Supplementary Materials (not to be published)

Table S1. Descriptive Statistics Using the CONEVAL Sample

	Border	Rest of the country	Rest of Northern region	Border	Rest of the country	Rest of Northern region
		$2018: 3$			$2020: 3$	
	12233	9525	12138	12597	9418	12651
Household income	3166	2340	3130	3354	2413	3384
Per capita household income	4.2	4.4	4.2	4.2	4.3	4.1
Household size					1.2	1.1
Number of household members under 15 years old	1.3	1.3	1.3	1.3		
Number of household members						
over 65 years old	0.2	0.3	0.2	0.2	0.3	0.3
Head of household: married or living together	0.74	0.78	0.78	0.74	0.75	0.75
Head of household: female	0.29	0.24	0.22	0.28	0.27	0.25
Head of household: years of schooling	9.1	8.3	9.3	9.3	8.7	9.7
Head of household: age	45.8	48.6	48.3	46.5	49.5	49.7
Rural \% Poverty	0.04	0.27	0.16	0.07	0.26	0.13
Poverty intensity	0.264	0.402	0.272	0.291	0.455	0.325
Poverty intensity squared \% Households with zero income	0.506	0.565	0.575	0.582	0.618	0.619
Number of households	0.392	0.444	0.472	0.485	0.506	0.518

Notes: Authors' calculations.

Figure S1. Evolution of labor poverty by region using CONEVAL sample, 2016-2020

Notes: Authors' calculations.

Table S2. Best Models Used in the Synthetic Control Method

	Poverty	Per capita household income	Poverty gap	Poverty gap squared
A. CONEVAL Sample				
Model 1	RMSPE: 0.007	RMSPE: 1.471	RMSPE: 0.008	RMSPE: 0.012
	$\begin{gathered} 2016: 3,4 ; 2017 ; 3,4 \\ 2018: 3,4 \end{gathered}$	$\begin{gathered} 2016: 1,3 ; 2017 ; 1,2 ; \\ 2018: 1,3 \end{gathered}$	$\begin{gathered} 2016: 3,4 ; 2017 \\ 3,4 ; 2018: 3,4 \end{gathered}$	$\begin{gathered} 2016: 3,4 ; 2017 \\ 3,4 ; 2018: 3,4 \end{gathered}$
Model 2	RMSPE: 0.007 2016: 3, 4; 2017; 3, 4; 2018: 3, 4, demographic characteristics	$\begin{gathered} \text { RMSPE: } 1.529 \\ \text { 2016: } 2,4 ; 2017 ; 1,3 ; \\ 2018: 1,3 \end{gathered}$	$\begin{gathered} \text { RMSPE: } 0.010 \\ \text { 2017: } 1,2 ; 2018: \\ 1,2,3,4 \end{gathered}$	$\begin{aligned} & \text { RMSPE: } 0.013 \\ & 2016: 3,4 ; 2017 ; \\ & 3,4 ; 2018: 3,4 \end{aligned}$
Model 3	$\begin{gathered} \text { RMSPE: } 0.008 \\ \text { 2017: } 1,2 ; 2018: 1,2, \\ 3,4 \end{gathered}$	RMSPE: 1.547		
			RMSPE: 0.010	RMSPE: 0.013
		2018: 2, 3, demographic	$\begin{gathered} 2016: 3,4 ; 2017 ; \\ 3,4 ; 2018: 3,4 \end{gathered}$	$\begin{gathered} 2017: 1,2 ; 2018: \\ 1,2,3,4 \end{gathered}$
		characteristics		
Model 4	$\begin{gathered} \text { RMSPE: } 0.008 \\ \text { 2016: } 1,3 ; 2017 ; 1,2 ; \\ 2018: 1,3 \end{gathered}$	RMSPE: 1.626	RMSPE: 0.010	RMSPE: 0.014
		$\begin{gathered} 2016: 2,4 ; 2017 ; 2,4 ; \\ 2018: 1,3 \end{gathered}$	$\begin{gathered} 2016: 2,4 ; 2017 ; \\ 13 \cdot 2018 \cdot 1 \end{gathered}$	$\begin{gathered} \text { 2016: 1, 3; 2017; } \\ 24 \cdot 2018 \cdot 24 \end{gathered}$
	$\begin{gathered} \text { RMSPE: } 0.008 \\ \text { 2016: } 1,4 ; 2017 ; 1,4 ; \\ 2018: 1,4 \end{gathered}$	RMSPE: 1.654	3,2018.1,3	2, 4, 2018. 2, 4
Model 5		$\begin{gathered} \text { 2016: } 1,3 ; 2017 ; 1,2 \\ 2018: 1,3 \end{gathered}$	RMSPE: 0.011	RMSPE: 0.015
			2016: 1, 3; 2017;	2016: 2; 2017: 2
		demographic characteristics	1, 2; 2018: 1, 3	; 2018: 1, 3, 4
B. Hotdeck Sample				
Model 1	RMSPE: 0.004	RMSPE: 1.417	RMSPE: 0.007	RMSPE: 0.009
	$\begin{gathered} 2016: 3,4 ; 2017 ; 3,4 \\ 2018: 3,4 \end{gathered}$	$2016: 1,3 ; 2017 ; 1,2$	$\text { 2017: } 1,2 ; 2018:$	2016: 1, 3; 2017;
		2018: 1, 3 RMSPE: 1.441	$1,2,3,4$	$2,4 ; 2018: 2,4$
Model 2	$\begin{gathered} \text { RMSPE: } 0.005 \\ \text { 2016: } 1,3 ; 2017 ; 1,2 ; \\ 2018: 1,3 \end{gathered}$	2016: 1, 3; 2017; 1, 2;	RMSPE: 0.009	RMSPE: 0.009
			2016: 1, 3; 2017;	2017: 1,2; 2018:
		demographic characteristics	2, 4; 2018: 2 , 4	1, 2, 3, 4
Model 3	RMSPE: 0.005	RMSPE: 1.466	RMSPE: 0.009	RMSPE: 0.010
	$\begin{gathered} 2016: 1,4 ; 2017 ; 1,4 ; \\ 2018: 1,4 \end{gathered}$	2016: 2, 4; 2017; 1, 3;	2016: 3, 4; 2017;	$2016: 3,4 ; 2017$
	RMSPE: 0.0062016: 2, 4; 2017; 1, 3;2018: 1,3	$\text { 2018: 1, } 3$ RMSPE: 1.556	$3,4 ; 2018: 3,4$	3, 4; 2018: 3, 4
Model 4		2016: 2, 4; 2017; 1, 3;	RMSPE: 0.009	RMSPE: 0.010
			2016: 2, 4; 2017;	2016: 2, 4; 2017;
		demographic characteristics	2, 4; 2018: 2 , 4	2, 4; 2018: 2, 4
Model 5	$\begin{gathered} \text { RMSPE: } 0.006 \\ \text { 2016: } 2,3 ; 2017 ; 2,3 ; \\ 2018: 2,3 \end{gathered}$	RMSPE: 1.589		
		$\begin{gathered} \text { 2016: } 2,3 ; 2017 ; 2,3 ; \\ 2018: 2,3, \\ \text { demographic } \\ \text { characteristics } \end{gathered}$	RMSPE: 0.009	RMSPE: 0.010
			2016: 1, 4; 2017;	2016: 3, 4; 2017;
			1, 4; 2018: 1, 4	3, 4; 2018: 3, 4

Notes: Demographic characteristics refer to rural status, number of members in the household under 15 years old or over 65 years old, and the age, sex, marital status, and years of schooling of household heads.

Figure S2. Sensitivity analysis using the synthetic control method:
Best five models for the CONEVAL and hotdeck samples

Notes: Authors' calculations. The figure plots the best five models with the lowest RMSPE for each variable. Average p-values are in square brackets and in gray. Average p-values for the joint test are in parentheses and in black. Per capita income is percent.

Table S3. Synthetic Control Results for the Probability of Poverty in Year t,
Given That the Household is Poor or Non-poor in Year $t-1$

	$\operatorname{Pr}($ Poor in $t \mid$ Poor in $t-1)$				$\operatorname{Pr}($ Poor in $t \mid$ Non-poor in t-1)			
	$\begin{gathered} \text { CONEVAL } \\ \text { sample } \\ \hline \end{gathered}$		Hotdeck sample		$\begin{gathered} \text { CONEVAL } \\ \text { sample } \\ \hline \end{gathered}$		Hotdeck sample	
2019:Q1	-0.054	[.355]	-0.054	[.323]	-0.067	[.0968]	-0.042	[.0645]
2019:Q2	0.109	[.161]	0.094	[.323]	-0.040	[.129]	-0.033	[0]
2019:Q3	0.007	[.903]	-0.005	[.968]	-0.008	[.839]	-0.016	[.387]
2019:Q4	-0.076	[.355]	-0.035	[.452]	-0.035	[.194]	-0.007	[.71]
2020:Q1	0.094	[.161]	-0.011	[.935]	0.004	[.935]	-0.011	[.484]
2020:Q3	-0.003	[.968]	0.020	[.871]	-0.053	[.355]	-0.030	[.355]
2020:Q4	0.020	[.71]	-0.045	[.677]	-0.029	[.452]	-0.048	[.0968]
Avg. Effects (2019)	-0.004	[.444]	0.000	[.516]	-0.038	[.315]	-0.025	[.29]
Joint p-value (2019)	[.452]		[.613]		[.258]		[.032]	
Avg. Effects	0.014	[.516]	-0.005	[.65]	-0.033	[.429]	-0.027	[.3]
Joint p-value	[.613]		[.968]		[.323]		[.194]	

Notes: Authors' calculations. P-values in brackets, adjusted by match quality using the RMSPE. Joint p-value is the proportion of placebos with the ratio of the post- to pre-treatment RMSPE at least as large as the corresponding ratio for the treatment group. We estimated 22 different models for each variable and selected the model with the lowest RMSPE.

Table S4. Results for Poverty Gap and Poverty Gap Squared,
Restricted to Households with Positive Labor Income.

	Poverty Gap		Poverty Gap Squared	
	Rest of the country	Rest of northern region	Rest of the country	Rest of northern region
A. CONEVAL sample				
DID estimate	0.0013	-0.0022	0.0013	0.0001
s.e.	$[.0084]$	$[.0096]$	$[.0071]$	$[.0073]$
Adj. R^{2}	0.158	0.056	0.183	0.058
N	350,501	50,465	350,501	50,465
B. Hotdeck sample				
DID estimate	0.0034	-0.0045	0.0025	-0.0022
s.e.	$[.0065]$	$[.0073]$	$[.0046]$	$[.0047]$
Adj. R^{2}	0.122	0.051	0.142	0.053
N	337,802	53,186	337,802	53,186

Notes: Authors' calculations. Robust and clustered standard errors in brackets (at the state x border level). Panel A uses the households in the CONEVAL sample to calculate poverty, and panel B uses the sample obtained from the hotdeck procedure.

Table S5. Adjusting Poverty Lines by Region: Effects on the Probability of Poverty in t Given That the Household Is Poor or Non-poor in $t-1$

	$\operatorname{Pr}($ Poor in $t \mid$ Poor in $t-1)$		$\operatorname{Pr}($ Poor in $t \mid$ Non-poor in $t-1)$	
	Rest of the country	Rest of northern region	Rest of the country	Rest of northern region
A. CONEVAL Sample				
DID estimate	0.020	0.018	-0.025	-0.016
s.e.	[.030]	[.043]	[.016]	[.013]
Adj. R^{2}				
N	75,765	12,248	127,699	30,410
B. Hotdeck sample				
DID estimate	0.032	0.019	-0.032	-0.022
s.e.	[.031]	[.038]	[.007]	[.005]
Adj. R^{2}				
N	72,674	13,319	173,636	43,484

Notes: Authors' calculations. The regressions report the marginal effect from a probit. Robust and clustered standard errors in brackets (at the state x border level). Panel A uses the households in the CONEVAL sample to calculate poverty, and panel B uses the sample obtained from the hotdeck procedure. Regressions restricted to households either poor or non-poor in period $t-1$. Regression controls for year-quarter fixed effects, state x border fixed effects (both in period t), for rural status, family size, number of members under 15 years old, number of members over 65 years old, and the age, years of schooling, gender, and marital status (married or living together) of the household head (in period $t-1$).

Table S6. Adjusting Poverty Lines for Each Region: Synthetic Control Results for the Probability of Poverty in Year t Given That the Household Is Poor or Non-poor in Year $t-1$

	$\operatorname{Pr}($ Poor in t			Poor in $t-1)$	$\operatorname{Pr}($ Poor in $t \mid$ Non-poor in $t-1)$			
	CONEVAL		Hotdeck sample		CONEVAL sample		Hotdeck sample	
2019:Q1	-0.049	$[.387]$	-0.058	$[.258]$	-0.069	$[.0968]$	-0.048	$[0]$
2019:Q2	0.101	$[.129]$	0.095	$[.323]$	-0.045	$[.129]$	-0.026	$[.0645]$
2019:Q3	0.008	$[.903]$	-0.008	$[.968]$	-0.001	$[.935]$	-0.007	$[.774]$
2019:Q4	-0.077	$[.194]$	-0.037	$[.387]$	-0.038	$[.194]$	-0.015	$[.387]$
2020:Q1	0.088	$[.161]$	-0.014	$[.839]$	0.003	$[1]$	-0.016	$[.258]$
2020:Q3	-0.012	$[.871]$	0.020	$[.839]$	-0.055	$[.387]$	-0.038	$[.226]$
2020:Q4	0.021	$[.645]$	-0.044	$[.613]$	-0.032	$[.484]$	-0.041	$[.0968]$
Avg. Effects								
2019	-0.004	$[.403]$	-0.002	$[.484]$	-0.038	$[.339]$	-0.024	$[.306]$
Joint p-value								$[.032]$
2019	$[.323]$		$[.645]$		$[.29]$			
Avg. Effects	0.011	$[.47]$	-0.006	$[.604]$	-0.034	$[.461]$	-0.027	$[.258]$
Joint p-value	$[.548]$		$[.903]$		$[.387]$		$[.194]$	

Notes: Authors' calculations. P-values in brackets, adjusted by match quality using the RMSPE. Joint p-value is the proportion of placebos with the ratio of the post- to pre-treatment RMSPE at least as large as the corresponding ratio for the treatment group. We estimated 22 different models for each variable and selected the model with the lowest RMSPE.

Table S7. Synthetic Control Adjusting the Poverty Line by Region

	Poverty				Poverty Gap				Squared Poverty Gap			
	CONEVAL sample		Hotdeck sample		$\begin{gathered} \hline \text { CONEVAL } \\ \text { sample } \\ \hline \end{gathered}$		Hotdeck sample		CONEVAL sample		Hotdeck sample	
2019:Q1	-0.034	[.000]	-0.038	[.000]	0.031	[.097]	0.007	[.613]	0.020	[.355]	0.013	[.323]
2019:Q2	-0.020	[.032]	-0.033	[.000]	0.010	[.452]	-0.007	[.613]	0.002	[.935]	0.008	[.581]
2019:Q3	-0.034	[.032]	-0.040	[.000]	0.039	[.00]	0.026	[.000]	0.038	[.129]	0.031	[.032]
2019:Q4	-0.019	[.064]	-0.033	[.000]	0.020	[.258]	0.027	[.064]	0.031	[.290]	0.029	[.064]
2020:Q1	-0.004	[.742]	-0.015	[.226]	0.013	[.290]	0.020	[.129]	0.026	[.194]	0.018	[.258]
2020:Q3	-0.066	[.097]	-0.042	[.097]	0.025	[.290]	0.050	[.097]	0.038	[.387]	0.046	[.129]
2020:Q4	-0.059	[.064]	-0.038	[.129]	0.019	[.355]	0.017	[.323]	0.022	[.613]	0.042	[.032]
Avg. Effects 2019	-0.027	[.032]	-0.036	[.000]	0.025	[.20]	0.013	[.32]	0.023	[.43]	0.020	[.25]
Joint p value 2019	[.000]		[.000]		[.065]		[.160]		[.320]		[.097]	
Avg. Effects	-0.034	[.147]	-0.034	[.064]	0.022	[.249]	0.020	[.263]	0.025	[.415]	0.027	[.203]
Joint p value	[.064]		[.00]		[.194]		[.161]		[.419]		[.097]	

Notes: Authors' calculations. P-values in brackets, adjusted by match quality using the RMSPE. Joint p-value is the proportion of placebos with the ratio of the post- to pre-treatment RMSPE at least as large as the corresponding ratio for the treatment group. We estimated 22 different models for each variable and selected the model with the lowest RMSPE.

Table S8. Effects on Poverty and Per Capita Household Income (year ≤ 2019) [table 2].

	Poverty	Household income per capita		
	Rest of the country	Rest of northern region	Rest of the country	Rest of northern region
A. CONEVAL Sample				
DID estimate	-0.032	-0.022	0.048	0.005
s.e.	$[.013]$	$[.012]$	$[.041]$	$[.064]$
Adj. R^{2}			0.197	0.200
N	$1,457,050$	321,914	$1,457,050$	321,914
B. Hotdeck sample				
DID estimate	-0.027	-0.026	0.060	0.059
s.e.	$[.011]$	$[.0095]$	$[.039]$	$[.044]$
Adj. R^{2}			0.172	0.174
N	$1,619,678$	379,950	$1,619,678$	379,950

Notes: Authors' calculations (period 2016-2019). Robust and clustered standard errors in brackets (at the state x border level). Panel A uses the households in the CONEVAL sample to calculate poverty, and panel B uses the sample obtained from the hotdeck procedure. Rest of northern region refers to northern states. Regression controls for year-quarter fixed effects, state x border fixed effects, and for rural status, family size, number of members under 15 years old, number of members over 65 years old, and the age, years of schooling, gender, and marital status (married or living together) of the household head.

Table S9. Effects on the Probability of Poverty in Period t Given
That the Household Is Poor or Non-poor in $t-1$ (year ≤ 2019) [table 4].

	Pr (Poor in t	Poor in $t-1$)	$\operatorname{Pr}($ Poor in $t \mid \mathrm{N}$	Non-poor in t-1)
	Rest of the country	Rest of northern region	Rest of the country	Rest of northern region
A. CONEVAL Sample				
DID estimate	0.017	0.002	-0.047	-0.025
s.e.	[.058]	[.075]	[.016]	[.012]
N	61,392	9,478	101,646	6 23,080
B. Hotdeck sample				
DID estimate	0.030	0.017	-0.035	-0.023
s.e.	[.049]	[.057]	[.006]	[.005]
Adj. R^{2} [
N	58,659	10,390	139,006	6 33,695

Notes: Authors' calculations (period 2016-2019). The regressions report the marginal effect from a probit. Robust and clustered standard errors in brackets (at the state x border level). Panel A uses the households in the CONEVAL sample to calculate poverty, and panel B uses the sample obtained from the hotdeck procedure. Regressions restrict to households either poor or non-poor in period $t-1$. Regression controls for year-quarter fixed effects, state x border fixed effects (both in period t), and for rural status, family size, number of members less than 15 years old, number of members over 65 years old, and the age, years of schooling, gender, and marital status (married or living together) of the head of household in period $t-1$.

Table S10. Effects on the Poverty Gap and the Poverty Gap Squared, Conditional on

$$
\text { Being Poor (year } \leq 2019 \text {) [table 5]. }
$$

	Poverty Gap		Poverty Gap Squared	
	Rest of the country	Rest of northern region	Rest of the country	Rest of northern region
A. CONEVAL Sample	0.032	0.030	0.036	
DID estimate	0.029	0.032	$[.0079]$	$[.0088]$
s.e.	$[.0068]$	$[.0083]$	0.226	0.352
Adj. R^{2}	0.204	0.311	529,949	89,038
N	529,949	89,038		
B. Hotdeck sample			0.023	0.026
DID estimate	0.026	$[.0041]$	$[.0063]$	$[.0055]$
s.e.	0.223	0.315	0.256	$[.007]$
Adj. R^{2}	498,419	90,943	498,419	0.357
N				

Notes: Authors' calculations (period 2016-2019). Robust and clustered standard errors in brackets (at the state x border level). Panel A uses the households in the CONEVAL sample to calculate poverty, and panel B uses the sample obtained from the hotdeck procedure. Estimations restricted to poor households. Regression controls for year-quarter fixed effects, state x border fixed effects, and for rural status, family size, number of members under 15 years old, number of members over 65 years old, and age, years of schooling, gender, and marital status (married or living together) of the household head.

Table S11. Results for Poverty Gap and Poverty Gap Squared, Restricted to Households with Positive Labor Income (year ≤ 2019) [table S4].

	Poverty Gap		Poverty Gap Squared	
	Rest of the country	Rest of northern region	Rest of the country	Rest of northern region
A. CONEVAL sample	-0.012	0.008	0.010	
DID estimate	0.013	$[.0095]$	$[.0062]$	$[.0071]$
s.e.	$[.0073]$	0.054	0.191	0.057
Adj. R^{2}	0.165	42,707	300,495	42,707
N	300,495			
B. Hotdeck sample	0.014	0.009	0.009	0.007
DID estimate	$[.0050]$	$[.0061]$	$[.0044]$	$[.0045]$
s.e.	0.128	0.050	0.150	0.052
Adj. R^{2}	289,082	45,193	289,082	45,193
N				

Notes: Authors' calculations (period 2016-2019). Robust and clustered standard errors in brackets (at the state x border level). Panel A uses the households in the CONEVAL sample to calculate poverty, and panel B uses the sample obtained from the hotdeck procedure.

Table S12. Effects on Poverty Incidence, Poverty Gap, and Poverty Gap Squared, Adjusting the Poverty Line by Region (year ≤ 2019) [table 7].

	Poverty		Poverty Gap		Poverty Gap Squared	
	Rest of the country	Rest of northern region	Rest of the country	Rest of northern region	Rest of the country	Rest of northern region
A. CONEVAL Sample						
DID estimate	-0.040	-0.029	0.031	0.033	0.034	0.039
s.e.	$[.013]$	$[.012]$	$[.008]$	$[.009]$	$[.009]$	$[.009]$
Adj. R^{2}			0.204	0.311	0.226	0.351
N	$1,457,050$	321,914	529,943	89,243	529,943	89,243
B. Hotdeck sample						
DID estimate	-0.035	-0.033	0.028	0.024	0.029	0.027
s.e.	$[.011]$	$[.009]$	$[.004]$	$[.006]$	$[.006]$	$[.007]$
Adj. R^{2}			0.223	0.314	0.256	0.356
N	$1,619,678$	379,950	498,436	91,178	498,436	91,178

Notes: Authors' calculations (period 2016-2019). Robust and clustered standard errors in brackets (at the state x border level). Panel A uses the households in the CONEVAL sample to calculate poverty, and panel B uses the sample obtained from the hotdeck procedure. Estimations for the poverty gap and its square are restricted to poor households. Poverty line for rest of northern region is the same as for the rest of the country. Regression controls for year-quarter fixed effects, state x border fixed effects, and for rural status, family size, number of members under 15 years old, number of members over 65 years old, and the age, years of schooling, gender, and marital status (married or living together) of the household head.

Table S13. Adjusting Poverty Lines by Region: Effects on the Probability of Poverty in t
Given That the Household Is Poor or Non-poor in $t-1$ (year ≤ 2019) [table S4].

	$\operatorname{Pr}($ Poor in $t \mid$ Poor in $t-1)$	$\operatorname{Pr}($ Poor in $t \mid$ Non-poor in $t-1)$		
	Rest of the country	Rest of northern region	Rest of the country	Rest of northern region
A. CONEVAL Sample -0.003 -0.044 -0.028 DID estimate 0.014 $[.074]$ $[.015]$ $[.011]$ s.e. $[.057]$ 9,499 101,676 23,059 Adj. R^{2} -0.038 N 61,362 0.014 -0.025 B. Hotdeck sample $[.056]$ $[.005]$ $[.005]$ DID estimate s.e. 0.027 10,416 139,030 33,669 Adj. R^{2} N	58,635			

Notes: Authors' calculations (period 2016-2019). The regressions report the marginal effect from a probit. Robust and clustered standard errors in brackets (at the state x border level). Panel A uses the households in the CONEVAL sample to calculate poverty, and panel B uses the sample obtained from the hotdeck procedure. Regressions restricted to households either poor or non-poor in period t-1. Regression controls for year-quarter fixed effects, state x border fixed effects (both in period t), for rural status, family size, number of members under 15 years old, number of members over 65 years old, and the age, years of schooling, gender, and marital status (married or living together) of the household head (in period $t-1$).

Figure S3. Unconditional quantile effects estimated from 2016-2020 vs 2016-2019.

Notes: Authors' calculations. 95 percent confidence intervals in gray using robust and clustered standard errors at the state x northern border level.

Figure S4. Densities of income per capita for 2018 and 2019 and their difference.

Notes: Kernel density calculated with Epanechnikov at 1500 points and with a bandwidth of 0.169 . Hotdeck sample considered. Dash line in panel B is the median poverty line in 2019.

Figure S5. Formality across households and household income per capita.
A. Percent of household heads that have formal employment

B. Percent of household income obtained in formal sector

C. Percent of household hours worked
in formal sector

Notes: Authors' calculations. Hotdeck sample (period 2016-2020). Figure calculated with 25 groups of income per capita. Solid line is smoothed with lowess. Dash line is the median poverty line in 2019.

Figure S6. Effect on prices: Change in the value of the poverty line.
A. Rural sector
B. Urban sector

Notes: Authors' calculations. We follow the methodology of CONEVAL (2019) to construct poverty lines at the regional level.

