448, and Eba3544 does not affect B. subtilis growth rate in the absence of added metal ions
Figure S14. LMO3448 and Eba3544 are expressed and inserted into the membrane
Figure S15. Predicted domain and secondary structure of PfeT, LMO3448, and Eba3544
Figure S16. DNA and amino acid sequences of Bacillus subtilis 168 pfeT
Figure S17. DNA and amino acid sequences of L. monocytogenes FSL_J1-194 LMO3448
Figure S18. DNA and amino acid sequences of Erysipelotrichaceae_bacterium_3_1_53 Eba3544
Figure S19. Codon-optimized gBlocks for cloning of pfeT, Eba3544, LMO3448, and sfGFP into pHT01

SUPPLEMENTARY REFERENCES

EXPERIMENTAL SECTION

General considerations. Chemical reagents were obtained from Fisher-Thermo Scientific (Waltham, MA), Millipore Sigma (St. Louis, MO), Roche (Basel, Switzerland), Amresco (Solon, OH), or VWR (Randnor, PA), unless noted otherwise, at the highest purity available. Primers and gBlocks were ordered from Integrated DNA Technologies (IDT) (Coralville, IA), and fragmentGenes were ordered from Genewiz (South Plainfield, NJ). E. coli strains [5alpha, and BL21(DE3)] for cloning and recombinant protein expression, as well as cloning reagents (restriction enzymes, Q5 DNA polymerase, OneTaq DNA polymerase, T4 DNA ligase, and NEBuilder HiFi DNA Assembly Master Mix) were obtained from New England Biolabs (Ipswich, MA). The E. coli BL21 Star (DE3) strain for recombinant RNA expression was purchased from Invitrogen (Carlsbad, CA). DFHBI-1T was either purchased from Tocris or synthesized as described. ${ }^{l}$ PCR cleanup and miniprep kits were from Omega Bio-tek (Norcross, GA). Gel extractions used the Zymoclean gel DNA recovery kit from Zymo Research (Irvine, CA). Ni-NTA agarose resin was purchased from Thermo Scientific. Protein gel electrophoresis was carried out using Life Tech 16\% Tris-glycine gels and a mini gel apparatus. The Sequagel reagents used for urea polyacrylamide gel electrophoresis were purchased from National Diagnostics (Atlanta, GA). T7 RNA polymerase was purified from a cell stock [BL21(DCAT4) transformed with pDL19] ${ }^{2}$ that was a gift from Dr. Philip Bevilacqua (Penn State). Bacillus subtilis 168 1A1 was obtained from the Bacillus Genetic Stock Center (Columbus, OH). pET31b-T7-Spinach2 was a gift from Ming Hammond (Addgene \#79783) ${ }^{3}$ and pHT 01 -ads was a gift from Heng-Phon Too (Addgene $\# 47382)^{4}$ (Table S4 for all plasmids used in this study). Sanger sequencing of plasmids using primers shown in Table S5 was performed by Penn State Huck Institute of the Life Science Genomics Core Facility and Genewiz.

UV-visible absorption spectra were obtained on an Agilent Cary 60 UV-visible spectrophotometer using a quartz cuvette (Starna Cells). Nucleic acid UV-visible absorption spectra and cell culture $\mathrm{OD}_{600 \mathrm{~nm}}$ measurements were obtained on Mettler Toledo UV5Nano. Well plate analyses were carried out using a Tecan infinite m1000pro microplate reader or BioTek Synergy H1 microplate reader. Flow cytometry assays were carried out using a BD LSRFortessa Flow Cytometer. Experiments utilizing $\mathrm{Fe}^{\mathrm{II}}$ were conducted within a vinyl anaerobic chamber (Coy Lab Products) or an MBraun Unilab anaerobic box. All glassware was acid-washed with TraceMetal grade nitric acid (Fisher) followed by extensive rinsing with filtered $\mathrm{ddH}_{2} \mathrm{O}$ prior to usage.

Expression and purification of T7 RNA polymerase. E. coli BL21(DCAT4) cells transformed with pDL19 for T7 RNA polymerase expression ${ }^{2}$ were streaked from a glycerol stock onto LBagar plates containing ampicillin (Amp, $100 \mu \mathrm{~g} / \mathrm{mL}$ in all growth media). A single colony was used to inoculate 50 mL of LB-Amp, which was incubated overnight (16 h) at $37^{\circ} \mathrm{C}$ with 180 rpm shaking. Of this culture, 25 mL was used to inoculate 2 L of LB-Amp in a 6-L flask, which was grown at $37^{\circ} \mathrm{C}$ with 180 rpm shaking. At $\mathrm{OD}_{600 \mathrm{~nm}}=0.6-0.8$, the culture was induced with $125 \mu \mathrm{M}$ isopropyl β-D-1-thiogalactopyranoside (IPTG), and growth was continued for 4 h . The remaining operations were performed at $4{ }^{\circ} \mathrm{C}$. The cells were pelleted by centrifugation ($7000 \times \mathrm{g}, 15 \mathrm{~min}$), resuspended in 50 mL of Buffer A $(20 \mathrm{mM}$ Tris, $20 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM}$ EDTA, pH 7.5$)$, and centrifuged again. The resulting cell pellet (5.87 g) was resuspended in Buffer B [50 mM Tris, $100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ imidazole, $10 \mathrm{mM} \beta$-mercaptoethanol ($\beta-\mathrm{ME}$), 0.1% Triton X-100, 5% glycerol, pH 8.4] $5 \mathrm{~mL} / \mathrm{g}$ cell paste with $1 \mathrm{U} / \mathrm{mL}$ DNase (NEB) and a Complete Mini protease
inhibitor cocktail tablet (Roche). Cells were lysed by sonication with a $1 / 4$ " (6 mm) microtip at 50% amplitude, with cycles of 20 s pulse on / 40 s pulse off for 20 min (QSonica). After sonication, the suspension was centrifuged at $30,000 \times g$ for 45 min . The supernatant was loaded onto a 2 mL $(0.8 \times 2 \mathrm{~cm}) \mathrm{Ni}-\mathrm{NTA}$ agarose column (Qiagen). The column was washed with 10 column volumes (CV) of Buffer B, followed by 40 CV of Buffer C (50 mM Tris, $100 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ imidazole, $10 \mathrm{mM} \beta-\mathrm{ME}, 0.1 \%$ Triton X-100, 5% glycerol, pH 8.4). Protein was eluted using 10 CV of Buffer D (50 mM Tris, $100 \mathrm{mM} \mathrm{NaCl}, 250 \mathrm{mM}$ imidazole, $10 \mathrm{mM} \beta-\mathrm{ME}, 20 \%$ glycerol, pH 8.0). The eluted protein was concentrated to 1.5 mL using an Amicon Ultra 30-kDa MWCO centrifugal filtration unit (Millipore Sigma) and exchanged into Buffer E [50 mM Tris, $100 \mathrm{mM} \mathrm{NaCl}, 10$ mM dithiothreitol (DTT), 1 mM EDTA, 0.1% Triton X-100, 50% glycerol, pH 8.0] using a Sephadex G25 column ($15 \mathrm{~mL}, 1.5 \times 9 \mathrm{~cm}$). The resulting protein was quantified using $\varepsilon_{280 \mathrm{~nm}}=$ $141 \mathrm{mM}^{-1} \mathrm{~cm}^{-1} .{ }^{5}$ Activity was tested using a control reaction transcribing Spinach2 $(1 \mu \mathrm{~L}-8 \mu \mathrm{~L}$ enzyme) before flash-freezing in liquid N_{2} and storing at $-80^{\circ} \mathrm{C}$. The purification yielded $44 \mathrm{mg} / \mathrm{L}$ culture.

RNA transcription, purification, and folding. RNAs were transcribed following the NEB standard RNA synthesis protocol. DNA template (10-20 $\mu \mathrm{g}$) was added to transcription buffer mix (0.5 mM NTP mix, 40 mM Tris, $6 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ DTT, 2 mM spermidine, $0.4 \mu \mathrm{M}$ T7 RNA polymerase, 0.1 U inorganic pyrophosphatase, pH 7.9) and incubated at $37{ }^{\circ} \mathrm{C}$ for $3-4 \mathrm{~h}$. Transcription reactions were quenched with the addition of $2 \times$ urea loading buffer [18 M urea, 20% sucrose, 0.1% sodium dodecyl sulfate (SDS), 90 mM Tris (pH 8.0), 90 mM boric acid, 1 mM ethylenediaminetetraacetic acid (EDTA)] followed by purification by gel electrophoresis (6-8\% polyacrylamide, 7.5 M urea, National Diagnostics kit). The product band was visualized with a handheld UV light and excised and diced with razor blade to be soaked in crush-soak buffer (10 mM Tris, $200 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, pH 8.0) overnight at $4^{\circ} \mathrm{C}$. The purified RNAs were isolated as a solid white pellet by ethanol precipitation at $-20^{\circ} \mathrm{C}$ followed by centrifugation at $18000 \times g$. The RNA pellets were dissolved in $50 \mu \mathrm{~L}$ of autoclaved RNase-free water or $0.5 \times$ TE buffer (5 mM Tris, 0.5 mM EDTA, pH 8.0). RNA concentrations were calculated using the approximated sequence-specific extinction coefficients at 260 nm following hydrolysis digestion by incubating the RNA in a PCR machine at $95{ }^{\circ} \mathrm{C}$ for 1 h . All RNAs were refolded by incubating in a PCR machine at $75^{\circ} \mathrm{C}$ for 2 min followed by gradual cool-down to room temperature prior to use.

RNA sensor template library generation and screening. Full-length Spinach2 and cp-Spinach2 sequences were generated by PCR of two self-priming primers (Table S6 for all relevant primer sequences for library generation). The sensor template library was generated by PCR primer extension of parent Spinach2 or cp-Spinach2 templates, replacing the loop region in each riboswitch stem. For P1 stem templates, the Spinach2 sequence was added onto the Eba riboswitch sequence using each set of fwd/rev primers for P1 primers. P2 stem templates were generated by addition of the riboswitch sequence onto the cpSpinach2 sequence by using each set of fwd/rev primers labeled with P2, followed by the addition of the riboswitch sequence numbered 52-111. For the P3 stem templates, the riboswitch sequence was first added to the cpSpinach2 sequence using sets of fwd/rev primers labeled as P3, followed by the addition of the 5' 1-28 and 3' 73-111 sequences from the riboswitch sequence using the appropriate primers. For P4 stems, the riboswitch sequence was added onto the cp-Spinach2 sequence using sets of fwd/rev primers labeled as P4, followed by addition of the 1-42 sequence from the riboswitch. All templates were amplified using the T7amp_fwd and amp_rev primers to add the T7 promoter in order to enable
in vitro transcription by T7 RNA polymerase. All PCR reactions used Q5 DNA polymerase and followed the manufacturer's protocol. PCR reactions were confirmed via 1% or 2% agarose gel and purified with E.Z.N.A. Cycle Pure Kit (Omega Bio-tek) or QIAquick PCR Purification Kit (Qiagen) according to the manufacturer's protocol. The purified DNA templates were transcribed, purified, and refolded before use as described in the previous section.

RNA sensor characterization in vitro. For each construct, fluorescence response was evaluated at different magnesium concentrations ($0.5,1,5$, and 10 mM) and either 0 or $100 \mu \mathrm{M} \mathrm{CoCl}_{2}$, using 100 nM sensor and $10 \mu \mathrm{M}$ DFHBI-1T, in 30 mM MOPS, $100 \mathrm{mM} \mathrm{KCl}, \mathrm{pH} 7.2$, at $20^{\circ} \mathrm{C}$. Constructs were incubated for 1 h prior to acquisition of fluorescence readings to allow for full DFHBI-1T binding. Fluorescence readings were acquired in 96 -well plates (Greiner μ Clear halfarea fluorescence plates) on a Tecan Infinite M1000Pro plate reader ($\lambda_{\mathrm{ex}}=475 \mathrm{~nm}, \lambda_{\mathrm{em}}=505 \mathrm{~nm}$). The three best-performing constructs (P1-1, P1-2, and P1-3) were evaluated further in the same buffer with 3 mM MgCl 2 added (Buffer \mathbf{F}) and containing various concentrations of MnCl_{2}, $\mathrm{CoCl}_{2}, \mathrm{NiCl}_{2}, \mathrm{ZnSO}_{4}$, and ferrous ammonium sulfate hexahydrate. $\mathrm{Fe}^{\mathrm{II}}$ experiments were carried out in an anaerobic chamber. The purified, ethanol-precipitated RNA was brought into the anaerobic chamber and resuspended in water. An aliquot ($1 \mu \mathrm{~L}$ diluted with $9 \mu \mathrm{~L}$ water) was removed from the chamber for RNA concentration determination. Titration samples were prepared in 96 -well plates, which were sealed using 96 -well sealing tape (Thermo Fisher) to prevent $\mathrm{Fe}^{\text {II }}$ oxidation, and after 1 h , the plates were removed from the chamber and immediately fluorescence readings were acquired. Data were analyzed using GraphPad Prism 6 software using the following non-linear regression equation (1):

$$
\begin{equation*}
Y=\text { Bottom }+\frac{(\text { Top }- \text { Bottom })}{\left(1+10^{\left.\left(\text {log } K_{d}-X\right) \times \text { Hillslope }\right)}\right)} \tag{1}
\end{equation*}
$$

where X is $\log \left(\left[\mathrm{M}^{\mathrm{II}}\right]\right)$, Y is the fluorescence value, Hillslope is the Hill coefficient (n), and K_{d} is the apparent dissociation constant. Top and Bottom is determined for each data set.

Citrate-buffered metal titrations.

Preparation of low- and high-metal citrate buffers. For buffered metal ion titrations of the czcD sensors, citrate was used as the metal ion buffer. ${ }^{6}$ The citrate buffer was prepared by dissolving MOPS, KCl , and citric acid (to give final concentrations of $30 \mathrm{mM}, 100 \mathrm{mM}$, and 1 mM , respectively, in 50 mL) in water to give a final volume of 40 mL . The buffer was incubated with 2 g Chelex-100 for 12 h and the pH was adjusted to pH 7.2 using 6 M KOH . After decanting to remove Chelex, high-metal citrate buffers were made by addition of 0.1 M metal stocks $\left[\mathrm{MnCl}_{2}\right.$, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}, \mathrm{CoCl}_{2}, \mathrm{NiCl}_{2}$, and ZnSO_{4}] into the buffer to the following final metal concentrations, followed by filling up to a final volume of 50 mL : for $\mathbf{c z c D} 1,300 \mu \mathrm{M} \mathrm{for} \mathrm{Fe}, \mathrm{Co}$, and Ni and $800 \mu \mathrm{M}$ for Mn and Zn ; for czcD- 2 and czcD-3, $100 \mu \mathrm{M}$ for $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$, and Zn and $500 \mu \mathrm{M}$ for Mn . The low-metal buffer was made by filling up to final volume of 50 mL , without metal addition.

Citrate buffered metal titrations. High and low metal citrate buffer stocks were first prepared by the addition of 100 nM RNA and $10 \mu \mathrm{M}$ DFHBI-1T. The desired free metal concentrations were achieved by mixing high and low metal citrate buffers. Following incubation for 1 h , the resulting samples were measured in 96-well plates (Greiner μ Clear half-area fluorescence plates) using a Biotek Synergy fluorescent plate reader ($\lambda_{\mathrm{ex}}=475 \mathrm{~nm}, \lambda_{\mathrm{em}}=505 \mathrm{~nm}$).
$\mathrm{Fe}^{\mathrm{II}}$ experiments were carried out in an MBraun anaerobic chamber as described above. Data were analyzed using GraphPad Prism 6 software using equation 1, with the exception that X is the $\log _{10}$ of the free metal concentration, which was calculated for each titration point as described below.

Calculation of free metal concentrations for K_{d} determination. The free metal ion concentrations [$\mathrm{M}_{\text {free }}$] for each sample mixture were calculated as described ${ }^{7,8}$ using the following equation (2):

$$
\begin{equation*}
\left[M_{\text {free }}\right]=\frac{K_{d, M}[M L]}{[L]} \tag{2}
\end{equation*}
$$

where [L] is the concentration of citrate that is not bound to metal ions, and [ML] is the concentration of metal-bound citrate. $K_{\mathrm{d}, \mathrm{M}}$ is the effective K_{d} for each metal adjusted for pH using the following equation (3):

$$
\begin{equation*}
K_{d, M}=\frac{1+10^{p K 1-p H}+10^{p K 2-p K 1-2 p H}}{K_{M}} \tag{3}
\end{equation*}
$$

where pK_{1} and pK_{2} are the published first and second pK_{a} values of citrate at an ionic strength of $0.1,{ }^{9}$ and the pH is the pH of the buffer. The K_{M} is defined as $K_{\mathrm{M}}=[\mathrm{ML}] /([\mathrm{M}][\mathrm{L}])$, given for each metal ion in ref. ${ }^{9}$. The $K_{\mathrm{d}, \mathrm{M}}$ values determined for the metal solutions used in our experiments are shown in Table S3.

Because the concentration of ligand (1 mM) was much greater than the RNA concentration $(100 \mathrm{nM})$, eq. 2 was approximated by eq. 4 for each sample, where $\mathrm{V}_{\text {high }}$ and $\mathrm{V}_{\text {low }}$ are the volumes of the high and low metal solutions mixed together.

$$
\begin{equation*}
\left[\mathrm{M}_{\mathrm{free}}\right]=K_{\mathrm{d}, \mathrm{M}} \cdot \mathrm{~V}_{\mathrm{high}} / \mathrm{V}_{\mathrm{low}} \tag{4}
\end{equation*}
$$

The potential contribution of $\mathrm{Mg}^{\text {II }}$ binding to citrate - which could compete with the transition metal ions for citrate binding, increase the free transition metal ion concentration, and therefore lead to an underestimate of the actual K_{d} values - was likely to be relatively minor based on the relative $K_{\mathrm{d}, \mathrm{M}}$ values of the transition metal ions and $\mathrm{Mg}^{\mathrm{II}}$. As a result, this potential contribution was ignored in these calculations. Still, in order to estimate the magnitude of the effect, assays of czcD-2 with $\mathrm{Co}^{\mathrm{II}}$ in the presence of $1 \mathrm{mM}, 3 \mathrm{mM}$, and $10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ were carried out. The results (Figure S8) indicate that the overall effect is at most 2-3 fold, which does not change the basic conclusions of this manuscript. We also note that knowledge of how much of the added $\mathrm{Mg}^{\mathrm{II}}$ is citrate-bound is also complicated by the high concentration of $\mathrm{Mg}^{\mathrm{II}}$-binding sites on the RNA itself, and interpretation of the effect of Mg concentrations on sensor response is complicated by potential effects on RNA structure and outcompetition of other metal ions for their cognate binding sites on the riboswitch. The effects of $\mathrm{Mg}^{\mathrm{II}}$ on riboswitch function is an understudied area in general ${ }^{10}$ but especially for metal-binding riboswitches. ${ }^{11,12} \mathrm{~A}$ more detailed analysis and accounting of these effects on function of the present riboswitch is in progress.

Plasmid construction for sensor expression in E. coli. pET31b-T7-Spinach2 (Table S4, Addgene \#79783) contains Spinach2, flanked by EagI sites, inserted into the human $\mathrm{tRNA}^{\text {Lys }}$ scaffold. ${ }^{3,13}$ The czcD-2 sensor was inserted into this construct for expression in E. coli. pET31b-T7-Spinach2 ($1.5 \mu \mathrm{~g}$) was linearized and Spinach2 removed by digestion with EagI-HF (20 U) at $37^{\circ} \mathrm{C}$ for 1 h followed by purification by gel electrophoresis (1% agarose). EagI sites were added
onto czcD-2 by PCR using primers Spinach 2-EagI-F and Spinach 2-EagI-R (Table S5) and the PCR product was digested with EagI-HF at $37^{\circ} \mathrm{C}$ for 1 h followed by purification by agarose gel electrophoresis. The insert was ligated into the vector at a 3:1 insert:vector ratio using T4 DNA ligase (NEB) for 1 h at room temperature, and the product was transformed into NEB 5-alpha cells, plated on LB-agar-Amp, and incubated at $37^{\circ} \mathrm{C}$ overnight. Colonies were screened for insert using colony PCR (OneTaq DNA polymerase, primers T7P and T7T), and the DNA sequences of the plasmids were confirmed by Sanger sequencing.

Analysis of cellular iron by czcD-2 using flow cytometry. E. coli BL21Star(DE3) cells were transformed with pET31b-T7-czcD-2 or pET31b-T7-Spinach2 (as a control) and plated on M9-agar-carbenicillin ($\mathrm{Cb}, 100 \mu \mathrm{~g} / \mathrm{mL}$ in all media for this experiment) plates, which were incubated at $37{ }^{\circ} \mathrm{C}$ overnight. The M9 media consisted of $42 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 22 \mathrm{mM} \mathrm{KH} \mathrm{PO}_{4}, 8.5 \mathrm{mM} \mathrm{NaCl}$, $19 \mathrm{mM} \mathrm{NH}_{4} \mathrm{Cl}, 2 \mathrm{mM} \mathrm{Mg} 2 \mathrm{SO}_{4}, 0.1 \mathrm{mM} \mathrm{CaCl} 2,0.2 \%$ glucose, and 0.1% casamino acids. A single colony was inoculated into a 5 mL M9-Cb culture and grown overnight for 16 hrs at $37{ }^{\circ} \mathrm{C}$ with 180 rpm shaking. This culture was used to inoculate at $40 \times$ dilution $5 \mathrm{~mL} \mathrm{M} 9-\mathrm{Cb}$ cultures in 14mL polypropylene culture tubes, which were grown at $37^{\circ} \mathrm{C}$ with 180 rpm shaking. At $\mathrm{OD}_{600 \mathrm{~nm}}=$ 0.1 , each culture was induced with 1 mM IPTG, and growth was continued for 2 h . Metal ions were added to the desired concentrations $\left(0-100 \mu \mathrm{M}\right.$ ferric ammonium citrate, $20 \mu \mathrm{M} \mathrm{MnCl}{ }_{2}$, $\mathrm{CoCl}_{2}, \mathrm{NiCl}_{2}$, or ZnSO_{4}) from 100 mM or 1 mM stock solutions, and the cultures were grown for an additional 1 h . Cells were harvested by centrifugation ($3200 \times g$, $10 \mathrm{~min}, 4^{\circ} \mathrm{C}$). Experiments were carried out with 2 biological replicates in each of 3 independent experiments.

Cell pellets were resuspended in $0.5 \mathrm{~mL} 1 \times \mathrm{PBS}\left(1.9 \mathrm{mM} \mathrm{NaH}_{2} \mathrm{PO}_{4}, 8.4 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}\right.$, $175 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$) containing $50 \mu \mathrm{M}$ DFHBI-1T (added from a 50 mM stock in DMSO). Cellular fluorescence was measured with the $488-\mathrm{nm}$ excitation laser line and $530-\mathrm{nm}$ green fluorescence channel using the Special Order 16-color BD LSRFortessa flow cytometer at the Penn State Huck Institutes of the Life Sciences Microscopy and Cytometry Facility. For each sample, $\geq 30,000$ cells were measured. The data of each flow cytometry sample were analyzed using Flowjo v10, gating for E. coli cells based on FSC/SSC, plotting the histogram then histogram (e.g., Figure S9A), and determining the mean fluorescence value for the population. Fluorescence response of czcD-2-expressing cells was normalized to the Spinach2-expressing cells grown under the same conditions, in order to account for differences in cell size (see Figure S9B).
czcD-2 competition against the Lmo riboswitch. The metal-binding ability of the Lmo riboswitch (vs. an mSpinach 2 control) was assessed via competitive titration. The RNAs (0.05-3.2 $\mu \mathrm{M}$) were titrated into RNA sensor mix (Buffer F containing 100 nM czcD-2, $10 \mu \mathrm{M}$ DFHBI-1T, and either $2 \mu \mathrm{MCo}{ }^{\text {II }}$ or $2 \mu \mathrm{M} \mathrm{Fe}^{\mathrm{II}}$) and fluorescence measured in 96 -well plates on a Tecan Infinite M1000Pro plate reader $\left(\lambda_{\mathrm{ex}}=475 \mathrm{~nm}, \lambda_{\mathrm{em}}=505 \mathrm{~nm}\right) . \mathrm{Fe}^{\mathrm{II}}$ experiments were carried out in an anaerobic chamber. The ethanol-precipitated RNA was brought into the anaerobic chamber and resuspended in water. An aliquot ($1 \mu \mathrm{~L}$ diluted with $9 \mu \mathrm{~L}$ water) was removed from the chamber for RNA concentration determination. Titration samples were prepared in 96 -well plates, which were sealed using 96 -well sealing tape (Thermo Fisher) to prevent $\mathrm{Fe}^{\mathrm{II}}$ oxidation, and after 1 h , the plates were removed from the chamber and immediately fluorescence readings were acquired.

Cloning of putative metal exporters into B. subtilis expression vectors. The genes encoding PfeT, Eba3544, LMO3448, and sfGFP (Figures S16-S19) were each inserted into pHT01-ads (MoBiTec, Addgene \#47382), which contains an IPTG-inducible promoter, for protein expression
in Bacillus subtilis 1A1 (BGSC). pHT01-ads ($1.5 \mu \mathrm{~g}$) was linearized and ads was removed by digestion with BamHI-HF (20 U) and $\mathrm{XbaI}(20 \mathrm{U})$ at $37^{\circ} \mathrm{C}$ for 1 h , followed by purification by gel electrophoresis (1% agarose). The inserts were obtained as codon-optimized gBlocks. pfe T was synthesized with the Gibson ends included. Due to synthesis requirements, Gibson ends had to be added by PCR to the gBlocks for the Eba3544 and LMO3448 genes, using primers eba-Gib-F, eba-Gib-R, lmo-Gib-F and lmo-Gib-R. The sfGFP gene was amplified from pET21b-RL015A ${ }^{14}$ and BamHI and XbaI sites were added using sfGFP-BamHI-F and sfGFP-XbaI-R, followed by digestion with BamHI-HF (20 U) and XbaI (20 U) for 1 h at $37^{\circ} \mathrm{C}$ and PCR clean-up kit purification. The pfeT, Eba3544, and LMO3448 inserts were ligated into the linearized pHT01 vector at a $3: 1$ insert:vector ratio using the NEBuilder HiFi DNA Assembly Master Mix for 1 h at $50^{\circ} \mathrm{C}$. The sfGFP insert was ligated into the linearized pHT 01 vector at a $3: 1$ insert:vector ratio using T4 DNA ligase (NEB) for 1 h at room temperature. The products were transformed into NEB 5-alpha cells, plated on LB-agar-Amp, and incubated at $37^{\circ} \mathrm{C}$ overnight. The colonies were screened for insert using colony PCR (OneTaq DNA polymerase, primers LacI-R and pHT01-R) and the DNA sequences of plasmids were confirmed by Sanger sequencing.

Complementation assay in B. subtilis. Transformation of B. subtilis was done according to MoBiTec's protocol. B. subtilis 1A1 cells were streaked onto an LB-agar plate from a glycerol stock. A single colony was used to inoculate 5 mL of LB, which was grown overnight (16 h) at 37 ${ }^{\circ} \mathrm{C}$ with 180 rpm shaking. This culture was inoculated at $100 \times$ dilution into 10 mL GM1 ($1 \times$ Spizizen salts, 0.5% glucose, 0.02% casamino acids, 0.1% yeast extract, 1.5 mM MgSO 4) and grown at $37{ }^{\circ} \mathrm{C}$ with 180 rpm shaking until growth reached stationary phase $\left(\mathrm{OD}_{600 \mathrm{~nm}}=3.0\right)$. This culture was diluted $20 \times$ into 10 mL GM2 $(1 \times$ Spizizen salts, 0.5% glucose, 0.02% casamino acids, 0.1% yeast extract, $2.5 \mathrm{mM} \mathrm{MgCl}_{2}, 5 \mathrm{mM} \mathrm{CaCl} 2$) and grown for 2 h at $30^{\circ} \mathrm{C}$ with 180 rpm shaking. The cells were used for transformations immediately after GM2 growth. EGTA was added to a final concentration of 1 mM to 1 mL of GM2 cell culture and incubated at room temperature for 5 min . Plasmid $(1 \mu \mathrm{~g})$ was added and incubated at $37{ }^{\circ} \mathrm{C}$ for 2 h with 180 rpm shaking. The cells $(200 \mu \mathrm{~L})$ were plated on LB-agar- $\mathrm{Cm}(5 \mu \mathrm{~g} / \mathrm{ml})$ and incubated at $37^{\circ} \mathrm{C}$ overnight.

The complementation assay to determine the ability of the metal exporters (PfeT, Eba3544, LMO3448, and sfGFP as a control) to rescue metal toxicity was performed as described ${ }^{15}$ with minor modifications. A single colony was used to inoculate 5 mL of $\mathrm{LB}(5 \mu \mathrm{~g} / \mathrm{mL} \mathrm{Cm}$ in all growth media), which was grown overnight (16 h) at $37{ }^{\circ} \mathrm{C}$ with 180 rpm shaking. This culture was inoculated at $100 \times$ dilution into 5 mL of LB-Cm and grown at $37^{\circ} \mathrm{C}$ with 180 rpm shaking. At $\mathrm{OD}_{600 \mathrm{~nm}}=0.4$, this culture was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), and growth was continued for 30 min . This culture was then inoculated at $100 \times$ dilution into a $500-$ mL baffled flask containing 100 mL LBC medium (LB medium containing $1 \mathrm{~g} / \mathrm{L}$ sodium citrate dihydrate) or 100 mL LBC medium supplemented with 2.5 mM ferrous ammonium sulfate, 1 mM MnCl_{2}, $0.4 \mathrm{mM} \mathrm{CoCl}_{2}, 1.25 \mathrm{mM} \mathrm{NiCl}_{2}$, or $3 \mathrm{mM} \mathrm{CuCl}_{2} 0.6 \mathrm{mM} \mathrm{ZnSO}_{4}$. This culture was grown at $37{ }^{\circ} \mathrm{C}$ with 180 rpm shaking and cell growth was monitored at 600 nm every hour for 8 h .

Verification of expression and membrane insertion of putative metal transporters. B. subtilis 1A1 cells transformed with pHT01-sfGFP, pHT01-lmo-tev-sfGFP, or $\mathrm{pHT01}$-eba-tev-sfGFP were streaked onto an LB-agar plate from a glycerol stock ($5 \mu \mathrm{~g} / \mathrm{mL} \mathrm{Cm}$ in all growth media). A single colony was used to inoculate 5 mL of LB-Cm, which was grown overnight (16 h) at $37{ }^{\circ} \mathrm{C}$ with 180 rpm shaking. This culture was inoculated at $100 \times$ dilution into 200 mL of LB-Cm and grown at $37{ }^{\circ} \mathrm{C}$ with 180 rpm shaking. At $\mathrm{OD}_{600 \mathrm{~nm}}=0.4$, this culture was induced with 1 mM IPTG, and
growth was continued for 30 min . The cells were pelleted by centrifugation ($7000 \times \mathrm{g}, 15 \mathrm{~min}$), and frozen at $-80^{\circ} \mathrm{C}$ overnight. The membrane fractions were collected as described with minor modifications. ${ }^{16}$ The resulting cell pellets (0.55 g) were resuspended with 15 mL of Buffer \mathbf{G} (25 mM Tris, 100 mM sucrose, pH 7.5) and lysed by sonication with a $1 / 4 "$ (6 mm) microtip at 50% amplitude, with cycles of 20s pulse on/ 40s pulse off for 10 min (QSonica). After sonication, the lysates were first clarified by centrifugation at $8000 \times g$ at $4^{\circ} \mathrm{C}$ for 40 min followed by isolation of the cell membrane fraction by centrifugation at maximum speed ($75600 \times g$) for 1 h . The supernatants were decanted completely from the cell membrane pellets. The cell membrane pellets were resuspended in 1 mL of Buffer G. Fluorescence readings of each supernatant and resuspended membrane were determined in 96 -well plates using a fluorescence plate reader ($\lambda_{\mathrm{ex}}=485 \mathrm{~nm}$, $\lambda_{\mathrm{em}}=513 \mathrm{~nm}$), and scaled according to volume in order to calculate total fluorescence values reported in Figure S14.

SUPPLEMENTARY TABLES

Table S1. Sequences of the DNA templates used for the riboswitches and riboswitch-based sensors. The DNA template sequences for the $E b a$ and $L m o c z c D$ riboswitches are derived from Furukawa et al. ${ }^{17}$ Spinach 2^{18} or cpSpinach 2^{19} sequences are shown in red. In the sensor constructs, components of the appropriate truncated stem are shown in green. Px-y denotes insertion of Spinach2 or cpSpinach2 into stem x retaining y base pairs. Sensors czcD-1, czcD-2, and czcD-3 are the P1-1, P1-2, and P1-3 constructs, respectively. Spinach2 was used for the P1 constructs and cpSpinach2 was used for the P2, P3, and P4 constructs.

Name	Sequence
Eba riboswitch	5'- GTACAAACTGAGCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTGCGAAAGCGGCAACAG ATGATTACACGCACATCTGTGGGACAGTTGTATATTCCACAGATGTTTTTT -3' 5'-
Lmo riboswitch	GTCATTGTGATCTGAACAGGCGGTGAACGTAACACGAGGTTCATGCAGCTGGGCTGCAATTATTT GCGGCAGCAGACTATGTATTCTAAGGGCATATCTGTGGGACAGTTAATTCTGTTCTACGGGTATG CCCTTTTTT - 3^{\prime} 5'-
Spinach2	GATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGTAGGCTGCTTCGGCAGCCTACTTGTTGA GTAGAGTGTGAGCTCCGTAACTAGTTACATC-3' 5'-
cpSpinach2	TTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCGCAAGATGTAACTGAATGAAATGGTGAA GGACGGGTCCA-3' 5'-
mSpinach2	GATGTAACTGAATGAAATGGTGAATTACTTGTCCAGTAGGCTGCTTCGGCAGCCTACTTGTTGAG TAGAGTGTGAGCTCCGTAACTAGTTACATC-3'
czcD-1	5'- GATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGAGCAGGCAAATGACCAGAGCGGTCATGC AGCCGGGCTGCGAAAGCGGCAACAGATGATTACACGCACATCTCTGTGGGACTTGTTGAGTAGA GTGTGAGCTCCGTAACTAGTTACATC -3' 5'-
czcD-2	GATGTAACTGAATGAAATGGTGAAGGACGGGTCCATGAGCAGGCAAATGACCAGAGCGGTCATG CAGCCGGGCTGCGAAAGCGGCAACAGATGATTACACGCACATCTCTGTGGGACATTGTTGAGTA GAGTGTGAGCTCCGTAACTAGTTACATC - 3^{\prime} 5'-
czcD-3	GATGTAACTGAATGAAATGGTGAAGGACGGGTCCACTGAGCAGGCAAATGACCAGAGCGGTCAT GCAGCCGGGCTGCGAAAGCGGCAACAGATGATTACACGCACATCTCTGTGGGACAGTTGTTGAG TAGAGTGTGAGCTCCGTAACTAGTTACATC - 3^{\prime} 5'-
P1-5	GATGTAACTGAATGAAATGGTGAAGGACGGGTCCAAACTGAGCAGGCAAATGACCAGAGCGGTC ATGCAGCCGGGCTGCGAAAGCGGCAACAGATGATTACACGCACATCTCTGTGGGACAGTTTTGT TGAGTAGAGTGTGAGCTCCGTAACTAGTTACATC -3' 5'-
P1-4	GATGTAACTGAATGAAATGGTGAAGGACGGGTCCAACTGAGCAGGCAAATGACCAGAGCGGTCA TGCAGCCGGGCTGCGAAAGCGGCAACAGATGATTACACGCACATCTCTGTGGGACAGTTTGTTG AGTAGAGTGTGAGCTCCGTAACTAGTTACATC -3' 5'-
P1-0	GATGTAACTGAATGAAATGGTGAAGGACGGGTCCAAGCAGGCAAATGACCAGAGCGGTCATGCA GCCGGGCTGCGAAAGCGGCAACAGATGATTACACGCACATCTCTGTGGGATTGTTGAGTAGAGT GTGAGCTCCGTAACTAGTTACATC -3'
P2-6	5'- GTACAAACTGAGCAGGCAAATGACCTTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCGC AAGATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGGTCATGCAGCCGGGCTGCGAAAGCGG CAACAGATGATTACACGCACATCTCTGTGGGACAGTTGTATATTCCACAGATGT-3'

	5'-
P2-5	GTACAAACTGAGCAGGCAAATGACTTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCGCA AGATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGTCATGCAGCCGGGCTGCGAAAGCGGCA ACAGATGATTACACGCACATCTCTGTGGGACAGTTGTATATTCCACAGATGT-3' 5'-
P2-4	GTACAAACTGAGCAGGCAAATGATTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCGCAA GATGTAACTGAATGAAATGGTGAAGGACGGGTCCATCATGCAGCCGGGCTGCGAAAGCGGCAAC AGATGATTACACGCACATCTCTGTGGGACAGTTGTATATTCCACAGATGT-3' 5'-
P2-3	GTACAAACTGAGCAGGCAAATGTTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCGCAAG ATGTAACTGAATGAAATGGTGAAGGACGGGTCCACATGCAGCCGGGCTGCGAAAGCGGCAACAG ATGATTACACGCACATCTCTGTGGGACAGTTGTATATTCCACAGATGT-3' 5'-
P2-2	GTACAAACTGAGCAGGCAAATTTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCGCAAGA TGTAACTGAATGAAATGGTGAAGGACGGGTCCAATGCAGCCGGGCTGCGAAAGCGGCAACAGAT GATTACACGCACATCTCTGTGGGACAGTTGTATATTCCACAGATGT-3'
P3-5	5'- GTACAAACTGAGCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTGCTTGTTGAGTAGAGTG TGAGCTCCGTAACTAGTTACATCGCAAGATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGCG GCAACAGATGATTACACGCACATCTCTGTGGGACAGTTGTATATTCCACAGATGT-3' 5'-
P3-4	GTACAAACTGAGCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTGTTGTTGAGTAGAGTGT GAGCTCCGTAACTAGTTACATCGCAAGATGTAACTGAATGAAATGGTGAAGGACGGGTCCACGG CAACAGATGATTACACGCACATCTCTGTGGGACAGTTGTATATTCCACAGATGT-3' 5'-
P3-3	GTACAAACTGAGCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTTTGTTGAGTAGAGTGTG AGCTCCGTAACTAGTTACATCGCAAGATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGGCAA CAGATGATTACACGCACATCTCTGTGGGACAGTTGTATATTCCACAGATGT-3' 5'-
P3-2	GTACAAACTGAGCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTTGTTGAGTAGAGTGTGA GCTCCGTAACTAGTTACATCGCAAGATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGCAACA GATGATTACACGCACATCTCTGTGGGACAGTTGTATATTCCACAGATGT-3'
P4-5	5'- GTACAAACTGAGCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTGCGAAAGCGGCAACAG ATTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCGCAAGATGTAACTGAATGAAATGGTGA AGGACGGGTCCATCTGTGGGACAGTTGTATATTCCACAGATGT-3' 5'-
P4-4	GTACAAACTGAGCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTGCGAAAGCGGCAACAG TTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCGCAAGATGTAACTGAATGAAATGGTGAA GGACGGGTCCACTGTGGGACAGTTGTATATTCCACAGATGT -3' 5'-
P4-3	GTACAAACTGAGCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTGCGAAAGCGGCAACATT GTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCGCAAGATGTAACTGAATGAAATGGTGAAG GACGGGTCCATGTGGGACAGTTGTATATTCCACAGATGT-3' 5'-
P4-2	GTACAAACTGAGCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTGCGAAAGCGGCAACTT GTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATCGCAAGATGTAACTGAATGAAATGGTGAAG GACGGGTCCAGTGGGACAGTTGTATATTCCACAGATGT-3'

Table S2. Response of czcD-1, czcD-2, and czcD-3 - apparent $K_{\mathrm{d}}\left(K_{\mathrm{d}, \mathrm{app}}\right)$, Hill coefficient (n), and fluorescence turn-on ($\mathrm{F}_{\max } / \mathrm{F}_{\min }$) - to divalent first-row transition metal ions in unbuffered titrations. For sensor assays, experiments were carried out in 30 mM MOPS, $100 \mathrm{mM} \mathrm{KCl}, 3 \mathrm{mM}$ MgCl_{2}, pH 7.2, at $20^{\circ} \mathrm{C}$, using 100 nM sensor and $10 \mu \mathrm{M}$ DFHBI-1T. Experiments were performed aerobically except for those involving $\mathrm{Fe}^{\mathrm{II}}$, which were performed in an anaerobic chamber. For czcD-1, for all metals except for $\mathrm{Fe}^{\mathrm{II}}$, no saturation of response was observed, so fitting parameters could not be reliably obtained. Lower limits of K_{d} for $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$, and $\mathrm{Zn}^{\mathrm{II}}$ are reported as the highest metal concentration experimentally tested, because the sensor did not reach 50% of the total response to $\mathrm{Fe}^{\mathrm{II}}$ (assuming that the sensor would hypothetically saturate at the same value for all metal ions). The $K_{\mathrm{d}, \mathrm{app}}$ values we determined for czcD-2 and czcD-3 are slightly smaller than those determined for the native riboswitch by Furukawa et al. This discrepancy may result from the $20 \mathrm{mM} \mathrm{Mg}{ }^{\text {II }}$ present in the buffer used in the original report (see Figure S4). Values are reported as the mean \pm S.D. for 3 independent titrations. N.D.: cannot be determined from data in Figure S2 due to poor fluorescence response.

		Mn'	Fe ${ }^{\text {I }}$	Co'	$\mathrm{Ni}^{\text {II }}$	Z ${ }^{\text {II }}$
czcD-1	$K_{\text {d,app }}(\mu \mathrm{M})$	N.D.	23 ± 4	>50	>25	>100
	$F_{\text {max }} / F_{\text {min }}$	N.D.	8.0	N.D.	N.D.	N.D.
	n	N.D.	2.2 ± 0.3	N.D.	N.D.	N.D.
czcD-2	$K_{\text {d,app }}(\mu \mathrm{M})$	66 ± 3	2.2 ± 0.8	3.1 ± 0.1	2.2 ± 0.5	12 ± 1
	$F_{\text {max }} / F_{\text {min }}$	5.1	3.7	6.2	6.6	7.6
	n	2.5 ± 0.2	1.6 ± 0.1	2.9 ± 0.2	1.7 ± 0.1	2.8 ± 0.5
czcD-3	$K_{\text {d,app }}(\mu \mathrm{M})$	25 ± 12	1.3 ± 0.5	2.2 ± 0.1	0.9 ± 0.1	5.1 ± 0.5
	$F_{\text {max }} / F_{\text {min }}$	2.0	1.9	2.9	2.2	2.7
	n	2.5 ± 0.8	1.2 ± 0.2	3.9 ± 2.3	3 ± 1.1	1.8 ± 0.7
Eba riboswitch (in-line) ${ }^{a}$	$K_{\text {d,app }}(\mu \mathrm{M})$	220	no response ${ }^{b}$	5.6	12	no response ${ }^{b}$
	n	1.2	N/A	2	1.6	N/A

${ }^{a}$ Values from Furukawa et al. ${ }^{17}$ Determined by in-line probing in 50 mM Tris, $100 \mathrm{mM} \mathrm{KCl}, 20$ mM MgCl 2 , pH 8.3 , at $23^{\circ} \mathrm{C}$. (For $\mathrm{Mn}^{\mathrm{II}}$ determinations, pH 7.5 and $30^{\circ} \mathrm{C}$ were used.)
${ }^{b}$ Our data suggest that the lack of response was likely a result of precipitation of hydroxides of $\mathrm{Fe}^{\mathrm{III}}$ and $\mathrm{Zn}^{\mathrm{II}}$ under the experimental conditions (see main text).

Table S3. Calculated $K_{\mathrm{d}, \mathrm{M}}$ values used for determination of apparent K_{d} S of $\mathbf{~ c z c D}$ sensors

Chelator	Metal	$\log K_{M}$	Adjusted $\boldsymbol{K}_{\mathrm{d}, \mathrm{M}}$
Citric acid	$\mathrm{Mn}^{\prime \prime}$	4.15	7.30×10^{-5}
	$\mathrm{Fe}^{\prime \prime}$	4.40	4.10×10^{-5}
	$\mathrm{Co}^{\prime \prime}$	5.00	1.05×10^{-5}
	$\mathrm{Ni}^{\prime \prime}$	5.40	4.10×10^{-6}
	$\mathrm{Zn}^{\prime \prime}$	4.98	1.08×10^{-6}
	$\mathrm{Mg}^{\prime \prime}$	3.37	4.60×10^{-4}

Table S4. Plasmids used in this study

Name	Notes	Source
pDL19	Ampr; E. coli expression of T7 RNA polymerase	Ref. 2, Philip Bevilacqua
pET31b-T7-Spinach2	$A m p{ }^{R}$	Ref. 3, Addgene \#79783
pET31b-T7-czcD-2	Amp ${ }^{\text {; }}$ e expression of czcD-2 in E. coli	This work
pET21b-RL015A	$A m p r$	Ref. 14, Addgene \#42134
pHT01-ads	Cmr ${ }^{\text {a }}$ Amp ${ }^{\text {R }}$	Ref. 4, Addgene \#47382
pHT01-sfGFP	Cmr, Ampr ${ }^{\text {; }}$ B. subtilis expression of sfGFP	This work
pHT01-pfeT	$\mathrm{Cm}^{\mathrm{R}}, \mathrm{Amp}^{\mathrm{R}}$; B. subtilis expression of PfeT	This work
pHT01-eba	Cmr, Ampr; B. subtilis expression of Eba3544	This work
pHT01-eba-tev-sfGFP	Cm ${ }^{R}$, Ampr${ }^{R}$; B. subtilis expression of Eba3544sfGFP, for verification of expression and localization	This work
pHT01-Imo-tev	$\mathrm{Cm}^{\mathrm{R}}, \mathrm{Amp}^{\mathrm{R}}$; B. subtilis expression of LMO3448 with TEV-cleavable C-terminal His6 tag	This work
pHT01-Imo-tev-sfGFP	$\mathrm{Cm}^{\mathrm{R}}, \mathrm{Amp}{ }^{\mathrm{R}}$; B. subtilis expression of LMO3448sfGFP, for verification of expression and localization	This work

Table S5. Primers used for cloning and sequencing

Name	Sequence $^{\text {a,b }}$
Spinach 2-Eagl-F	5'-CCAAGCGGCCGGATGTAACTGAATGAAATGGTGAAGG-3'
Spinach 2-Eagl-R	5'-CTTGGCGGCCGGATGTAACTAGTTACGGAGCTCA -3'
sfGFP-BamHI-F	5'-ATAAGGATCCATGCGTAAAGGCGAAGAACTG-3'
sfGFP-Xbal-R	5'-TTATTCTAGATTACTTATACAGCTCGTCCATACCG-3'
eba-Gib-F	5'-CCAATTAAAGGAGGAAGGATCCATGACAACTGAAAAAAAACCATATG-3'
eba-Gib-R	5'-GGACGTCGACTCTAGATTACTCGTTCGCCGG-3'
Imo-Gib-F	5'-CCAATTAAAGGAGGAAGGATCCATGATTAGTTACCTTATTAAATCTCGCC-
Imo-Gib-R	3'
eba-tev-sfGFP-gib-F	5'-CCCGGCGAACGAGGAAAACCTGTATTTTCAGGGC-3'
Imo-tev-sfGFP-gib-F	5'-CATTAAAGAGTGTTAAGGTTGAAAACCTGTATTTTCAGGGC-3'
pHT01-gib-R	5'-GGACGTCGACTCTAGATCA-3'
Sequencing primers	
pHT01-R	5'- TCCGAGCTTCGTCCAAAATA-3'
Lacl-R	5'- GGCATACTCTGCGACATCGT-3'
Imo-mid	5'-TATCGTTAACGAGAGCG-3'
pfeT-mid	5'-GATTGTATGGCCAGATTG-3'
T7P	5'-TAATACGACTCACTATAGGG-3'
T7T	

${ }^{a}$ Restriction sites are underlined, ${ }^{b}$ Gibson ends are in red.

Table S6. Primers used for sensor library construction (continued on the next page).

Name	Sequence
Spinach2-top	5'- aagTAATACGACTCACTATAGATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGTAGGC TGC-3' 5'-
Spinach2-bottom	GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAGTAGGCTGCCGAAGCAGCCTAC TGGACCCGTC-3' 5'-
cpSpinach2-top	aagTAATACGACTCACTATAGTGGTGGTGGTGGTGCTCGAGTTACTTGTATAGCTCGTCCA TGCCG-3'
cpSpinach2-bottom	5'-TGGTCCTGCTGGAGTTCGTGTAACTCGAGCACCACCACCACCA-3'
NiCo_T7amp_fwd	5'-ccaagTAATACGACTCACTATAGGTACAAACTGAGCAGGCAA-3'
NiCo_amp_rev	5'-ACATCTGTGGAATATACAACTGTCC-3'
NiCo_P1-5_fwd	5'-GATGTAACTGAATGAAATGGTGAAGGACGGGTCCAAACTGAGCAGGCAAATGACC-3'
NiCo_P1-5_rev	5'-GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAAACTGTCCCACAGAGATGTG3'
NiCo_P1-4_fwd	5'-GATGTAACTGAATGAAATGGTGAAGGACGGGTCCAACTGAGCAGGCAAATGACCA-3'
NiCo_P1-4_rev	5'-GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAACTGTCCCACAGAGATGTG-3'
NiCo_P1-3_fwd	5'-GATGTAACTGAATGAAATGGTGAAGGACGGGTCCACTGAGCAGGCAAATGACCA-3'
NiCo_P1-3_rev	5'-GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAACTGTCCCACAGAGATGTG-3'
NiCo_P1-2_fwd	5'-GATGTAACTGAATGAAATGGTGAAGGACGGGTCCATGAGCAGGCAAATGACCAGA-3'
NiCo_P1-2_rev	5'-GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAATGTCCCACAGAGATGTGC-3'
NiCo_P1-1_fwd	5'-GATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGAGCAGGCAAATGACCAGA-3'
$\mathrm{NiCo}{ }^{-} \mathrm{P} 1-1$ - rev	5'-GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAGTCCCACAGAGATGTGC-3'
NiCo_P1-0_fwd	5'-GATGTAACTGAATGAAATGGTGAAGGACGGGTCCAAGCAGGCAAATGACCAGAG-3'
NiCo_P1-0_rev	5'-GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAATCCCACAGAGATGTGCG-3'
NiCo_P2-5_fwd	5'-GTACAAACTGAGCAGGCAAATGACTTGTTGAGTAGAGTGTGAGCTC-3'
NiCo_P2-5_rev	5'-GTAATCATCTGTTGCCGCTTTCGCAGCCCGGCTGCATGACTGGACCCGTCCTTCAC-3'
NiCo_P2-4_fwd	5'-GTACAAACTGAGCAGGCAAATGATTGTTGAGTAGAGTGTGAGCTC-3'
NiCo_P2-4_rev	5'-GTAATCATCTGTTGCCGCTTTCGCAGCCCGGCTGCATGATGGACCCGTCCTTCAC-3'
NiCo_P2-3_fwd	5'-GTACAAACTGAGCAGGCAAATGTTGTTGAGTAGAGTGTGAGCTC-3'
NiCo_P2-3_rev	5'-GTAATCATCTGTTGCCGCTTTCGCAGCCCGGCTGCATGTGGACCCGTCCTTCAC-3'
NiCo_P2-2_fwd	5'-GTACAAACTGAGCAGGCAAATTTGTTGAGTAGAGTGTGAGCTC-3'
NiCo_P2-2_rev	5'-GTAATCATCTGTTGCCGCTTTCGCAGCCCGGCTGCATTGGACCCGTCCTTCAC-3'
	5'-
NiCo_P3-5_fwd	GCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTGCTTGTTGAGTAGAGTGTGAGCT C-3'
NiCo_P3-5_rev	5'-TCCCACAGAGATGTGCGTGTAATCATCTGTTGCCGCTGGACCCGTCCTTCAC-3' 5'-
NiCo_P3-4_fwd	GCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTGTTGTTGAGTAGAGTGTGAGCTC -3'
NiCo_P3-4_rev	5'-TCCCACAGAGATGTGCGTGTAATCATCTGTTGCCGTGGACCCGTCCTTCAC-3' 5'-
NiCo_P3-3_fwd	GCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTTTGTTGAGTAGAGTGTGAGCTC3'
NiCo_P3-3_rev	5'-TCCCACAGAGATGTGCGTGTAATCATCTGTTGCCTGGACCCGTCCTTCAC-3'
NiCo_P3-2_fwd	5^{\prime}-GCAGGCAAATGACCAGAGCGGTCATGCAGCCGGGCTTGTTGAGTAGAGTGTGAGCTC3'
NiCo_P3-2_rev	5'-TCCCACAGAGATGTGCGTGTAATCATCTGTTGCTGGACCCGTCCTTCAC-3'
	5'-
NiCo_P4-5_fwd	AGCGGTCATGCAGCCGGGCTGCGAAAGCGGCAACAGATTGTTGAGTAGAGTGTGAGCTC -3'
NiCo_P4-5_rev	5'-ACATCTGTGGAATATACAACTGTCCCACAGATGGACCCGTCCTTCAC-3'

	5'-
NiCo_P4-4_fwd	AGCGGTCATGCAGCCGGGCTGCGAAAGCGGCAACAGTTGTTGAGTAGAGTGTGAGCTC-
NiCo_P4-4_rev	3'
5'-ACATCTGTGGAATATACAACTGTCCCACAGTGGACCCGTCCTTCAC-3'	
NiCo_P4-3_fwd	5'-AGCGGTCATGCAGCCGGGCTGCGAAAGCGGCAACATTGTTGAGTAGAGTGTGAGCTC-
NiCo_P4-3_rev	3'-ACATCTGTGGAATATACAACTGTCCCACATGGACCCGTCCTTCAC-3'
NiCo_P4-2_fwd	5'-AGCGGTCATGCAGCCGGGCTGCGAAAGCGGCAACTTGTTGAGTAGAGTGTGAGCTC-3'
NiCo_P4-2_rev	5'-ACATCTGTGGAATATACAACTGTCCCACTGGACCCGTCCTTCAC-3'
NiCo_1-28_fwd	5'-ccaagTAATACGACTCACTATAgGTACAAACTGAGCAGGCAAATGACCAGA-3'
NiCo_1-42_fwd	5'-GGCTGCATGACCGCTCTGGTCATTTGCCTGCTCAGTTTGTAC-3'
NiCo_52-111_rev	5CATCTGTGGAATATACAACTGTCCCACAGAGATGTGCGTGTAATCATCTGTTGCCGCTT-
	3'-
NiCo_73-111_rev	5'-ACATCTGTGGAATATACAACTGTCCCACAGAGATGTGCG-3'

SUPPLEMENTARY FIGURES

Figure S1. Screening of the library of $E b a c z c D$ riboswitch-based sensors. For each construct, fluorescence response was evaluated at different magnesium concentrations $(0.5,1,5$, and 10 mM$)$ and either 0 or $100 \mu \mathrm{M} \mathrm{CoCl}_{2}$, using 100 nM sensor and $10 \mu \mathrm{M} \mathrm{DFHBI-1T} \mathrm{} ,\mathrm{in} \mathrm{30mM} \mathrm{MOPS}$, $\mathrm{mM} \mathrm{KCl}, \mathrm{pH} 7.2$, at $20^{\circ} \mathrm{C}$. The three best-performing constructs (boxed) were evaluated further.

Figure S1, continued

Figure S2. Unbuffered fluorescence titrations of czcD-1, czcD-2, and czcD-3 with $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}$, $\mathrm{Ni}^{\mathrm{II}}$, and $\mathrm{Zn}^{\text {II }}$. Experimental conditions and results are summarized in Table $\mathbf{S} 2$.

Figure S3. Detail of the metal-binding sites from the x-ray crystal structure of the $\mathrm{Co}^{\mathrm{II}}$-bound $E b a$ riboswitch (PDB code: 4RUM), showing a possible origin of cooperative response, as discussed previously. ${ }^{17} \mathrm{Col}$ (C1) is coordinated by N7 of G47, N7 of G87, the $2^{\prime}-\mathrm{OH}$ of G46, and three solvent molecules. Co2 (C2) is coordinated by N7 of G46 and N7 of G88, the 2'-OH of G87, and three solvent molecules. One of those molecules is hydrogen bonded to the $2^{\prime}-\mathrm{OH}$ of G 45 , which in turn is ligated to $\mathrm{Co3}(\mathrm{C} 3)$ via N7. N7 of A14 also coordinates Co3 (C3), along with four solvent molecules. The connectivity between the C 1 and C 2 sites, in particular, but possibly also C 3 , could ensure cooperativity. We speculate that Co4, interacting only with G18 (via O6 and N7), may be an artefact of the $2 \mathrm{mM} \mathrm{Co}^{\text {II }}$ present in the crystallization condition. It is unknown at present whether differences in Hill coefficient for various metal ions reflect different binding stoichiometries.

Figure S4. Assays of czcD-2 response under conditions used by Furukawa et al. ${ }^{17} \mathbf{c z c D - 2}$ was titrated with unbuffered $\mathrm{Co}^{\mathrm{II}}$ stocks using the following buffer conditions: Buffer $1-50 \mathrm{mM}$ Tris, $100 \mathrm{mM} \mathrm{KCl}, 20 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 8.3$ (in-line probing buffer, Table S2), and Buffer $2-40 \mathrm{mM}$ Tris, $150 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,1 \%$ glycerol, pH 7.5 . Fits of these titration curves give: $K_{\mathrm{d} \text {,app }}$ $=8.7 \pm 2.1 \mu \mathrm{M}, n=1.3 \pm 0.1$ (Buffer 1) and $K_{\mathrm{d}, \text { app }}=3.1 \pm 0.2 \mu \mathrm{M}, n=1.9 \pm 0.4$ (Buffer 2). These results are similar to those obtained from in-line probing assays of the riboswitch, suggesting that differences in buffer composition (Tris vs. MOPS) and/or Mg concentration (3 mM in our studies vs. 10 mM or 20 mM) likely account for the minor differences between these data.

Figure S5. czcD-2 cleavage assay. czcD-2 sensor was incubated with the highest metal concentrations used in this study, demonstrating that the RNA sensor is stable under the conditions used for RNA sensor characterization and citrate-buffered metal titrations. Buffering and incubation conditions ($1 \mathrm{~h}, 20^{\circ} \mathrm{C}$) were carried out as described in the Experimental Section. The samples were analyzed using a 6% urea PAGE gel and the gel was stained for 20 min with $1 \times$ SYBR ${ }^{\text {TM }}$ Gold in 50 mL of $1 \times$ TBE. The stained gel was imaged using a Bio-Rad Gel Doc ${ }^{\text {TM }} \mathrm{EZ}$ imager. The Lewis acidities of $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$ are similar to those of the other divalent metal ions we have studied here, suggesting that RNA hydrolysis is likely negligible under these conditions.

80

50

Figure S6. czcD-2 does not respond to iron under aerobic conditions. Iron was added from a freshly made ferrous ammonium sulfate stock solution to the sensor mix, followed by aerobic incubation for 1 h at room temperature. After incubation, fluorescence was measured using $\lambda_{\mathrm{ex}}=475 \mathrm{~nm}$ and $\lambda_{\mathrm{em}}=505 \mathrm{~nm}$. These data, distinct from our characterization of czcD-2 with $\mathrm{Fe}^{\mathrm{II}}$ under anaerobic conditions (Figure 1, Table 1, Table 2) suggest that $\mathrm{Fe}^{\mathrm{II}}$ oxidation to insoluble $\mathrm{Fe}^{\mathrm{III}}$ likely accounts for the failure of the $c z c D$ riboswitch to respond to iron in the initial studies by Furukawa et al. ${ }^{17}$

Figure S7. Citrate-buffered fluorescence titrations of czcD-1 and czcD-3 with $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$, and $\mathrm{Zn}^{\mathrm{II}}$. Experimental conditions and results are summarized in Table 2.

B

Figure S8. Magnesium dependence of the fluorescence response of czcD-2 (100 nM sensor, 10 $\mu \mathrm{M}$ DFHBI-1T) to citrate-buffered $\mathrm{Co}^{\mathrm{II}}$. Titrations were carried out as described in the Experimental Procedures, with either 1, 3, or $10 \mathrm{mM} \mathrm{MgCl}_{2}\left(3 \mathrm{mM} \mathrm{MgCl}_{2}\right.$ data shown in Figure 2). The data are plotted as mean \pm S.E.M. for 3 experiments, and the calculated fitting parameters are expressed as mean \pm S.D. The similarity in the calculated $K_{\mathrm{d}, \text { app }}$ values (110 nM and 210 nM for 10 mM and $1 \mathrm{mM} \mathrm{Mg}^{\mathrm{II}}$, respectively) to each other and to the value for $3 \mathrm{mM} \mathrm{Mg}^{\mathrm{II}}(62 \mathrm{nM})$ suggests that the effects of $\mathrm{Mg}^{\mathrm{II}}$ concentration on metal responsiveness are relatively minor.

Figure S9. Analysis of flow cytometry data to determine iron responsiveness of czcD-2 in E. coli cells. A) Flow cytometry histogram ($n \geq 30000$ cells) of czcD-2-expressing cells, revealing an iron-dependent increase in mean cellular fluorescence. B) (Left) Cell sizes of Spinach2- and czcD2 expressing cells, as represented by FSC (forward scatter), showing similar, iron-dependent increases in cell size, consistent with previous reports. ${ }^{20,21}$ (Right) Mean cellular fluorescence of Spinach2- and czcD-2 expressing cells. While fluorescence of Spinach2-expressing cells increases with iron concentration, the trend mirrors that of increasing cell size. Moreover, the fluorescence of czcD-2-expressing cells increases to a greater extent with iron concentration. The response of czcD-2 was normalized to the fluorescence increase of Spinach2 for each iron concentration to yield the data in Figure 3. Mean \pm S.E.M. for 3 independent experiments (2 biological replicates each).

B

Figure S10. Assessment of response of czcD-2 to divalent first-row transition metals in E. coli cells by flow cytometry. Cells were exposed to $20 \mu \mathrm{M} \mathrm{Fe}$ metal for 1 h . Fluorescence response of czcD-2-expressing cells was normalized to that of Spinach2-expressing cells under the same conditions; that ratio was set to 1 for the no added metal experiment, to which the other experiments were compared. Mean \pm S.E.M. for 3 independent experiments (2 biological replicates each). $* p<0.05$ vs. no metal added.

Figure S11. Sequence alignment of $\mathrm{P}_{1 \mathrm{~B} 4}$-type ATPases: Bacillus subtilis 168 PfeT (UniprotKB O31688), ${ }^{22}$ Listeria monocytogenes EGD-e FrvA (lmo0641, UniprotKB Q8Y992), ${ }^{15}$, ${ }^{23}$ Mycobacterium tuberculosis H37Rv CtpD (Rv1469, UniprotKB P9WPT3), ${ }^{24}$ and Listeria monocytogenes FSL_J1-194 LMO3448 (UniprotKB T1YRD8). The SPC motif characteristic of P_{184}-type ATPases is shown bolded in red. ${ }^{25}$

PfeT	MN---EQVIVQRDPHE------PLKTDKREKNWAQH---AELIAALVSGALILAGWLLSG	48
FrvA	--MKDWMKQ--NWQFITTGISGILIVIGCLVGS	29
CtpD	MTLTACEVTAAEAPFDRVSKTIPHPLSWGAALWSVVSVRWATVA----LLLFLAGLVAQL	56
LMO	$-M I S Y L I K S R Q G Q F L A---I G I L F A A A G F I F G$	28
Pfet	--YQVLSIIL-FLLAFVIGGFAKAKEGIEETLESKTLNVELLMIFAAIGSALIGYWAEGA	105
FrvA	DVGDFWTAVI-FLSAFVIGGFEQAKEGIQATIKTKKLNVELLMILAATGASIIGYWFEGA	88
CtpD	NGAPEAMWWTLYLACYLAGGWGSAWAG-AQALRNKALDVDLLMIAAAVGAVAIGQIFDGA	115
LMO	TMNSEYSRWL-FYAAIFFLGFYASKNAIVETVRYKS PNVDLLMILAALGAVIFDFESEGA $: ~ . ~ . ~ *: ~: ~$	87
Pfet	ILIFIFSLSGALETYTMNKSSRDLTSLMQLEPEEAT-LMVNGETKRVPVSDLQAGDMIVI	164
FrvA	ILIFIFSVSGALETYTTNKSKREITKLMAFQPERAFRLLSNGDLEEVAAKELQLDDMVFV	148
CtpD	LLIVIFATSGALDDIATRHTAESVKGLLDLAPDQAVVVQGDGSERVVAASELVVGDRVVV	175
LMO	ALLLIFAAAEVLEDYANNKSTSAISELMAQVPETAQVLKENGEVVTVPTEDLNVGERVVV	147
Pfet	KPGERVAADGIIESGSTSLDESALTGESMPVEKNTGDTVFTGTVNRNGSLTVRVTKANED	224
FrvA	RPGESVPIDGVIVRGSTTLNEAAINGESVPATKTVGADVFGGTVNVSSAITVKVTQTEEN	208
CtpD	RPGDRIPADGAVLSGASDVDQRSITGESMPVAKARGDEVFAGTVNGSGVLHLVVTRDPSQ	235
LMO	SKGEQIPIDGIIDRKS $-I V N E S A L T G E S V P V V K E A E D E V F A G T I N E G D V F Y I D V T K S S D E ~$ $* \cdot . ~ * * ~ . ~ . ~ . ~ . ~$	206
Pfet	SLFRKIIKLVESAQNSVSPAQAFIERFENAYVKGVLIAVALLLFVPHFALGWSWSETFYR	284
FrvA	TIFSKIIRLVETAQSEPSKTARFIERFEDVYVKAVLLFVLVMMFLPHFALGWSWNETFYR	268
CtpD	TVVARIVELVADASATKAKTQLFIEKIEQRYSLGMVAATLALIVIP-LMFGADLRPVLLR	294
LMO	TVFSNIIRMVEEAQSRPSRISKFIDRIESKYVISVLVIVPIFIVVMYALMDLPFEEAFYR	266
Pfet	AMVFMVVASPCALVAS IMPAALSLISNGARNGMLVKGSVFLEQLGSVQMIAFDKTGTVTK	344
FrvA	AMVLLTVASPCALVASVTPATLAAISNGARHGILFKGGVHLENLRGVKAIAFDKTGTLTN	328
CtpD	AMTFMIVASPCAVVLATMPPLLSAIANAGRHGVLVKSAVVVERLADTS IVALDKTGTLTR	354
LMO	GMVFLTVASPCALVASATPATLSAISNGAKNGILFKGGAAMEALSTMDILYTDKTGTLTY	326
Pfet	GQPAVETIRIA--EGFSEAEVLEAVYAIETQSSHPLAQAITAYAESRGV-NQSGYISIEE	401
FrvA	GTPALTDRLFA--ENVDKQLVINVVGAMERQSLHPLAAAITQDLEPEIT-EKLTEIEVTD	385
CtpD	GIPRLASVAPLDPNVVDARRLLQLAAAAEQSSEHPLGRAIVAEARRRGI-AIPPAKDFRA	413
LMO	GEFKVDEYS-------APDDVLKEVIYMEQQSSHPIARAIVTAFKETDLSSVDHNEPVSE * : : : . * * ** * **	379
PfeT	TSGFGVMAEVSGAKWKVGKAGFIGEEMAAQFMKQTASDVIQSGHTIVFVKKDDQIAGCIA	461
FrvA	VPGWGVQAIYREGNWQVGKAGFVGKEAAAAFSNGAFERLASEGKTIVYVAKDGVIQAMFA	445
CtpD	VPGCGVHALVGNDFVEIASPQSYRGA-----PLAELAPLLSAGATAAIVLLDGVAIGVLG	468
LMO	$\begin{array}{cccc}\text { IAGSGIK----KGTVRVGKPSAFST----FKNYDRFKQYFQKGNTIILAAKEEEVVGYFS } \\ * *: ~ & . . . & * *\end{array}$	431
Pfet	LKDQIRPEAKEVMEELNRLG-IKTAMLTGDHEDTAQAIAKEAGMTTVVAECLPDQKVNEI	520
FrvA	LKDTCRPEAIRTIKALQAKG-IKTIMVTGDNEQTGAAIQAELGMDYVVSGCLPEKKVDVL	504
CtpD	LTDQLRPDAVESVAAMAALTAAPPVLLTGDNGRAAWRVARNAGITDVRAALLPEQKVEVV	528
LMO	LSDQIRRQSADAVANFQKEG-IKVTLLTGDNEEVTETVAEVVGVDDYKASMLPEDKIAYV	490

Figure S11, continued

Figure S12. Genomic neighborhoods of the Eba and Lmo riboswitches. In Erysipelotrichaceae bacterium 3_1_53 (NCBI Reference Sequence: NZ_GL520149.1), the Eba riboswitch is upstream of and putatively controlling HMPREF0983_03544 (Eba3544), encoding a putative metal efflux protein. In L. monocytogenes FSL J1-194 (NCBI Reference Sequence: NZ_AARJ02000030.1), the Lmo riboswitch is upstream of and putatively controlling LMBG_02759 (LMO3448), encoding a predicted P_{184}-type ATPase. The riboswitch and ATPase gene are flanked by two predicted transposases, suggesting that the riboswitch-ATPase unit are a mobile genetic element. ${ }^{26}$

Eba genes (predicted functions):
3542: MerR family transcriptional regulator
3543: DUF2185 domain-containing protein
3545: GntR family transcription regulator
3546: ABC transporter, ATP-binding protein

Lmo genes (predicted functions):
20010: transposase
02758: IS6 family transposase
02756: ATP-binding protein
02755: hypothetical protein

Figure S13. Control experiments showing expression of PfeT, LMO3448, and Eba3544 does not affect B. subtilis growth rate in absence of added metal ions. Growths and induction of protein expression were carried out as described in Figure 5 and the Experimental Section.

Figure S14. LMO3448 and Eba3544 are expressed and inserted into the membrane. B. subtilis cultures were grown under the same conditions as the complementation assay (30 min induction with IPTG) and membrane fractions were harvested to confirm sfGFP-tagged protein insertion into the cell membrane. The y-axis represents total sfGFP fluorescence of the supernatant and membrane fractions, normalized by volume of each fraction. Approximately one-third of the sfGFP-tagged Eba3544 and LMO3448 proteins, but not an sfGFP control, are inserted into the cell membrane. At this time, we are unable to assess whether the lesser ability of Eba3544 to rescue metal toxicity (Figure 5) is a result of inherent properties of the protein, its lower expression, or a combination of these factors.

Figure S15. Predicted domain and secondary structure of PfeT, LMO3448, and Eba3544. (A) Protein sequences of PfeT and LMO3448 were aligned with the sequence of Legionella pneumophila CopA, a $\mathrm{P}_{1 \mathrm{~B} 1}$-type ATPase that transports Cu^{I}. Based on the x-ray crystal structure of CopA (PDB: 3RFU), ${ }^{27}$ the 8 transmembrane helices (red; A, B, and 1-6), actuator domain (gray), N -domain (teal), and P-domain (magenta) in CopA are shown. The characteristic three-residue motifs in TM4 that are thought to be involved in metal recognition are highlighted in yellow in all three sequences; this motif is CPC in $\mathrm{P}_{1 \mathrm{~B} 1}$ ATPases and SPC in $\mathrm{P}_{1 \mathrm{~B} 4 \mathrm{~s}}{ }^{25}$ The sequence alignment shows that, although PfeT and LMO3448 feature short ~ 15-amino acid extensions at the N terminus and C-terminus, respectively, with potential metal ligands, both proteins lack a metalbinding domain (e.g. the N-terminal ~ 80 aa of CopA). (B) Eba3544's secondary and transmembrane structures were predicted using Jpred $4{ }^{28}$ and TMHMM2.0. ${ }^{29}$ Eba3544 is predicted to feature a small domain at its C-terminus.

A

CopA	MKHDHHQGHTHSGKGHACHHEHNSPKTQQASSKMEGPIVYTCPMHPEIRQSAPGHCPLCG	60
LMO3448		0
PfeT		0
CopA	MALEPETVTVSEVVSPEYLDMRRRFWIALMLTIPVVILEMGGH-GLKHFISGNGSSW	119
LMO3448	--MIS-----------YLIKSRQGQF---------LA--IGILFAAAGFIFGTMNSEYSR	36
PfeT	--MNEQVIVQRDPHEPLKTDKREKNWAQHAELIAALV--SGAL-ILAGWLLSGY-QVLSI	54
CopA	LLATPVVLWGGWPFFKRGWQSIKTGQLNMFTLIAMGIGVAWIYSMVAVLWPGVFPHAFRS	179
LMO3448	WLFYAAIFFLG-------FYASKNAIVETVRYKS PNVDLLMILA---------------A	74
PfeT	ILFLLAFVIGG-------FAKAKEGIEETLESKTLNVELLMIFA-------------------	92
CopA	QEGVVAVYFEAAAVITTLVLLGQVLELKAREQTGSAIRALLKLVPESAHRIKEDGSEEEV	239
LMO3448	LGAVIFDFESEGAALLLIFAAAEVLEDYANNKSTSAISELMAQVPETAQVLKENGEVVTV	134
PfeT	IGSALIGYWAEGAILIFIFSLSGALETYTMNKSSRDLTSLMQLEPEEAT-LMVNGETKRV	151
CopA	SLDNVAVGDLLRVRPGEKIPVDGEVQEGRSFVDESMVTGEPIPVAKEASAKVIGATINQT	299
LMO3448	PTEDLNVGERVVVSKGEQIPIDGIIDRKS - IVNESALTGESVPVVKEAEDEVFAGTINEG	193
PfeT	PVSDLQAGDMIVIKPGERVAADGIIESGSTSLDESALTGESMPVEKNTGDTVFTGTVNRN $.: ~: ~ *: ~: ~: ~ * *: ~$	211
CopA	GSFVMKALHVGSDTMLARIVQMVSDAQRSRAPIQRLADTVSGWFVPAVIL-VAVLSFIVW	358
LMO3448	DVFYIDVTKSSDETVFSNIIRMVEEAQSRPSRISKFIDRIESKYVISVLVIVPIFIVVMY	253
PfeT	GSLTVRVTKANEDSLFRKIIKLVESAQNSVSPAQAFIERFENAYVKGVLIAVALLLFVPH	271
CopA	ALIGPQPALSYGLIAAVSVLIIACPCALGLATPMSIMVGVGKGAQSGVLIKNAEALERME	418
LMO3448	ALMDLP--FEEAFYRGMVFLTVASPCALVASATPATLSAISNGAKNGILFKGGAAMEALS	311
PfeT	FALGWS--WSETFYRAMVFMVVASPCALVASIMPAALSLISNGARNGMLVKGSVFLEQLG :. . : .: .: :*.**** : : : : : **:.*:*.*.. :* :	329
CopA	KVNTLVVDKTGTLTEGHPKLTRIV-TDDFVEDNALALAAALEHQSEHPLANAIVHAAKEK	477
LMO3448	TMDILYTDKTGTLTYGEFKVDEYS-----APDDVLKEVIYMEQQSSHPIARAIVTAFKET	366
PfeT	SVQMIAFDKTGTVTKGQPAVETIRIAEGFSEAEVLEAVYAIETQSSHPLAQAITAYAESR	389

Figure S15, continued

CopA	GLSL-GSVEAFEAPTGKGVVGQVDGHHVAIGNARLMQEHGGDNAPLFEKADELRGKGASV	536
LMO3448	DLSSVDHNEPVSEIAGSGIKK----GTVRVGKPSAFSTF-----KNYDRFKQYFQKGNTI	417
PfeT	GVNQ-SGYISIEETSGFGVMAEVSGAKWKVGKAGFIGEEMAA-QFMKQTASDVIQSGHTI	447
CopA	MFMAVDGKTVALLVVEDPIKSSTPETILELQQSGIEIVMLTGDSKRTAEAVAGTLGIKKV	596
LMO3448	ILAAKEEEVVGYFSLSDQIRRQSADAVANFQKEGIKVTLLTGDNEEVTETVAEVVGVDDY	477
PfeT	VFVKKDDQIAGCIALKDQIRPEAKEVMEELNRLGIKTAMLTGDHEDTAQAIAKEAGMTTV : : : : . : :.* *: .: : : : : : **: .:**** : .: : : * *:	507
CopA	VAEIMPEDKSRIVSELKDKGLIVAMAGDGVNDAPALAKADIGIAMGTGTDVAIESAGVTL	656
LMO3448	KASMLPEDKIAYVRESQDKEEVVGMIGDGINDAPALANADIGIAMGSGSSVAMESSDVVV	537
PfeT	VAECLPDQKVNEIKRLKEEFGTIAMVGDGINDAPALKAADVGIAMGGGTDVALETADMVL *. :*::* : . : : : .* ***:****** **:***** *:.**:*::.: :	567
CopA	LHGDLRGIAKARRLSESTMSNIRQNLFFAFIYNVLGVPLAAGVLYPLTGLLLSPMIAAAA	716
LMO3448	VKNDLSKLFYSYKLSKKLNKIILQNVIFSISVIVTLIVL---NLFGVLGLPLA----VLF	590
PfeT	MKNDLKKLVNMCRLSRKMNRIIKQNIVFSLAVICLLICA---NFLQAMELPFG----VIG	620
CopA	ALSSVSVIINALRLKRVTL----------------- 736	
LMO3448	HEGSTILVILNGLRLLGSKGPKQEERVSDPSLKSVKV 627	
PfeT	```HEGSTILVILNGLRLLK--------------------- }63 *:: **:*.***```	

B

>Eba3544 predicted secondary and transmembrane structure
MTTEKKPYEM AVGITDRREA LIIRKMSLIS LIGNTVFSGF KLFAGVIGNS GAMISDAIHS FSDVLTTLIA
IIIIIIIII IIIIIIIII IIIIITTTT TTTTTTTTTT TTTTTTTTOO OTTTTTTTTT TTTTTTTTTT

WIGVKVSKKA ADEAHPYGHE RMECVASLLL GLVLMATGLG VGRVGVDNII ANNYEALAIP KMIALAASVV TTTTIIIIII IIIIIIIIII IIIITTTTTT TTTTTTTTTT TTTTTTTOOO OOOOOOOOO OTTTTTTTTT
SILGKEAMFW YTRYYAKLIN SSAFMADAWH HRSDAISSIG SFIGIAGAML GFPVMDSVAS VVICLFILKV
TTTTTTTTTT TTTTIIIIII IIIIIIIIII IIIITTTTTT TTTTTTTTTT TTTTOOTTTT TTTTTTTTTT

AYDILRDALM KMLDTSCGEA YENQLTHYIA EKEDVRSVDL LHSRMFGNKV FIDLEISVDG DKSLRDAHAV
TTTTIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

```
AELVHEDVEL NFPEIKHIMI HVNPANE
```

IIIIIIIIII IIIIIIIIII IIIIIII
I-inside
o-outside
T-transmembrane
Alpha heliz
Beta sheet

Figure S16. DNA and amino acid sequences of Bacillus subtilis 168 pfeT.

Abstract

>B. subtilis 168 BSU_13850 (pfeT, UniProtKB-O31688) ATGAATGAAC AAGTTATCGT TCAACGCGAC CCGCATGAGC CATTGAAAAC AGACAAGAGG GAAAAAAACT GGGCACAGCA CGCGGAGCTT ATTGCAGCAC TTGTATCAGG CGCTCTTATT TTGGCAGGCT GGCTCTTATC CGGATATCAG GTATTATCCA TAATACTTTT CTTGCTGGCT TTTGTGATCG GCGGATTTGC TAAAGCGAAG GAAGGAATCG AAGAAACACT CGAATCCAAA ACGCTGAATG TAGAACTTTT AATGATTTTC GCTGCCATTG GTTCCGCCTT GATCGGATAC TGGGCAGAGG GTGCTATTTT AATATTTATT TTTTCCTTAA GCGGAGCTTT AgAAACATAC ACGATGAATA AAAGCAGCAG AGATTTAACG TCTTTAATGC AGCTTGAGCC TGAAGAAGCG ACATTGATGG TCAATGGTGA AACCAAAAGA GTTCCGGTTT CAGACTTGCA GGCCGGTGAT ATGATTGTGA TCAAACCTGG AGAACGCGTA GCGGCAGACG GTATCATTGA ATCGGGCTCG ACAAGTCTTG ACGAGTCGGC TTTAACAGGT GAATCAATGC CTGTAGAAAA AAACACAGGC GACACTGTAT TCACAGGAAC GGTGAATCGC AATGGCTCCT TGACAGTCCG TGTCACGAAA GCAAATGAAG ATTCGTTATT CAGAAAAATT ATCAAACTGG TTGAATCAGC GCAAAATAGT GTTTCACCCG CGCAGGCTTT CATCGAACGA TTTGAAAATG CTTATGTGAA AgGTGTGCTA ATTGCGGTGG CGCTCCTTTT ATTCGTCCCG CACTTTGCGC TGGGCTGGAG CTGGAGTGAA ACCTTCTACC GCGCAATGGT GTTTATGGTT GTCGCGTCAC CTTGTGCGCT TGTCGCCTCT ATTATGCCGG CGGCGCTGTC CCTGATTTCA AATGGCGCCC GCAACGGTAT GCTTGTGAAA GGAAGCGTCT TTCTTGAACA GCTGGGCTCA GTGCAAATGA TCGCCTTTGA TAAAACCGGA ACTGTAACAA AAGGCCAGCC TGCCGTAGAG ACGATCAGAA TAGCAGAAGG ATTCAGTGAA GCGGAAGTTC TTGAGGCTGT CTATGCCATC GAAACGCAAT CAAGCCATCC GCTCGCCCAA GCCATAACGG CGTACGCTGA AAGCCGCGGC GTGAATCAGT CCGGCTACAT ATCTATAGAA GAAACCTCAG GGTTTGGCGT TATGGCAGAA GTGTCGGGTG CGAAATGGAA GGTCGGTAAA GCAGGTTTTA TCGGCGAGGA AATGGCAGCA CAATTTATGA AACAAACAGC ATCAGATGTC ATTCAAAGCG GTCATACAAT TGTATTTGTG AAAAAGGATG ATCAAATAGC AGGCTGTATC GCACTGAAGG ACCAAATCAG GCCTGAAGCA AAAGAGGTCA TGGAAGAACT GAACCGACTT GGGATTAAAA CGGCCATGCT GACAGGAGAT CACGAAGACA CGGCTCAAGC GATTGCCAAG GAAGCCGGCA TGACAACTGT CGTGGCAGAA TGCCTGCCTG ACCAAAAAGT GAATGAAATC AAACGGTTAA AAGAAGAATT CGGAACGATT GCAATGGTGG GTGACGGAAT CAATGATGCG CCGGCACTCA AAGCAGCGGA TGTCGGCATT GCGATGGGCG GCGGAACAGA TGTAGCACTT GAGACCGCTG ATATGGTCCT CATGAAAAAC GATTTGAAAA AGCTCGTAAA CATGTGCCGC TTGTCTCGGA AAATGAACAG GATCATCAAA CAAAATATCG TGTTTTCTCT AGCTGTAATC TGCCTGCTGA TTTGTGCAAA CTTTTTGCAG GCGATGGAAT TGCCATTTGG CGTGATTGGT CATGAGGGCA GCACGATTTT AGTCATACTA AACGGTTTAA GACTCCTAAA ATAA

>PfeT amino acid sequence
MNEQVIVQRD PHEPLKTDKR EKNWAQHAEL IAALVSGALI LAGWLLSGYQ VLSIILFLLA FVIGGFAKAK EGIEETLESK TLNVELLMIF AAIGSALIGY WAEGAILIFI FSLSGALETY TMNKSSRDLT SLMQLEPEEA TLMVNGETKR VPVSDLQAGD MIVIKPGERV AADGIIESGS TSLDESALTG ESMPVEKNTG DTVFTGTVNR NGSLTVRVTK ANEDSLFRKI IKLVESAQNS VSPAQAFIER FENAYVKGVL IAVALLLFVP HFALGWSWSE TFYRAMVFMV VASPCALVAS IMPAALSLIS NGARNGMLVK GSVFLEQLGS VQMIAFDKTG TVTKGQPAVE TIRIAEGFSE AEVLEAVYAI ETQSSHPLAQ AITAYAESRG VNQSGYISIE ETSGFGVMAE VSGAKWKVGK AGFIGEEMAA QFMKQTASDV IQSGHTIVFV KKDDQIAGCI ALKDQIRPEA KEVMEELNRL GIKTAMLTGD HEDTAQAIAK EAGMTTVVAE CLPDQKVNEI KRLKEEFGTI AMVGDGINDA PALKAADVGI AMGGGTDVAL ETADMVLMKN DLKKLVNMCR LSRKMNRIIK QNIVFSLAVI CLLICANFLQ AMELPFGVIG HEGSTILVIL NGLRLLK

Figure S17. DNA and amino acid sequences of L. monocytogenes FSL_J1-194 LMO3448.
> Listeria_monocytogenes_FSL_J1-194_LMBG_02759 (Lmo3448)
ATGATCAGTT ATTTAATAAA GAGTAGGGCAG GGCCAGTTTT TAGCTATCGG TATTTTGTTT GCCGCAGCTG GCTTTATATT TGGAACGATG AATAGTGAGT ACAGTCGCTG GCTTTTCTAT GCTGCTATAT TTTTCTTAGG CTTTTATGCG TCCAAAAATG CGATCGTAGA AACAGTGCGC TACAAGTCGC CCAACGTGGA TCTACTTATG ATCCTCGCTG CACTTGGTGC TGTGATCTTT GATTTTGAAT CAGAAGGAGC AGCCTTACTA CTAATTTTTG CCGCAGCTGA AGTACTAGAA GATTATGCGA ACAACAAATC GACCTCAGCG ATCTCGGAAT TGATGGCTCA GGTACCTGAA ACAGCTCAAG TCTTGAAAGA AAATGGTGAA GTGGTAACCG TTCCTACTGA AGACCTGAAT GTAGGGGAAA GGGTCGTCGT TTCTAAAGGG GAACAGATCC CGATCGACGG AATCATTGAC CGCAAATCGA TCGTCAATGA ATCAGCTCTC ACTGGCGAAT CGGTTCCTGT CGTGAAAGAG GCCGAAGATG AAGTGTTCGC AgGAACGATC AATGAAGGCG ACGTTTTTTA TATCGATGTA ACCAAATCCA GCGATGAAAC AGTCTTCTCC AATATCATTC GGATGGTCGA AGAAGCGCAG AGCCGTCCTT CACGCATCTC TAAATTCATT GACCGGATAG AgAGCAAGTA TGTTATTTCT GTACTAGTTA TCGTGCCGAT TTTCATCGTT GTGATGTATG CATTGATGGA TCTGCCATTC GAAGAAGCCT TTTATCGCGG TATGGTCTTT CTAACAGTCG CCAGTCCCTG TGCCTTAGTC GCTTCGGCCA CGCCAGCAAC GTTGAGTGCG ATCAGTAATG GAGCAAAAAA CGGGATTTTA TTCAAAGGGG GggCtgcait ggaigctitg Agcacgatgg Atatctiata cacagacaig acaggcacgc tgactiatgg TGAATTCAAG GTCGATGAAT ACAGTGCTCC CGATGATGTA TTGAAAGAAG TGATCTATAT GGAACAGCAG TCGAGTCATC CGATCGCTCG AGCTATCGTG ACGGCGTTTA AAGAGACGGA TCTGAGTTCA GTCGATCATA ATGAACCTGT TAGTGAAATA GCCGGTTCCG GTATCAAGAA AGGCACAGTA AGGGTGGGAA AACCTTCAGC CTTCAGTACA TTCAAAAACT ACGATCGCTT CAAGCAGTAC TTCCAAAAAG GCAACACGAT CATTCTCGCA GCAAAAGAAG AgGAGGTCGT TGGTTACTTT TCACTCAGTG ACCAGATTCG CAGACAGTCG GCAGATGCCG TGGCTAACTT CCAGAAAGAA GGCATTAAAG TCACGTTATT AACGGGTGAT AACGAAGAAG TGACAGAGAC GgTAGCAGAG GTCGTCGGTG TCGATGACTA TAAAGCGTCC ATGTTGCCGG AAGACAAGAT CGCCTATGTC AgGGAgAgTC AgGATAAGGA AgAAGTGGTC GGCATGATCG GTGACGGGAT CAATGATGCG CCAGCTCTGG CAAATGCAGA TATCGGGATC GCGATGGGCA GCGGTTCCTC TGTGGCGATG GAATCATCCG ATGTCGTTGT CGTTAAAAAT GACTTGTCGA AACTGTTCTA CAGTTACAAG TTGAGTAAGA AACTGAACAA AATCATTTTG CAGAATGTGA TTTTCTCGAT CAGCGTGATC GTGACCTTGA TCGTCTTGAA CCTCTTTGGC GTATTAGGAC TTCCACTAGC GGTATTATTC CATGAAGGGT CAACAATACT CGTTATTCTT AATGGTCTCC GTCTACTTGG ATCTAAAGGT CCGAAGCAAG AAGAGAGAGT CTCGGATCCA TCTTTAAAGT CTGTAAAGGT TTAA
>LMO3448 amino_acid_sequence
MISYLIKSRQ GQFLAIGILF AAAGFIFGTM NSEYSRWLFY AAIFFLGFYA SKNAIVETVR YKSPNVDLLM ILAALGAVIF DFESEGAALL LIFAAAEVLE DYANNKSTSA ISELMAQVPE TAQVLKENGE VVTVPTEDLN VGERVVVSKG EQIPIDGIID RKSIVNESAL TGESVPVVKE AEDEVFAGTI NEGDVFYIDV TKSSDETVFS NIIRMVEEAQ SRPSRISKFI DRIESKYVIS VLVIVPIFIV VMYALMDLPF EEAFYRGMVF LTVASPCALV ASATPATLSA ISNGAKNGIL FKGGAAMEAL STMDILYTDK TGTLTYGEFK VDEYSAPDDV LKEVIYMEQQ SSHPIARAIV TAFKETDLSS VDHNEPVSEI AGSGIKKGTV RVGKPSAFST FKNYDRFKQY FQKGNTIILA AKEEEVVGYF SLSDQIRRQS ADAVANFQKE GIKVTLLTGD NEEVTETVAE VVGVDDYKAS MLPEDKIAYV RESQDKEEVV GMIGDGINDA PALANADIGI AMGSGSSVAM ESSDVVVVKN DLSKLFYSYK LSKKLNKIIL QNVIFSISVI VTLIVLNLFG VLGLPLAVLF HEGSTILVIL NGLRLLGSKG PKQEERVSDP SLKSVKV

Figure S18. DNA and amino acid sequences of Erysipelotrichaceae_bacterium_3_1_53 Eba3544.

```
>Erysipelotrichaceae_bacterium_3_1_53_HMPREF0983_03544 (UniProtKB E2SQM5)
ATGACAACGG AAAAGAAGC\overline{C ATATGAAATG GCAGTTGGTA TCACAGACAG AAGGGAAGCA TTGATTATAC}
GAAAAATGTC GTTGATTAGC CTGATTGGTA ATACGGTATT CTCCGGCTTT AAGCTGTTTG CCGGTGTTAT
CGGTAATTCC GGTGCAATGA TTTCCGATGC TATCCATTCT TTTTCAGATG TATTAACTAC CTTGATTGCC
TGGATCGGTG TCAAGGTTTC CAAAAAAGCT GCGGATGAGG CACATCCTTA CGGACATGAA CGTATGGAAT
GCGTCGCTTC TCTGCTTTTA GGTCTTGTGC TTATGGCAAC AGGTCTGGGA GTTGGCAGAG TTGGAGTAGA
TAACATTATA GCAAATAACT ATGAGGCTCT TGCAATACCC AAAATGATTG CCCTTGCTGC GTCAGTTGTT
TCCATCCTTG GAAAGGAAGC TATGTTCTGG TATACAAGGT ATTATGCAAA GCTGATAAAT TCCTCTGCCT
TCATGGCGGA TGCGTGGCAC CATCGCTCCG ATGCGATTTC CTCCATCGGC TCTTTCATAG GCATCGCCGG
CGCCATGCTT GGCTTCCCGG TTATGGATTC TGTGGCAAGC GTAGTGATTT GTCTGTTTAT TTTAAAGGTT
GCCTATGATA TCTTAAGGGA CGCATTGATG AAAATGCTGG ATACCTCATG CGGTGAAGCT TATGAGAATC
AGTTAACTCA CTATATAGCT GAGAAAGAGG ATGTACGTTC TGTAGATTTA CTTCATTCCC GAATGTTTGG
CAACAAGGTC TTTATTGATT TGGAAATTTC GGTAGACGGC GATAAATCAT TGCGTGATGC ACATGCGGTT
GCTGAGCTTG TACATGAGGA TGTTGAACTT AATTTCCCAG AGATAAAGCA CATCATGATT CATGTTAATC
CGGCAAATGA ATAA
>Eba3544 amino acid sequence
MTTEKKPYEM AVGITDRREA LIIRKMSLIS LIGNTVFSGF KLFAGVIGNS GAMISDAIHS FSDVLTTLIA
WIGVKVSKKA ADEAHPYGHE RMECVASLLL GLVLMATGLG VGRVGVDNII ANNYEALAIP KMIALAASVV
SILGKEAMFW YTRYYAKLIN SSAFMADAWH HRSDAISSIG SFIGIAGAML GFPVMDSVAS VVICLFILKV
AYDILRDALM KMLDTSCGEA YENQLTHYIA EKEDVRSVDL LHSRMFGNKV FIDLEISVDG DKSLRDAHAV
AELVHEDVEL NFPEIKHIMI HVNPANE
```

Figure S19. Codon-optimized gBlocks for cloning of pfeT, Eba3544, and LMO3448 into pHT01. The sfGFP sequence inserted into pHT01 is also shown. Restriction sites are underlined and Gibson ends are in red. The LMO3448 gBlock also contains a TEV-cleavable His6 tag (ENLYFQGLEHHHHHH, bolded).

>pfeT gBlock

CAATTAAAGGAGGAAGGATCCATGAACGAACAGGTTATCGTACAACGCGACCCACATGAACCACTGAAGACCGATAAACGCG AGAAGAATTGGGCTCAGCACGCCGAACTTATTGCAGCCCTGGTTTCTGGGGCTTTGATTTTAGCGGGCTGGTTACTTTCTGG GTATCAGGTTTTGAGCATTATCTTATTTCTTTTAGCTTTTGTTATTGGTGGGTTTGCGAAAGCGAAAGAGGGCATTGAAGAG ACATTGGAATCCAAAACTTTGAACGTCGAATTATTGATGATCTTTGCCGCGATCGGAAGCGCTCTTATCGGATATTGGGCAG AGGGGGCAATTTTAATTTTTATCTTCTCTCTTTCGGGTGCACTGGAGACATACACTATGAACAAATCCTCCCGTGACCTTAC AAGCCTTATGCAATTGGAACCCGAAGAAGCGACCTTGATGGTGAACGGAGAAACGAAACGCGTCCCGGTAAGCGACTTGCAG GCAGGGGACATGATCGTGATTAAGCCAGGGGAACGTGTGGCTGCTGACGGAATTATCGAATCAGGATCGACTTCACTGGACG AATCCGCGCTTACAGGCGAATCGATGCCTGTTGAGAAGAACACGGGGGACACGGTCTTTACTGGGACTGTGAATCGTAACGG ATCCTTGACCGTTCGCGTTACCAAGGCAAACGAAGACTCCTTGTTTCGCAAAATCATTAAGCTGGTAGAATCGGCACAAAAC TCGGTTAGCCCGGCGCAAGCATTTATTGAACGCTTTGAAAACGCATATGTCAAAGGGGTCCTTATCGCAGTAGCATTACTTT TGTTTGTGCCACACTTCGCCCTTGGTTGGTCCTGGAGCGAAACGTTTTACCGCGCAATGGTTTTTATGGTAGTGGCTTCGCC GTGCGCTTTAGTCGCTTCTATCATGCCCGCAGCCTTGTCCTTAATTTCTAATGGCGCTCGCAATGGAATGTTGGTAAAAGGT TCGGTTTTTTTGGAGCAGCTGGGTTCAGTGCAGATGATTGCCTTTGATAAGACTGGGACGGTAACAAAGGGGCAACCCGCTG TCGAGACAATCCGTATCGCCGAGGGGTTTAGCGAGGCCGAGGTGCTTGAGGCAGTGTACGCTATTGAAACACAATCCTCTCA CCCTTTAGCCCAAGCGATTACGGCATATGCCGAGAGTCGTGGAGTGAATCAAAGCGGTTACATCTCCATTGAAGAGACCAGC GGCTTTGGCGTAATGGCTGAGGTTTCAGGCGCCAAGTGGAAAGTTGGAAAGGCGGGTTTCATTGGTGAGGAAATGGCAGCGC AATTTATGAAACAAACAGCGTCGGATGTTATTCAATCTGGCCATACAATCGTTTTCGTTAAAAAAGATGATCAGATTGCCGG GTGTATCGCTCTGAAAGACCAGATTCGTCCGGAGGCAAAGGAAGTTATGGAAGAACTTAATCGTTTAGGGATCAAAACCGCG ATGCTTACAGGAGATCACGAAGATACGGCCCAGGCAATTGCTAAAGAGGCAGGAATGACGACCGTGGTTGCCGAATGTTTAC CCGATCAAAAAGTCAACGAGATCAAACGCTTAAAGGAAGAGTTCGGCACTATCGCAATGGTAGGGGACGGCATTAATGACGC TCCTGCATTGAAGGCAGCGGATGTGGGTATTGCAATGGGTGGTGGGACAGATGTGGCATTGGAGACCGCAGACATGGTATTG ATGAAGAATGATCTGAAAAAGTTAGTCAACATGTGCCGCTTAAGTCGTAAAATGAATCGCATCATCAAGCAAAATATCGTGT TTTCGCTGGCTGTAATCTGCCTGTTAATCTGCGCAAACTTCCTTCAGGCCATGGAATTGCCTTTTGGTGTTATCGGACACGA AGGCAGCACAATTTTAGTGATTCTGAATGGTCTTCGCTTGCTGAAATGATCTAGAGTCGACGTCC
>LMO3448 gBlock
aactttaagaaggagatataCATATGATTAGTTACCTTATTAAATCTCGCCAGGGTCAATTCTTGGCAATCGGAATCCTGTT TGCGGCGGCGGGTTTTATTTTTGGTACCATGAACTCGGAATACTCACGCTGGCTTTTCTACGCGGCAATTTTTTTCTTAGGT TTTTATGCATCCAAGAACGCCATTGTAGAAACGGTTCGCTATAAGAGTCCTAATGTGGACCTTCTGATGATTCTTGCCGCAC TGGGTGCAGTAATCTTCGACTTTGAAAGTGAAGGAGCGGCATTGTTACTGATTTTCGCGGCAGCGGAAGTGTTGGAAGACTA CGCTAACAACAAATCGACTTCAGCAATTTCGGAATTAATGGCGCAAGTGCCGGAAACCGCTCAGGTCCTGAAGGAAAACGGG GAGGTTGTTACGGTTCCCACCGAAGATCTGAATGTTGGAGAACGTGTGGTAGTAAGCAAAGGAGAGCAAATCCCTATTGACG GAATTATCGACCGTAAAAGTATCGTTAACGAGAGCGCCTTGACAGGTGAGTCGGTACCTGTCGTGAAGGAAGCGGAAGACGA AGTTTTTGCAGGGACCATTAACGAAGGTGACGTGTTTTATATCGACGTGACAAAGAGTTCCGACGAAACCGTCTTTTCCAAC ATCATTCGTATGGTAGAAGAAGCCCAGTCACGCCCCTCACGCATCAGCAAATTTATCGATCGCATTGAGTCAAAATATGTAA TCTCGGTTCTTGTCATTGTACCCATCTTCATCGTTGTGATGTATGCATTGATGGACTTACCCTTCGAGGAGGCATTCTACCG TGGCATGGTGTTTTTAACGGTCGCGTCTCCATGTGCTTTAGTTGCGTCAGCCACACCAGCAACACTTAGCGCAATCTCGAAC GGGGCCAAGAACGGAATTCTTTTCAAGGGAGGAGCGGCTATGGAAGCACTTTCGACCATGGACATCTTGTATACAGATAAAA CCGGCACATTAACTTATGGCGAGTTCAAAGTTGACGAATATAGTGCCCCCGACGACGTATTAAAGGAAGTGATTTACATGGA GCAGCAATCAAGTCATCCGATCGCCCGTGCGATCGTAACTGCCTTTAAGGAGACGGACTTGTCCAGCGTCGATCATAATGAG CCTGTGAGTGAAATTGCTGGATCTGGCATCAAGAAAGGCACTGTTCGTGTCGGGAAGCCGAGCGCCTTCAGTACATTCAAGA ATTATGACCGTTTCAAGCAGTATTTTCAGAAAGGGAACACAATCATTTTGGCTGCGAAGGAAGAGGAGGTGGTCGGTTATTT CTCGTTAAGCGATCAGATTCGCCGTCAGTCCGCGGATGCAGTGGCTAACTTCCAAAAGGAAGGAATCAAGGTAACATTATTG ACAGGTGACAACGAAGAGGTAACCGAAACGGTAGCCGAAGTCGTAGGCGTAGACGACTACAAGGCATCAATGCTTCCAGAGG ATAAAATTGCGTATGTGCGCGAATCGCAGGACAAGGAGGAGGTGGTAGGGATGATTGGAGACGGGATCAACGATGCCCCTGC TCTGGCTAATGCCGACATCGGAATCGCAATGGGATCAGGATCAAGTGTGGCGATGGAGAGCTCTGACGTCGTCGTTGTGAAG AACGACCTGAGCAAGTTGTTCTACTCATACAAATTAAGCAAAAAATTAAATAAAATTATCTTACAGAATGTGATTTTCTCGA TTTCAGTTATTGTGACTCTTATTGTTTTGAATTTGTTCGGCGTTCTGGGTTTGCCTTTGGCTGTCTTGTTCCACGAAGGCAG TACCATCCTTGTCATTTTAAATGGACTTCGCCTGTTGGGTTCTAAGGGACCCAAACAGGAGGAGCGCGTTTCAGATCCCTCA TTAAAGAGTGTTAAGGTTGAAAACCTGTATTTTCAGGGCctcgagcaccaccaccacca

Figure S19, continued

>Eba3544 gBlock
CCCATGACAACTGAAAAAAAACCATATGAAATGGCGGTGGGCATTACTGACCGCCGCGAAGCGTTAATTATCCGCAAGATGA GCTTGATTTCCTTGATTGGTAATACGGTGTTCAGCGGGTTCAAGCTGTTTGCCGGAGTCATCGGGAACTCAGGAGCAATGAT TAGTGATGCTATCCACAGTTTTTCCGATGTTTTGACTACATTGATCGCATGGATTGGTGTTAAAGTGAGCAAAAAGGCTGCT GATGAAGCACATCCCTACGGGCATGAACGCATGGAATGCGTTGCGAGCCTTCTTCTGGGGCTGGTGTTGATGGCAACCGGTC TGGGTGTTGGACGCGTGGGAGTTGATAACATCATCGCTAATAATTACGAGGCTCTTGCGATTCCTAAGATGATCGCCCTTGC TGCTTCCGTTGTCTCTATTCTTGGAAAGGAAGCGATGTTCTGGTACACTCGCTATTATGCTAAGCTGATTAACAGTAGCGCC TTCATGGCGGATGCATGGCACCATCGTAGCGATGCTATCAGCTCCATTGGCTCCTTTATCGGCATCGCGGGCGCCATGCTTG GTTTCCCCGTAATGGACAGCGTAGCTAGTGTTGTTATCTGTTTATTTATCCTTAAAGTCGCTTACGACATTTTGCGTGACGC GCTGATGAAAATGCTGGATACTAGTTGTGGTGAAGCCTATGAAAACCAATTGACGCATTACATCGCAGAGAAAGAAGACGTG CGTTCCGTAGATTTACTGCATTCTCGTATGTTCGGCAACAAAGTATTTATTGACCTTGAAATCTCAGTTGATGGCGATAAGT CATTACGTGACGCCCATGCGGTCGCAGAGCTTGTCCATGAAGATGTTGAATTGAACTTCCCAGAGATTAAACACATTATGAT CCATGTCAACCCGGCGAACGAGTAA
>sfGFP from pET21b-RL015A
ATGCGTAAAGGCGAAGAACTGTTCACGGGCGTAGTTCCGATTCTGGTCGAGCTGGACGGCGATGTGAACGGTCATAAGTTTA GCGTTCGCGGTGAAGGTGAGGGCGACGCGACCAACGGCAAACTGACCCTGAAGTTCATCTGCACCACCGGTAAACTGCCGGT GCCTTGGCCGACCTTGGTGACGACGTTGACGTATGGCGTGCAGTGTTTTGCGCGTTATCCGGACCACATGAAACAACACGAT TTCTTCAAATCTGCGATGCCGGAGGGTTACGTCCAGGAGCGTACCATTTCCTTCAAGGATGATGGCTTCTACAAAACTCGCG CAGAGGTTAAGTTTGAAGGTGACACGCTGGTCAATCGTATCGAATTGAAGGGTATCGACTTTAAAGAGGATGGTAACATTCT GGGCCATAAACTGGAGTATAACTTCAACAGCCATAATGTTTACATTACGGCAGACAAGCAAAAGAACGGCATCAAGGCCAAT TTCAAGATTCGCCACAATGTTGAGGACGGTAGCGTCCAACTGGCCGACCATTACCAGCAGAACACCCCAATTGGTGACGGTC CGGTTTTGCTGCCGGATAATCACTATCTGAGCACCCAAAGCGTGCTGAGCAAAGATCCGAACGAAAAACGTGATCACATGGT CCTGCTGGAATTTGTGACCGCTGCGGGCATCACCCACGGTATGGACGAGCTGTATAAGTAA

SUPPLEMENTARY REFERENCES

[1] Song, W., Strack, R. L., Svensen, N., and Jaffrey, S. R. (2014) Plug-and-play fluorophores extend the spectral properties of Spinach, J. Am. Chem. Soc. 136, 1198-1201.
[2] He, B., Rong, M., Lyakhov, D., Gartenstein, H., Diaz, G., Castagna, R., McAllister, W. T., and Durbin, R. K. (1997) Rapid mutagenesis and purification of phage RNA polymerases, Protein Expr. Purif. 9, 142-151.
[3] Wang, X. C., Wilson, S. C., and Hammond, M. C. (2016) Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP, Nucleic Acids Res. 44, e139.
[4] Zhou, K., Zou, R., Zhang, C., Stephanopoulos, G., and Too, H. P. (2013) Optimization of amorphadiene synthesis in Bacillus subtilis via transcriptional, translational, and media modulation, Biotechnol. Bioeng. 110, 2556-2561.
[5] Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., and Bairoch, A. (2005) Protein Identification and Analysis Tools on the ExPASy Server, In The Proteomics Protocols Handbook (Walker, J. M., Ed.), pp 571-607, Humana Press, Totowa, NJ.
[6] Mills, S. A., and Marletta, M. A. (2005) Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli, Biochemistry 44, 1355313559.
[7] Tsien, R., and Pozzan, T. (1989) Measurement of cytosolic free Ca^{2+} with Quin2, Methods Enzymol. 172, 230-262.
[8] Cotruvo, J. A., Jr., Featherston, E. R., Mattocks, J. A., Ho, J. V., and Laremore, T. N. (2018) Lanmodulin: A highly selective lanthanide-binding protein from a lanthanide-utilizing bacterium, J. Am. Chem. Soc. 140, 15056-15061.
[9] Martell, A. E., and Smith, R. M. (1974) Critical Stability Constants, Vol. 3: Other Organic Ligands, Plenum Press, New York.
[10] Yamagami, R., Bingaman, J. L., Frankel, E. A., and Bevilacqua, P. C. (2018) Cellular conditions of weakly chelated magnesium ions strongly promote RNA stability and catalysis, Nat. Commun. 9, 2149.
[11] Sung, H.-L., and Nesbitt, D. J. (2019) Single-molecule FRET kinetics of the Mn^{2+} riboswitch: Evidence for allosteric Mg^{2+} control of "induced-fit" vs "conformational selection" folding pathways, J. Phys. Chem. B 123, 2005-2015.
[12] Martin, J. E., Le, M. T., Bhattarai, N., Capdevila, D. A., Shen, J., Winkler, M. E., and Giedroc, D. P. (2019) A Mn-sensing riboswitch activates expression of a $\mathrm{Mn}^{2+} / \mathrm{Ca}^{2+}$ ATPase transporter in Streptococcus, Nucleic Acids Res. 47, 6885-6899.
[13] Kellenberger, C. A., Wilson, S. C., Sales-Lee, J., and Hammond, M. C. (2013) RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP, J. Am. Chem. Soc. 135, 4906-4909.
[14] Lentini, R., Forlin, M., Martini, L., Del Bianco, C., Spencer, A. C., Torino, D., and Mansy, S. S. (2013) Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology, ACS Synth. Biol. 2, 482-489.
[15] Pi, H., Patel, S. J., Argüello, J. M., and Helmann, J. D. (2016) The Listeria monocytogenes Fur-regulated virulence protein FrvA is an $\mathrm{Fe}(\mathrm{II})$ efflux $\mathrm{P}_{1 \mathrm{~B} 4}$-type ATPase, Mol. Microbiol. 100, 1066-1079.
[16] Purohit, R., Ross, M. O., Batelu, S., Kusowski, A., Stemmler, T. L., Hoffman, B. M., and Rosenzweig, A. C. (2018) Cu^{+}-specific CopB transporter: Revising $\mathrm{P}_{1 \mathrm{~B}}$-ATPase classification, Proc. Natl. Acad. Sci. U.S.A. 115, 2108-2113.
[17] Furukawa, K., Ramesh, A., Zhou, Z., Weinberg, Z., Vallery, T., Winkler, W. C., and Breaker, R. R. (2015) Bacterial riboswitches cooperatively bind Ni^{2+} or Co^{2+} ions and control expression of heavy metal transporters, Mol. Cell 57, 1088-1098.
[18] Strack, R. L., Disney, M. D., and Jaffrey, S. R. (2013) A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA, Nat. Methods 10, 1219-1224.
[19] Su, Y., Hickey, S. F., Keyser, S. G. L., and Hammond, M. C. (2016) In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for S-adenosyl-Lhomocysteine (SAH), J. Am. Chem. Soc. 138, 7040-7047.
[20] Romero, T., Gong, M., Liu, M. Y., and Brun-Zinkernagel, A. (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties, J. Bacteriol. 175, 4744-4755.
[21] Pourciao, C., Pannuri, A., Potts, A., Yakhnin, H., Babitzke, P., and Romero, T. (2019) Regulation of iron storage by CsrA supports exponential growth of Escherichia coli, mBio 10, e01034.
[22] Guan, G., Pinochet-Barros, A., Gaballa, A., Patel, S. J., Argüello, J. M., and Helmann, J. D. (2015) PfeT, a P ${ }_{184}$-type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication, Mol. Microbiol. 98, 787-803.
[23] McLaughlin, H. P., Xiao, Q., Rea, R. B., Pi, H., Casey, P. G., Darby, T., Charbit, A., Sleator, R. D., Joyce, S. A., Cowart, R. E., Hill, C., Klebba, P. E., and Gahan, C. G. M. (2012) A putative P-type ATPase required for virulence and resistance to heme toxicity in Listeria monocytogenes, PloS One 7, e30928.
[24] Patel, S. J., Lewis, B. E., Long, J. E., Nambi, S., Sassetti, C. M., Stemmler, T. L., and Argüello, J. M. (2016) Fine-tuning of substrate affinity leads to alternative roles of Mycobacterium tuberculosis Fe^{2+}-ATPases, J. Biol. Chem. 291, 11529-11539.
[25] Smith, A. T., Smith, K. P., and Rosenzweig, A. C. (2014) Diversity of the metaltransporting P_{18}-type ATPases, J. Biol. Inorg. Chem. 19, 947-960.
[26] Harmer, C. J., and Hall, R. M. (2019) An analysis of the IS6/IS26 family of insertion sequences: is it a single family?, Microb. Genom. 5, doi: 10.1099/mgen.1090.000291.
[27] Gourdon, P., Liu, X. Y., Skjorringe, T., Morth, J. P., Moller, L. B., Pedersen, B. P., and Nissen, P. (2011) Crystal structure of a copper-transporting P ${ }_{\text {IB-type }}$ ATPase, Nature 475, 59-64.
[28] Drozdetskiy, A., Cole, C., Proctor, J., and Barton, G. J. (2015) JPred4: a protein secondary structure prediction server, Nucleic Acids Res. 43, W389-W394.
[29] Krogh, A., Larsson, B., von Heijne, G., and Sonhammer, E. L. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes, J. Mol. Biol. 305, 567-580.

