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Naturally occurring peptides, including growth factors, hor-
mones, and neurotransmitters, represent an important class of
biomolecules and have crucial roles in human physiology. The
study of these peptides in clinical samples is therefore as
relevant as ever. Compared to more routine proteomics applica-
tions in clinical research, peptidomics research questions are
more challenging and have special requirements with regard to
sample handling, experimental design, and bioinformatics. In
this review, we describe the issues that confront peptidomics in a
clinical context. After these hurdles are (partially) overcome,
peptidomics will be ready for a successful translation into
medical practice.
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I. INTRODUCTION

In nature, gene-coded translation products not only represent full-
length proteins but also small peptides. Although the definition of
“a peptide” is a bit arbitrary, they are mostly defined as a chain of
2–100 amino acids that represent molecules within a mass range
of 200Da to 10kDa. Peptides are widely present in nature and
play a significant regulatory role in several biological processes,
including signal transduction and anti-hypertensive, anti-viral, and
anti-microbial tasks and detecting self from non-self (immunopep-
tidomics) (Faridi et al., 2016; Martelli et al., 2014). These
endogenous peptides include peptides translated from short open
reading frames but also peptides released from larger precursor
proteins as well as protein-processing and-degradation products.
The peptides considered in this review should be clearly discerned
from their in vitro generated proteolytic counterparts, typically
used in bottom up proteomics.

In line with other “omics” fields, detection, identification,
and quantification of all endogenous peptides present in a cell,
tissue, or organism at a certain time point is defined as
“peptidomics” (Schrader & Schulz-Knappe, 2001; Schulz-
Knappe et al., 2001). The study of a peptidome has two major
goals: i) identify and characterize new (bioactive) peptides or

ii) quantify (relative or absolute) peptide levels in a variety of
samples. Either way, peptidomics helps to elucidate the role of
these endogenous peptides in their biological environment, and
to obtain insights in the pathways that they are involved in.
Moreover, peptidomics can be classified in different subfields;
one might be interested in bioactive peptides, precursor proteins,
protein processing and degradation products, antigen presenta-
tion, or a combination of all the above.

Since the advent of peptidomics more than 20 years ago, a
broad range of biological samples was analyzed with peptido-
mics technologies. The majority of published studies have as
subject hormone and neuropeptide research in invertebrates
(Caers et al., 2015; De Haes et al., 2015; Secher et al., 2016).
Clinical peptidomics applications are more limited. This limited
number of studies is not due to the lack of interest of peptides in
a clinical setting. On the contrary, peptides are key regulatory
molecules and their discovery and functional characterization is
of high importance in medicine and the lack of studies reflects
the challenging nature of peptidomic analysis and data interpre-
tation. As such, current applications of clinical peptidomics
include identifying candidate peptide disease biomarkers, iden-
tifying peptides involved in cell-cell communication, which
peptides elicit immune responses and signal transduction, and
map dietary protein digestion (Dallas et al., 2015). Furthermore,
peptides are becoming more important as therapeutic agents,
and today several peptide-based vaccines are already tested in
clinical trials (Skwarczynski & Toth, 2016).

Although, at first sight, it seems that proteomics and
peptidomics are not so different because both are just a chain of
amino acids (i.e., peptides are smaller, no enzymatic digestion is
necessary, and several methodological links can be found with
traditional proteomic approaches), some technological differ-
ences are present (Schrader et al., 2014). These differences
cause issues that are the result of three major peptide character-
istics: i) bioactive peptides of interest can be present in very low
concentrations within complex biological samples (e.g., peptide
hormones in plasma); ii) endogenous peptides range consider-
ably in size (from 2 to over 100 amino acids) and overlap with
metabolite and lipid mass range; and iii) heterogeneity in
physiochemical properties of endogenous peptides varies
widely, and as a consequence, for example, charge states of
endogenous peptides as detected in a mass spectrometer differ
compared to in vitro controlled digested peptides in proteomics
approaches, such as tryptic peptides. Endogenous peptides
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sometimes have no positive charge because often basic amino
acids are removed in the conversion from precursor to active
peptide and commonly post-translational modifications are
present at the N-terminus. It is therefore sometimes easier to
detect intermediates of the processing than to see the mature
peptide. Other, larger peptides might have multiple charge states
of 5þ to 10þ, which make MS/MS sequence determination not
trivial. These characteristics complicate both mass spectrometry
measurements/methods as well as data analysis. Moreover,
heterogeneity in chemical properties of these endogenous
peptides make optimization of separation by liquid chromatog-
raphy, a trial and error exercise. Furthermore, modifications will
impact column retention properties of peptides largely and
contribute to the variability in the chromatographic profile. In
this review, we will, therefore, emphasize challenges of clinical
peptidomics research (Fig. 1).

II. CHALLENGE 1: PEPTIDE EXTRACTION

In complex biological samples, peptides of interest must be
preferentially enriched because these matrices typically contain
lipids, salts, proteins, and carbohydrates that can decrease the
ionization efficiency of peptides due to suppression effects.
Sample preparation methods in peptidomics are highly diverse
because peptides themselves vary in many characteristics such
as size, charge, and hydrophobicity. In addition, many peptides
can have a multitude of post-translational modifications with
oxidation, acetylation, c-terminal amidation, pyroglutamic acid
formation, and glycosylation as the most important ones. Also,
different sample types or peptides of interest need different
sample preparation methods; the concept of one-size-fits-all
often used in proteomics does not apply on peptidomic sample
treatment. The most common peptide extraction procedures
include: 1) ultrafiltration with different types of molecular
weight cut-off membranes (e.g., 10 kDa and 30 kDa) to separate
low-molecular weight and high molecular weight fractions.
Although this filtration step is fast and easy to apply, it does not

permit complete separation of a specific mass range without
partial loss and/or partial contamination from undesired frac-
tions (Dallas et al., 2015). 2) Selective precipitation of the
(larger) protein fraction with organic solvents (e.g., acetonitrile,
acetone, methanol), acids (e.g., trifluoroacetic acid), or the
addition of chaotropic agents (e.g., ammonium sulphate)
(Vitorino et al., 2012). However, no complete protein removal
can be achieved with precipitation and some peptides might
aggregate and be lost in the precipitate (Dallas et al., 2015). 3)
Solid phase extraction (SPE) columns retain analytes from
complex mixtures and can be used to remove interfering
compounds and concentrate the sample. The most popular SPE
columns for peptidomics applications are Hydrophilic-
Lipophilic Balance (HLB) or C18 columns. Alternatively, size
exclusion chromatography (SEC) can be applied, and although
it is time consuming, it allows isolation of specific mass ranges.
4) Magnetic beads for extraction of target peptides in complex
samples. These magnetic beads can be functionalized for affinity
purification (Safarik & Safarikova, 2004). In the case of
immunopeptidomics, peptides can be extracted after immuno-
purifying the major histocompatibility (MHC) complexes. 5)
Peptides can be loaded on a gel and separated from contaminants
and proteins. The peptides can be re-extracted from the gel after
separation. A general overview of a peptidomics protocol is
shown in Figure 2.

The pre-analytical phase is, besides the peptide extraction
approach that is chosen, also challenged by several other
variables, endogenous, and exogenous, which can affect the
results. Although some of these variables are controllable (e.g.,
time and method of collection, freeze-thaw cycles), several
others are not (e.g., ischemia time, diet, alcohol use), and both
classes of variables can influence peptide profiling results
(Vitorino et al., 2012). Influences of these factors are already
reported in various peptidomics studies (de Jong et al., 2011;
Leichtle et al., 2013). These deviations in sample collection and
handling might significantly alter the clinical peptidome.
Consistent sample handling during peptidomics experiments

FIGURE 1. A schematic overview of the major challenges in clinical peptidomics.
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and between different experimental groups, combined with a
solid design of experiments is thus of critical importance.
Additionally, minimization of peptidase activity with protease/
peptidase inhibitors remains crucial in all peptidomics applica-
tions to circumvent proteome and peptidome degradation. These
protease/peptidase inhibitors, however, are peptides (analogues)
themselves and added to the sample in over-abundance, can
suppress the original peptidome analysis.

III. CHALLENGE 2: THE COMPLEXITY OF CLINICAL
SAMPLES

Analysis of endogenous peptides in biofluids or tissues can
provide valuable insights into disease mechanisms (Sigdel
et al., 2014). The study of peptide expression/protein
degradation with peptidomics in order to find peptide
signatures in disease versus healthy conditions is, therefore,
very relevant. The detected peptides might also have utility
as potential clinical biomarkers. Furthermore, because pep-
tides are all low molecular weight molecules, they are more
permeable between tissues compared to larger proteins, that
might facilitate their detection in peripheral tissues and
biofluids. A wide range of clinical tissue types have been
used in peptidomics studies, mostly in the search for
peptide-based biomarkers (Lai et al., 2015). Complexity of
the clinical samples, however, complicates the biomarker
search. In the next section, we provide an overview of this
complexity in the most commonly used biofluids.

A. Blood

The protein and peptide content in blood reflects the secretion
and release of several organs, tissues and cell types, and can be
seen as a very dynamic and complex matrix with large potential
in medical and pharmaceutical applications. Analysis of endog-
enous blood peptides, however, is hampered by the presence of
vast amounts of peptides that result from blood peptidase
activity and in vivo protein turn-over. Whereas peptidase activity
during and after blood collection adds further complexity to the
peptide content, strategies to preserve blood stability and to
quench the functioning of ex vivo peptidases are necessary to
study the endogenous blood peptidome. Part of the complexity
introduced by degradation might be lowered with several
extensive pre-fractionation steps; however, minimization of
peptidase activity remains crucial because peptidase and prote-
ase activity will not only result in more protein degradation
products in the sample but likely also degrade part of the in vivo
peptidome.

Two types of liquid blood fractions, plasma, or serum, can
be obtained after blood collection. Obviously, the choice
between plasma or serum for specific peptidomics studies
depends on the study objective. Plasma is defined as the liquid
part of blood after centrifugation, thus without cells. To collect
plasma, blood is withdrawn in tubes with anti-coagulant
additives, such as EDTA, citrate, or heparin, to minimize blood
coagulation, whereas serum can only be obtained when blood
clotting is finished, typically after 30–60min. Serum is the

FIGURE 2. A Peptidomics workflow in a nutshell. Although a one-approach-fits all cannot be applied in clinical
peptidomics, mostly, these different steps are applied.
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liquid fraction that remains after precipitation of the blood clot
and the remaining cellular blood fraction. During clot formation,
however, proteins and peptides can be non-specifically trapped.
Additionally, clotting induces cell lysis and protease activity,
because blood clotting is a multiprotease event that cleaves
many (highly abundant) proteins and thus releases large quanti-
ties of mostly uninformative peptides. Although serum has often
been used in clinical peptidomics studies, the peptide complex-
ity is even higher compared to plasma, because serum contains a
higher number of peptides that appear only after clotting events.
To prevent protease and peptidase activity during blood
withdrawal for plasma collection, sampling and processing
several options are possible including the use of blood tubes that
contain a special protease/peptidase inhibitor cocktail, the
addition of acids or snapfreeze samples. All these methods
obtain improved results compared to “crude” plasma, but none
deliver optimal results. For example, adding protease/peptidase
inhibitors will interfere with peptidomic analyses because they
are peptide analogues themselves. Currently, the major obstacle
for the use of plasma for clinical peptidomics studies is that
peptides usually emanate from degradation processes to make it
difficult to distinguish artifact peptides that originate during
plasma collection and/or sample handling from those that are
uniquely derived from the disease (Aristoteli et al., 2007).
Additionally, binding of endogenous peptides to carrier proteins
(e.g., the albuminome) is to be avoided to achieve complete
peptide extraction in blood peptidomics studies (Gundry et al.,
2007; Scumaci et al., 2011).

B. Urine

The easy and non-invasive nature of urine collection, combined
with the availability of the large amount of sample that can be
collected, make urine an attractive biofluid for clinical applica-
tions (Olivieri & Rai, 2010). Because it has been demonstrated
that different disease states alter the profile of the urinary
proteome and peptidome and/or increase urinary peptide excre-
tion, “omics”-analysis of this clinical sample is growing (Martelli
et al., 2014). However, the complexity of the “urineome”
complicates the analysis. The urine peptidome, for example, is
made up of small soluble peptides that derive naturally from
plasma, and are excreted by filtration in the kidney or originate
from the urogenital tract. In addition, urine is stored in the
bladder for several hours before excretion resulting in degrada-
tion of proteins by the proteolytic activity of endogenous
proteases which increases the peptide abundance substantially
(Bauca et al., 2014). Furthermore, additional variation in the
urine peptidome is created as a consequence of altered daily
intake of fluids, diets, metabolic processes, and circadian rhythms
(Martelli et al., 2014). Also, differences are noticed between first
and second void and between first stream and mid-stream urine
because bacteruria/hematuria is minimized in the later (Delanghe
& Speeckaert, 2014). Despite the high biological variation, urine
seems more stable compared to blood, because it is demonstrated
that the urine peptide pattern is more stable at room temperature
than peptide analysis of serum (Fiedler et al., 2007).

C. Other Clinical Biofluids

Besides the two most common biofluids applied in omics
research, peptidomics analysis of other biofluids also has

potential in clinical applications. Peptidomics studies have been
reported in saliva, cerebrospinal fluid (CSF), tears, and miscella-
neous fluids such as seminal fluid (Fung et al., 2004) and
vitreous humor (Rollin et al., 2004).

Interest in the analysis of saliva originates from its non-
invasive sample collection. Saliva is a body fluid secreted by
glands of the oral cavity, where it lubricates the oral cavity and
participates in food digestion and prevention of infections (Bauca
et al., 2014). The salivary peptidome is complex and variable.
Indeed, as protein digestion occurs as soon as proteins enter the
oral cavity and continues after saliva sample collection, endoge-
nous peptides, which, for example originate from acinar gland
cells, will be overwhelmed with exogenous peptides (Martelli
et al., 2014). Other pre-analytical variables such as gender, age,
diet, and circadian rhythms also play roles in peptide composi-
tion of saliva (de Jong et al., 2011; Bauca et al., 2014).

CSF is a colorless liquid that surrounds the brain and spinal
cord, and provides mechanical protection, waste product re-
moval, metabolite circulation, and central nervous system
homeostasis regulation. Peptides present in CSF fluid originate
either from blood filtration or from the brain tissue itself
(Martelli et al., 2014). The invasive nature of sample collection
however, makes it inappropriate for general screening of
presumably healthy individuals or all patients with neuropathol-
ogies (Bauca et al., 2014). Most CSF peptidomics analyses are,
therefore, not aimed at biomarker research but are often devoted
to the analysis of amyloid-beta peptides in relation to neurode-
generative diseases (Hansson et al., 2017; Martelli et al., 2014).

Peptidomic analysis of tears is stimulated by the non-
invasive sample collection and can be useful in a wide range
of clinical applications regarding ocular pathologies because
its composition reflects the physiological condition of the
underlying tissues (Azkargorta et al., 2017). Besides the major
function of tears as humidifier of the eyes, tears also prevent
infection and are a barrier to the outside environment
(Martelli et al., 2014). Although initially not expected, the
tear peptidome is quite complex, and the peptide concentra-
tion range spans several orders of magnitude (Hayakawa
et al., 2013). Although inter-day variation seems low, a
remarkable inter-individual variation adds even more complex-
ity to the analysis (Gonz�alez et al., 2012). Analysis of the
tear peptidome is mostly focused on the characterization of
naturally cleaved tear peptides because they can be bioactive
and fulfill specific functions not ascribed to their original
protein parents such as antimicrobial activity or intercellular
signaling (Azkargorta et al., 2017).

IV. CHALLENGE 3: MASS SPECTROMETRY (MS)
ANALYSIS

Due to the fact that peptides have a large diversity of
physicochemical properties, a wide variety of MS methods have
been employed to tackle this challenge in peptidomics research.
Electrospray ionization (ESI), matrix-assisted laser desorption/
ionization (MALDI), and surface-enhanced laser desorption/
ionization (SELDI) sources, as well as liquid chromatography
(LC) and capillary electrophoresis (CE) have successfully been
applied in peptidomics studies. In peptidomics, it is, further-
more, of crucial importance for peptide identification that the
MS method has both an accurate mass measurement (instrument
mass resolution is fundamental to reduce the number of peptide
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possibilities) and provide tandem mass fragmentation to provide
additional information for peptide sequencing (Dallas et al.,
2015). The most commonly used peptide fragmentation method
is collision induced dissociation (CID), highly modified
peptides (e.g., glycopeptides) or larger peptides mostly require
alternative fragmentation methods such as electron-transfer
dissociation (ETD) and high-energy collision dissociation
(HCD) or a combination of different fragmentation methods
(Shen et al., 2011). A comprehensive overview of all these MS
techniques applied in peptidomics can be found in Aristoteli
et al. (2007), Cunningham et al. (2012), Dallas et al. (2015), and
Romanova et al. (2013).

In clinical samples, peptide extractions are most often
contaminated with metabolites and other non-peptidic features.
This multitude of singly charged interferences can induce
peptide ion suppression and thus represent an additional
challenge. Large fractions of lipids and metabolites will also
saturate the binding capacity (sometimes irreversibly) of the
chromatographic columns. Although not frequently used, ion-
mobility mass spectrometry (IM-MS) and high-field asymmetric
waveform ion mobility spectrometry (FAIMS) could be imple-
mented in the MS workflow. These electrophoretic gas-phase
techniques allow one to distinguish and separate molecules
based on their charge, mass, and mobility (Harvey et al., 2011).
This way, it enables the separation of co-eluting species or low
abundant features from chemical interferences, such as non-
peptidic (e.g., metabolites) contaminants based on their struc-
ture (Xia et al., 2008). Additionally, it allows for separation of
peptide isomers (Jia et al., 2014) or discrimination of different
modification sites of the same modification on the same peptide
backbone (Ibrahim et al., 2011).

In line with proteomics, quantitative analysis of peptide
profiles under different physiological conditions is emerging
and represents one of the most challenging tasks in the field.
The most commonly used methods for peptide quantification
include label-based (Boonen et al., 2018) (isobaric and
isotopic) and label-free methods and methodological advan-
ces for data interpretation are evolving; however, this part
remains challenging (Verdonck et al., 2016). Additionally,
targeted methods can be applied to obtain absolute quantifi-
cation results. An overview of all quantitative peptidomics
methods is out of scope of this review but is provided in
Romanova et al. (2013). A general rule in setting up LC-MS
analysis of endogenous peptides is that for every research
question, the experimental parameters (buffers, columns,
gradients, spray, CID, etc.) must be optimized in a trial-and-
error fashion, mainly due to the large peptide diversity in
different tissues and physiological conditions.

V. CHALLENGE 4: BIOINFORMATIC ANALYSIS
AND PEPTIDE IDENTIFICATION

Bioactive peptides and peptide products from proteolysis are
both biopolymers composed out of a chain of amino acids. For
peptide identification, strategies that are rooted in peptide-
centric proteomic methods can be applied to endogenous
peptides as well. However, a shift in focus on peptides rather
than on proteins has repercussions on the data analysis in several
aspects as will be discussed in this section (Fig. 3). First, we
provide an overview of the classical paradigm used to interpret
shotgun proteomics data.

First, the most popular search strategy in peptide-centric
proteomics are database search methods that match a theoretical
fragment spectrum from a candidate peptide sequence to an
observed fragment spectrum. Typically, candidate peptides
originate from an in silico digested protein database and are
selected for comparison based on the mass of the precursor ion.
Popular search engines are MASCOT (Perkins et al., 1999),
SEQUEST (Eng et al., 1994), X!Tandem (Craig & Beavis,
2004), and OMSSA (Geer et al., 2004). A review of search
algorithms is provided by Nesvizhskii et al. (2007) and
Shteynberg et al. (2013).

Second, a spectral library search strategy can be adopted to
identify tandem mass (MS2) spectra. This approach attempts to
match observed fragment spectra to a library of previously
observed and high quality annotated spectra based on the
precursor mass (Lam et al., 2007; Falkner et al., 2008). Software
methods are MS InsPecT (Tanner et al., 2005), SpectraST (Lam
et al., 2008) and BiblioSpec (Frewen et al., 2006), etc. Of course,
you need a comprehensive spectral library of endogenous
peptides for this approach. Neuropedia is a neuropeptide
spectral library that can be queried with the M-Split spectral
library search tool (Kim et al., 2011).

Third, a de novo algorithm can be employed to derive
peptide identifications based on the MS2 spectrum peak patterns
(Nesvizhskii et al., 2006). The advantage of the latter method is
that it does not require prior knowledge about a protein database
or a reference library. Principles from computer science and
mathematics are adopted to interpret the spectra as an optimiza-
tion problem that tries to relate the masses of the fragment ions
to a series of amino acids. Peaks software, PepNovo (Frank,
2009) and Novor (Ma, 2015) are examples of a de novo
approach. An excellent review of de novo methods are provided
by Nesvizhskii et al. (2007) andMenschaert et al. (2010).

Other search strategies exist that combine concepts of
the previously mentioned strategies, such as sequence-tag
assisted database searching (like Peaks DB), and its
variations using “spectral dictionaries” and gapped peptides
(Menschaert et al., 2010).

The length of some bioactive peptides can pose
problems, and new strategies for peptidomics in the mass
range between 3 and 8 kDa have been published recently
(Budamgunta et al., 2018).

Because amino acid chains in digested peptides and
bioactive peptides have similar structures, they could be
analyzed and identified with the same bioinformatics machinery.
However, some lacuna in the underlying assumptions could
jeopardize a valid peptide identification. In this section we will
use the database search strategies as a case example to point out
the culprits that hamper peptidomic identification. The miscon-
ceptions that are illustrated in this section can be generalized to
the other search strategies as well.

A. Contaminants

During peptide extraction, it is unavoidable that non-peptidic
content, such as lipids and other types of metabolites, can also
be enriched. Typically, LC-MS peptidome analysis is highly
sensitive to the presence of these contaminants, and if these are
not effectively removed, they will impair the performance of
LC-MS analysis. (see Sigdel et al. (2014) in the case of urinary
peptidomics). Strategies to remove these interfering agents
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include: ultrafiltration, lyophilization, and vacuum concentra-
tion, ion exchange or reverse phase strategies, solid
phase extraction (SPE) or serial solid phase extraction (called
modified SPE by Sigdel et al. (2018)), where peptides isolated
from SPE are subjected to a second step of purification using a
processed silicon carbide resin in a pH dependent manner
(Sigdel et al., 2014).

Peptidomic samples can contain low amounts of peptides
and it should be noted that the low total amount and the lower
amount of different peptides makes the LC-MS analysis more
prone to carry-over, especially if proteomic samples or QC
samples (like BSA) are run on the same column. Low intense
peaks from previous samples will be selected for fragmentation
if the sample itself does not saturate the capacity for fragmenta-
tion of the instrument and method. A search against the whole
proteome, including regularly occurring protein contaminants,
is therefore always recommended.

In contrast to peptidomics, proteomics approaches are
relatively robust against these contaminants. Generally, non-
protein contaminants are removed from the sample with a
combination of protein precipitation and a form of filtration.
Protein digestion (with e.g., trypsin) will create and enrich the
peptidic content in the sample with respect to the non-peptidic
content. As a result, the influence of the non-peptidic content in
the sample is diluted. This enrichment of peptides ensures that
in a shotgun proteomics setting which applies with data-
dependent acquisition, mostly peptides are selected for further
fragmentation and downstream identification. When one applies

the shotgun strategy and corresponding data dependent acquisi-
tion to a peptidomic sample with its non-peptidergic contami-
nants, the ratio of peptidic and non-peptidic fragment spectra is
disproportional. Fewer peptides are selected for fragmentation
and this depletion of information has consequences on the
downstream analysis of the mass spectrometry data.

B. Proteolysis and Degradomics

Processing of endogenous peptides highlights a second chal-
lenge in peptidomics data analysis. Many related, yet slightly
different, protein and peptide products are present in the sample
that increase the complexity, we see for example for many
neuropeptides multiples intermediates. A lack of knowledge
about the enzyme activity requires employing database search
strategies with the “no-enzyme” option because it is hard to
predict an expected cleavage pattern. Another option is to use a
database of mature peptides and choose a “no-cleave” option.
This of course, needs to be complemented with additional
searches afterward and can only be applied when the peptides
originate from a relatively well known processing pathway. An
especially difficult case is blood peptidomics, where a multitude
of protease and peptidases are active, to generate a complex and
diluted peptide content. This bioprocessing is less an issue in the
bottom-up proteomics approach in which the protein content of
a sample is digested by an enzyme with a known cleavage
pattern. Obviously, semi-tryptic peptides caused by N-terminus
and C-terminus processing will be present in the sample;

FIGURE 3. Overview of the different bioinformatic challenges in clinical peptidomics experiments.

6 Mass Spectrometry Reviews DOI 10.1002/mas

& MAES ET AL.

258



however the majority will originate from the controlled proteol-
ysis with, for example, trypsin.

C. Peptide Database Availability

The general phenomenon of incomplete protein databases of
known and predicted proteins also challenges peptidomics
studies. The success of a database search strategy for peptide
identification depends on the presence of the correct or homolo-
gous amino acid sequence of the scrutinized peptide in the
database (Costa et al., 2013). A first approach is to search the
protein database with the “no-enzyme” option that results in all
possible peptide sequences that takes into account every possible
cleavage site of a protein. Such an unconstrained search will lead
to an enormous search space and require more time and memory.
This problem can be (partially) addressed by new search engines
that are much faster than the ones traditionally used, like
Morpheus (Wenger & Coon, 2013) or especially MSFragger
(Kong et al., 2017). In this case a particular spectrum is
compared against a set of candidate peptides that are not likely to
be present in the analyzed sample which in turn inflates the false-
positive findings and increases the stringency threshold for true
positive. Opening up the search is generally not recommended as
some search engines lack sensitivity in their scoring function
(Nesvizhskii, 2010). A more conservative approach would be to
generate a database that contains known and predicted peptide
precursor proteins, to increase identification rates (Falth et al.,
2006; Menschaert et al., 2009a; Menschaert et al., 2010). This is
of course only justified if the sample contains only endogenous
peptides, highlighting again the importance of sample handling
and peptide enrichment in peptidomics. However, unknown
biotransformation and biological peptide processing can hamper
the construction of such tailored databases to result in an
incomplete peptide database. A very stringent approach, on the
other hand, is to allow only bioactive peptides in a database that
correspond to the study objective by only selecting those proteins
that contain cleavage sites for known proteases and peptidases in
the studied sample. Many fragment spectra will remain unidenti-
fied with this approach because the knowledge of processing
patterns is very incomplete Spectra that originate from other
types of peptides in the databases (e.g., by being modified or that
have N or C-terminal extensions) can be identified afterward by
clustering methods (such as Bonanza, Menschaert et al., 2009b).
In addition, the presence of a number of endogenous peptides
encoded in unconventional coding regions such as short open-
reading frames are reported (Kondo et al., 2007; Ingolia et al.,
2011; Hayakawa et al., 2013), making a comprehensive peptide
database more difficult. A solution to include these “unconven-
tional peptides” is to consider the six-frame translation of the
entire genome (the study of Hayakawa et al. (2013) combines
ETD and CID to improve sensitivity when querying against all
possible reading frames) (Costa et al., 2013; Hayakawa et al.,
2013), potentially the use of RNA-seq reads as in proteogenomics
studies (for example (Renuse et al., 2011; Helmy et al., 2012;
Woo et al., 2014)) and the use of peptidomic spectral libraries
(Wang & Bandeira, 2013).

D. Ionization and Fragmentation Behavior

Ionization and fragmentation of peptides that are the product of
a controlled proteolysis are well understood and very abundant.

Cases in point are tryptic peptides because cleavage at lysine
(K) and arginine (R) ensures basic amino acids at the carboxyl
terminus. The basic C-terminus together with the basic
N-terminus (amino terminus) yield multiple charges during
electrospray ionization, to hence facilitate ionization and
fragmentation. Multiply charged ions will produce a series of
b- and y-ions that are expected with typical shotgun proteomics
search methods, like SEQUESTandMASCOT. Some neuropep-
tide or peptide hormone intermediates have basic C-terminal
amino acid extensions, meaning that the processing intermedi-
ates are sometimes easier to detect. However, mature bioactive
peptides and non-tryptic endogenous peptides can have unfavor-
able ionization properties (also negatively influenced by PTMs),
to result in lower ion intensities, and in addition, will produce
less predictive and often less informative fragmentation
patterns when compared to tryptic peptides. This unpredicted
behavior might complicate peptide identification strategies
with bioinformatics tools that are tailored toward proteomics
(Menschaert et al., 2010).

E. Coverage

In peptidomics studies, sometimes only one specific bioactive
peptide and/or its breakdown products is/are observed for each
precursor. Endogenous peptide identifications thus often rely on
a limited number of tandem MS spectra to make high accurate
and reliable peptide-to-spectrum matching very important for
endogenous peptide identification (Hayakawa et al., 2013). Of
course the presence of breakdown products and intermediates
increases the confidence of endogenous peptides but are not
always easy to identify taking into account the roadblocks that
hamper confident peptide-to-spectrum matches mentioned pre-
viously. Peptide to spectrum matches (PSMs) from similar
peptides (e.g., intermediates) can increase the confidence of
PSMs that are based on low quality fragmentation spectra (since
real hits cluster around endogenous peptide sequences whereas
false hits have equal probability throughout the [decoy]
database). However, it should be noted that spectra from
intermediates are correlated and cannot be considered fully
independent confirmations. Identifications on the precursor level
that are based on more than one peptide can be identified with
high confidence and make detection of specific forms of a
peptide more reliable, but in general only a few separate peptides
originate from a precursor and in some cases only a single
bioactive peptide is deduced from a single peptide precursor is.

This is in contrast to proteomics where a protein
digestion typically results in 20–50 peptides per protein. In
this case, some flexibility is allowed because there are
multiple opportunities to target and identify a protein based
on the corresponding peptides. In proteomics studies the
concept of protein coverage is used to indicate the extent of
amino acids in a particular protein sequence that is covered
by the observed peptide fragments. Obviously, the more
peptides that are linked to a protein the higher the
confidence that this protein is truly present in the sample.
This paradigm is reflected in how protein probabilities are
calculated whereas highly abundant proteins are identified
confidently with various peptides. Generally, a minimum of
two peptides per protein (“two-peptide-rule”) is required to
boost confidence in the resulting protein identification.
However, in some cases, protein identification might depend
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on the evidence of only one peptide. These “one-hit-
wonders” identification are more demanding on the confi-
dence of the peptide level and often are manually curated in
order to reduce the chance on false positive findings. The
latter situation describes clearly the conditions that peptido-
mics studies are operating in, rendering the probabilities of
single peptide identifications lower by requiring higher
quality fragmentation spectra and individual peptide scores.

Identifications of new peptides therefore need to be
rigorously validated, particularly when it is based on a single
peptide. Additional confirmation can be acquired by taking into
account fragment ion intensities, fragmentation patterns, and
retention times. The most cost-efficient way to confirm an
identification is to confirm the fragmentation spectrum with a
predicted spectrum (Budamgunta et al., 2018). Software that
predicts fragmentation patterns (e.g., MS2PIP) including their
relative intensities are very accurate these days (Degroeve
et al., 2015). Although this software is trained on proteomics
data, they do perform well for the prediction of non-tryptic
peptides (although this is not checked exhaustively, in part due
to the lack of well validated, sufficiently large peptidomics
databases to train the algorithms). More confidence can be
acquired if the peptide of interest is synthesized and measured
on the same LC-MS setup. The fragmentation pattern and
relative intensities will be more accurate since they do depend
on the ionization and fragmentation settings. Additionally,
accurate retention times will provide valuable extra information
concerning the identification. The expenses and effort are
certainly warranted if the peptide of interest will be used for
further targeted measurements.

F. Peptide Modifications

Endogenous peptides are exposed to biotransformation and
regulation. As such, these peptides carry post-translational
modifications (PTMs) to become biologically active or to
improve stability. The most frequently observed PTMs of
bioactive peptides are C-terminal amidation, acetylation, pyro-
glutamate formation at the N-terminus, and sulfatation (Boonen
et al., 2008; Menschaert et al., 2009b). Some of these PTMs
hamper enzymatic degradation of peptides with peptidases and/
or are required for biological activity. Chemical modifications
during sample preparation, whether intentionally or not, can
further complicate matters. Modifications have an influence on
ionization and fragmentation patterns that can complicate their
analysis. Database search engines can account for variable
PTMs, but the addition of variable PTMs results in a combinato-
rial growth of the search space, on top of the “no-enzyme” issue
or uncertainty about amino acid substitution in the peptide
sequence. As a consequence there is a large increase in search
time and a decrease in sensitivity that introduces more false
positive findings. In the case of proteomics, a constrained view
on PTMs can be adopted because missing some exotic
modifications would not jeopardize the identification of a
protein, because it is very unlikely that all tryptic peptides would
carry a PTM. In peptidomic studies, an open view on the
possible PTMs has to be considered. For this purpose, conven-
tional strategies must be replaced with more advanced algo-
rithms that allow for blind and unrestrictive searches, as is
reported for MSFragger Kong et al. (2017) and Chick et al.
(2015). Another option is a multi-stage identification processes

that searches a dataset repeatedly, by adding a few variable
modifications at each new search step would circumvent the
combinatorial increase in the search space. Database search
engines can also be combined in a pipeline with software that is
more suited for open PTM searches (Menschaert et al., 2009b).
These strategies can make use of the concept of sequence tags.
The restriction on the search space imposed by a sequence tag is
more limiting than the restriction imposed by the mass of a
candidate modified peptide (Liu et al., 2006; Na et al., 2008;
Dasari et al., 2010). Other algorithms that allow for an
unrestricted PTM search are spectrum-to-sequence alignment
(Tsur et al., 2005; Tanner et al., 2008; Chen et al., 2009; Ahrne
et al., 2010), spectral clustering (Falkner et al., 2008; Men-
schaert et al., 2009b), peptide motif analysis (Liebler et al.,
2002; Liu et al., 2008), or other methods (Havilio &Wool, 2007;
Baumgartner et al., 2008).

G. Conventional False Discovery Rate (FDR) Strategies

A commonly accepted strategy in large-scale proteomics is to
control the confidence of peptide-to-spectrum-matches by false
discovery rate (FDR). This FDR can be calculated “locally” by
assigning posterior error probabilities to each peptide-spectrum
match (Keller et al., 2005; Choi & Nesvizhskii, 2008; Kall et al.,
2008) or “globally” by calculating the proportion of decoy
count-based identifications from a target-decoy approach (TDA)
(Elias et al., 2005; Elias & Gygi, 2007) in which a database
search is conducted on, for example, a concatenated databases,
that is, the target database of interest and a decoy database that
represents the null. The decoy database is mostly generated by
reversing the protein sequences of the target database, but other
strategies are possible as well, for example, such as a randomiza-
tion approach that preserves the distributional properties of
amino acids, cleavage sites, and peptide lengths in the target
database while minimizing the number of peptide sequences in
common between the target and decoy database. A target-decoy
approach permits the estimation of the likelihood that a PSM is
correct given that it came from a large collection of PSMs for
which the false positive finding is controlled for Elias and Gygi
(2007). Key in the FDR strategy is that both alternative and null
distribution are properly sampled in order to obtain a good
estimate of the FDR and that these distributions are well
discernable among each other. If count statistics are flawed,
several sources of nuisances will bias the FDR estimate, making
it impractical to use. In general, for proteomics studies the count
statistics are sufficient to confidently estimate the FDR, that is,
many high scoring PSM from the target database. On the other
hand, the FDR strategy might fail in peptidomics studies (or
even be invalid when using restricted search databases) and
suffer similar limitations as the case for proteomics in non-
model organisms, the search for hypothetical proteins or rare
splice-variant in proteogenomics, or in MS-based clinical
microbiological typing, where evidence for single PSM findings
(“one-hit-wonder”) is required. The reason is that the number of
chance findings from the decoy database is often close to the
number of PSMs from the target database due to factors that are
previously described in this section. These factors compromise
the identification rate and influence the FDR estimate. Accord-
ing to Gupta et al. (2011) TDA is not designed for evaluating the
reliability of individual peptide identification. Furthermore, in a
TDA search strategy, peptide identifications are not necessarily
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reflecting the actual progenitor sequence. Colaert et al. (2011)
state that whenever a peptide closely enough resembles the
originator peptide in terms of their fragmentation spectra, the
distinction between the real hit and its proxy is nearly impossible
and result in “close-but-not-perfect” matches. Note that these
“close-but-not-perfect” matches are also found in the decoy
database and not necessarily indicate a random hit but a match
that is homologous to the actual peptide. Especially, in
peptidomics where there is an uncertainty about the actual in
silico progenitor sequences, these non-random finding in the
decoy database might become problematic and cause conserva-
tive thresholds is the FDR scheme because target and null
distribution severely overlap.

H. Way Out?

Especially for peptidomics data, a combined use of search
engines and search strategies can increase the confidence in
peptide identifications when a PSM is confirmed with multiple
search engines, even when different searches rate a PSM below
the threshold confidence. These multistage strategies are already
reported for proteomics approaches (Keller et al., 2005; Alves
et al., 2008; Kwon et al., 2011) and peptidomics (Menschaert
et al., 2010). However, when combining information from
multiple search methods caution should be applied. Shen et al.
(2011) expressed their concerns for using an FDR decoy search
strategy for peptide identification with multiple search strategies,
because different sets of peptides were identified at the same low
FDR level from the same set of spectra. This observation raised
questions on the accuracy of the FDR evaluation in the case of
degradomic-peptidomic analysis. Though some tools might be
able to tack this ambiguity (Kwon et al., 2011), special attention
and additional work are still required on the development of
statistical error rate estimation methods that are applicable to
multistage peptidomics approaches.

Also, methods and pipelines that can handle the unknown
PTMs are important. For this purpose, several spectral match-
ing/clustering strategies have been developed to facilitate
identification of new and unexpected modifications, to provide
the unmodified and the modified sequence that are present in the
sample. The Bonanza clustering method of Menschaert et al.
(2009b) explains modified bioactive peptides by their known
peptide precursors. Additionally, implementation of bioinfor-
matics tools that try to predict the active proteases based on the
observed degradome to sort out protein remnants from bioactive
peptides might be extremely helpful (Song et al., 2010, 2012).

In order to deal with non-peptidic contaminants and
interferences, Jeong et al. (2012) suggest to remove unidentifi-
able spectra prior to a search strategy because it would reduce
the computation time and positively influence the false discov-
ery rate because unidentifiable spectra can only generate false
PSMs. An effort in this direction is provided by “Lipid
Centrifuge” of Dittwald et al. (2014) that provides a framework
to recognize and triage non-peptidic contaminants prior to data
interpretation, in this case lipids.

With mass spectrometry improvements in mass accuracy
and advances in peptide fragmentation techniques, de novo
interpretation methods will become increasingly important. The
combination of de novo algorithms with classical database
search algorithms, like for example, Peaks and Peaks DB
(Zhang et al., 2012) are currently available as user friendly

software. A very promising development in this context is that
de novo-assisted method can enable blind PTM search that allow
for hundreds of modifications (Han et al., 2011). The restriction
that short sequence tags imposed on a database compensates the
increase of the search space caused by allowing many PTMs.
For further reading on bioinformatics solution for peptidomics,
we refer to Menschaert et al. (2010) who reported on tools,
strategies, and methodologies within the peptidomics field and
the application thereof. Furthermore universal search tools, like
MS-GFþ (Kim & Pevzner, 2014; Wu et al., 2015), a mass-
tolerant database search approach (Chick et al., 2015) and MS
Fragger (Kong et al., 2017), that allow for open and unrestricted
database searches can overcome the difficulties in peptidomic
spectral identifications laid out in this section.

VI. CONCLUSION

In clinical applications, peptides have large potential, both in
use as biomarkers and as well as potential peptidic treatments.
Their pharmacological characterization is, therefore, of crucial
importance. The study of the endogenous peptide content in
clinical samples is more relevant than ever. However, a variety
of issues (peptide extraction, complexity of clinical samples,
MS, and bioinformatic analysis) make peptidomics research less
straightforward compared to proteomics/genomics and other—
omics applications. In recent years, several of these hurdles are
partially circumvented with technological enhancements that
include an improved sample preparation, more sensitive mass
spectrometry instruments, and improved bioinformatic solu-
tions. However, continued progress in the peptidomics field is
still required to put this “omics” technology to the next level,
where peptidomics results might be translated into the clinic.
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